This file is indexed.

/usr/include/google/protobuf/extension_set.h is in libprotobuf-dev 2.4.1-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Author: kenton@google.com (Kenton Varda)
//  Based on original Protocol Buffers design by
//  Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.

#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__

#include <vector>
#include <map>
#include <utility>
#include <string>


#include <google/protobuf/stubs/common.h>

namespace google {

namespace protobuf {
  class Descriptor;                                    // descriptor.h
  class FieldDescriptor;                               // descriptor.h
  class DescriptorPool;                                // descriptor.h
  class MessageLite;                                   // message_lite.h
  class Message;                                       // message.h
  class MessageFactory;                                // message.h
  class UnknownFieldSet;                               // unknown_field_set.h
  namespace io {
    class CodedInputStream;                              // coded_stream.h
    class CodedOutputStream;                             // coded_stream.h
  }
  namespace internal {
    class FieldSkipper;                                  // wire_format_lite.h
    class RepeatedPtrFieldBase;                          // repeated_field.h
  }
  template <typename Element> class RepeatedField;     // repeated_field.h
  template <typename Element> class RepeatedPtrField;  // repeated_field.h
}

namespace protobuf {
namespace internal {

// Used to store values of type WireFormatLite::FieldType without having to
// #include wire_format_lite.h.  Also, ensures that we use only one byte to
// store these values, which is important to keep the layout of
// ExtensionSet::Extension small.
typedef uint8 FieldType;

// A function which, given an integer value, returns true if the number
// matches one of the defined values for the corresponding enum type.  This
// is used with RegisterEnumExtension, below.
typedef bool EnumValidityFunc(int number);

// Version of the above which takes an argument.  This is needed to deal with
// extensions that are not compiled in.
typedef bool EnumValidityFuncWithArg(const void* arg, int number);

// Information about a registered extension.
struct ExtensionInfo {
  inline ExtensionInfo() {}
  inline ExtensionInfo(FieldType type, bool is_repeated, bool is_packed)
      : type(type), is_repeated(is_repeated), is_packed(is_packed),
        descriptor(NULL) {}

  FieldType type;
  bool is_repeated;
  bool is_packed;

  struct EnumValidityCheck {
    EnumValidityFuncWithArg* func;
    const void* arg;
  };

  union {
    EnumValidityCheck enum_validity_check;
    const MessageLite* message_prototype;
  };

  // The descriptor for this extension, if one exists and is known.  May be
  // NULL.  Must not be NULL if the descriptor for the extension does not
  // live in the same pool as the descriptor for the containing type.
  const FieldDescriptor* descriptor;
};

// Abstract interface for an object which looks up extension definitions.  Used
// when parsing.
class LIBPROTOBUF_EXPORT ExtensionFinder {
 public:
  virtual ~ExtensionFinder();

  // Find the extension with the given containing type and number.
  virtual bool Find(int number, ExtensionInfo* output) = 0;
};

// Implementation of ExtensionFinder which finds extensions defined in .proto
// files which have been compiled into the binary.
class LIBPROTOBUF_EXPORT GeneratedExtensionFinder : public ExtensionFinder {
 public:
  GeneratedExtensionFinder(const MessageLite* containing_type)
      : containing_type_(containing_type) {}
  virtual ~GeneratedExtensionFinder() {}

  // Returns true and fills in *output if found, otherwise returns false.
  virtual bool Find(int number, ExtensionInfo* output);

 private:
  const MessageLite* containing_type_;
};

// Note:  extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
// finding extensions from a DescriptorPool.

// This is an internal helper class intended for use within the protocol buffer
// library and generated classes.  Clients should not use it directly.  Instead,
// use the generated accessors such as GetExtension() of the class being
// extended.
//
// This class manages extensions for a protocol message object.  The
// message's HasExtension(), GetExtension(), MutableExtension(), and
// ClearExtension() methods are just thin wrappers around the embedded
// ExtensionSet.  When parsing, if a tag number is encountered which is
// inside one of the message type's extension ranges, the tag is passed
// off to the ExtensionSet for parsing.  Etc.
class LIBPROTOBUF_EXPORT ExtensionSet {
 public:
  ExtensionSet();
  ~ExtensionSet();

  // These are called at startup by protocol-compiler-generated code to
  // register known extensions.  The registrations are used by ParseField()
  // to look up extensions for parsed field numbers.  Note that dynamic parsing
  // does not use ParseField(); only protocol-compiler-generated parsing
  // methods do.
  static void RegisterExtension(const MessageLite* containing_type,
                                int number, FieldType type,
                                bool is_repeated, bool is_packed);
  static void RegisterEnumExtension(const MessageLite* containing_type,
                                    int number, FieldType type,
                                    bool is_repeated, bool is_packed,
                                    EnumValidityFunc* is_valid);
  static void RegisterMessageExtension(const MessageLite* containing_type,
                                       int number, FieldType type,
                                       bool is_repeated, bool is_packed,
                                       const MessageLite* prototype);

  // =================================================================

  // Add all fields which are currently present to the given vector.  This
  // is useful to implement Reflection::ListFields().
  void AppendToList(const Descriptor* containing_type,
                    const DescriptorPool* pool,
                    vector<const FieldDescriptor*>* output) const;

  // =================================================================
  // Accessors
  //
  // Generated message classes include type-safe templated wrappers around
  // these methods.  Generally you should use those rather than call these
  // directly, unless you are doing low-level memory management.
  //
  // When calling any of these accessors, the extension number requested
  // MUST exist in the DescriptorPool provided to the constructor.  Otheriwse,
  // the method will fail an assert.  Normally, though, you would not call
  // these directly; you would either call the generated accessors of your
  // message class (e.g. GetExtension()) or you would call the accessors
  // of the reflection interface.  In both cases, it is impossible to
  // trigger this assert failure:  the generated accessors only accept
  // linked-in extension types as parameters, while the Reflection interface
  // requires you to provide the FieldDescriptor describing the extension.
  //
  // When calling any of these accessors, a protocol-compiler-generated
  // implementation of the extension corresponding to the number MUST
  // be linked in, and the FieldDescriptor used to refer to it MUST be
  // the one generated by that linked-in code.  Otherwise, the method will
  // die on an assert failure.  The message objects returned by the message
  // accessors are guaranteed to be of the correct linked-in type.
  //
  // These methods pretty much match Reflection except that:
  // - They're not virtual.
  // - They identify fields by number rather than FieldDescriptors.
  // - They identify enum values using integers rather than descriptors.
  // - Strings provide Mutable() in addition to Set() accessors.

  bool Has(int number) const;
  int ExtensionSize(int number) const;   // Size of a repeated extension.
  FieldType ExtensionType(int number) const;
  void ClearExtension(int number);

  // singular fields -------------------------------------------------

  int32  GetInt32 (int number, int32  default_value) const;
  int64  GetInt64 (int number, int64  default_value) const;
  uint32 GetUInt32(int number, uint32 default_value) const;
  uint64 GetUInt64(int number, uint64 default_value) const;
  float  GetFloat (int number, float  default_value) const;
  double GetDouble(int number, double default_value) const;
  bool   GetBool  (int number, bool   default_value) const;
  int    GetEnum  (int number, int    default_value) const;
  const string & GetString (int number, const string&  default_value) const;
  const MessageLite& GetMessage(int number,
                                const MessageLite& default_value) const;
  const MessageLite& GetMessage(int number, const Descriptor* message_type,
                                MessageFactory* factory) const;

  // |descriptor| may be NULL so long as it is known that the descriptor for
  // the extension lives in the same pool as the descriptor for the containing
  // type.
#define desc const FieldDescriptor* descriptor  // avoid line wrapping
  void SetInt32 (int number, FieldType type, int32  value, desc);
  void SetInt64 (int number, FieldType type, int64  value, desc);
  void SetUInt32(int number, FieldType type, uint32 value, desc);
  void SetUInt64(int number, FieldType type, uint64 value, desc);
  void SetFloat (int number, FieldType type, float  value, desc);
  void SetDouble(int number, FieldType type, double value, desc);
  void SetBool  (int number, FieldType type, bool   value, desc);
  void SetEnum  (int number, FieldType type, int    value, desc);
  void SetString(int number, FieldType type, const string& value, desc);
  string * MutableString (int number, FieldType type, desc);
  MessageLite* MutableMessage(int number, FieldType type,
                              const MessageLite& prototype, desc);
  MessageLite* MutableMessage(const FieldDescriptor* decsriptor,
                              MessageFactory* factory);
#undef desc

  // repeated fields -------------------------------------------------

  int32  GetRepeatedInt32 (int number, int index) const;
  int64  GetRepeatedInt64 (int number, int index) const;
  uint32 GetRepeatedUInt32(int number, int index) const;
  uint64 GetRepeatedUInt64(int number, int index) const;
  float  GetRepeatedFloat (int number, int index) const;
  double GetRepeatedDouble(int number, int index) const;
  bool   GetRepeatedBool  (int number, int index) const;
  int    GetRepeatedEnum  (int number, int index) const;
  const string & GetRepeatedString (int number, int index) const;
  const MessageLite& GetRepeatedMessage(int number, int index) const;

  void SetRepeatedInt32 (int number, int index, int32  value);
  void SetRepeatedInt64 (int number, int index, int64  value);
  void SetRepeatedUInt32(int number, int index, uint32 value);
  void SetRepeatedUInt64(int number, int index, uint64 value);
  void SetRepeatedFloat (int number, int index, float  value);
  void SetRepeatedDouble(int number, int index, double value);
  void SetRepeatedBool  (int number, int index, bool   value);
  void SetRepeatedEnum  (int number, int index, int    value);
  void SetRepeatedString(int number, int index, const string& value);
  string * MutableRepeatedString (int number, int index);
  MessageLite* MutableRepeatedMessage(int number, int index);

#define desc const FieldDescriptor* descriptor  // avoid line wrapping
  void AddInt32 (int number, FieldType type, bool packed, int32  value, desc);
  void AddInt64 (int number, FieldType type, bool packed, int64  value, desc);
  void AddUInt32(int number, FieldType type, bool packed, uint32 value, desc);
  void AddUInt64(int number, FieldType type, bool packed, uint64 value, desc);
  void AddFloat (int number, FieldType type, bool packed, float  value, desc);
  void AddDouble(int number, FieldType type, bool packed, double value, desc);
  void AddBool  (int number, FieldType type, bool packed, bool   value, desc);
  void AddEnum  (int number, FieldType type, bool packed, int    value, desc);
  void AddString(int number, FieldType type, const string& value, desc);
  string * AddString (int number, FieldType type, desc);
  MessageLite* AddMessage(int number, FieldType type,
                          const MessageLite& prototype, desc);
  MessageLite* AddMessage(const FieldDescriptor* descriptor,
                          MessageFactory* factory);
#undef desc

  void RemoveLast(int number);
  void SwapElements(int number, int index1, int index2);

  // -----------------------------------------------------------------
  // TODO(kenton):  Hardcore memory management accessors

  // =================================================================
  // convenience methods for implementing methods of Message
  //
  // These could all be implemented in terms of the other methods of this
  // class, but providing them here helps keep the generated code size down.

  void Clear();
  void MergeFrom(const ExtensionSet& other);
  void Swap(ExtensionSet* other);
  bool IsInitialized() const;

  // Parses a single extension from the input.  The input should start out
  // positioned immediately after the tag.  |containing_type| is the default
  // instance for the containing message; it is used only to look up the
  // extension by number.  See RegisterExtension(), above.  Unlike the other
  // methods of ExtensionSet, this only works for generated message types --
  // it looks up extensions registered using RegisterExtension().
  bool ParseField(uint32 tag, io::CodedInputStream* input,
                  ExtensionFinder* extension_finder,
                  FieldSkipper* field_skipper);

  // Specific versions for lite or full messages (constructs the appropriate
  // FieldSkipper automatically).
  bool ParseField(uint32 tag, io::CodedInputStream* input,
                  const MessageLite* containing_type);
  bool ParseField(uint32 tag, io::CodedInputStream* input,
                  const Message* containing_type,
                  UnknownFieldSet* unknown_fields);

  // Parse an entire message in MessageSet format.  Such messages have no
  // fields, only extensions.
  bool ParseMessageSet(io::CodedInputStream* input,
                       ExtensionFinder* extension_finder,
                       FieldSkipper* field_skipper);

  // Specific versions for lite or full messages (constructs the appropriate
  // FieldSkipper automatically).
  bool ParseMessageSet(io::CodedInputStream* input,
                       const MessageLite* containing_type);
  bool ParseMessageSet(io::CodedInputStream* input,
                       const Message* containing_type,
                       UnknownFieldSet* unknown_fields);

  // Write all extension fields with field numbers in the range
  //   [start_field_number, end_field_number)
  // to the output stream, using the cached sizes computed when ByteSize() was
  // last called.  Note that the range bounds are inclusive-exclusive.
  void SerializeWithCachedSizes(int start_field_number,
                                int end_field_number,
                                io::CodedOutputStream* output) const;

  // Same as SerializeWithCachedSizes, but without any bounds checking.
  // The caller must ensure that target has sufficient capacity for the
  // serialized extensions.
  //
  // Returns a pointer past the last written byte.
  uint8* SerializeWithCachedSizesToArray(int start_field_number,
                                         int end_field_number,
                                         uint8* target) const;

  // Like above but serializes in MessageSet format.
  void SerializeMessageSetWithCachedSizes(io::CodedOutputStream* output) const;
  uint8* SerializeMessageSetWithCachedSizesToArray(uint8* target) const;

  // Returns the total serialized size of all the extensions.
  int ByteSize() const;

  // Like ByteSize() but uses MessageSet format.
  int MessageSetByteSize() const;

  // Returns (an estimate of) the total number of bytes used for storing the
  // extensions in memory, excluding sizeof(*this).  If the ExtensionSet is
  // for a lite message (and thus possibly contains lite messages), the results
  // are undefined (might work, might crash, might corrupt data, might not even
  // be linked in).  It's up to the protocol compiler to avoid calling this on
  // such ExtensionSets (easy enough since lite messages don't implement
  // SpaceUsed()).
  int SpaceUsedExcludingSelf() const;

 private:

  struct Extension {
    union {
      int32        int32_value;
      int64        int64_value;
      uint32       uint32_value;
      uint64       uint64_value;
      float        float_value;
      double       double_value;
      bool         bool_value;
      int          enum_value;
      string*      string_value;
      MessageLite* message_value;

      RepeatedField   <int32      >* repeated_int32_value;
      RepeatedField   <int64      >* repeated_int64_value;
      RepeatedField   <uint32     >* repeated_uint32_value;
      RepeatedField   <uint64     >* repeated_uint64_value;
      RepeatedField   <float      >* repeated_float_value;
      RepeatedField   <double     >* repeated_double_value;
      RepeatedField   <bool       >* repeated_bool_value;
      RepeatedField   <int        >* repeated_enum_value;
      RepeatedPtrField<string     >* repeated_string_value;
      RepeatedPtrField<MessageLite>* repeated_message_value;
    };

    FieldType type;
    bool is_repeated;

    // For singular types, indicates if the extension is "cleared".  This
    // happens when an extension is set and then later cleared by the caller.
    // We want to keep the Extension object around for reuse, so instead of
    // removing it from the map, we just set is_cleared = true.  This has no
    // meaning for repeated types; for those, the size of the RepeatedField
    // simply becomes zero when cleared.
    bool is_cleared;

    // For repeated types, this indicates if the [packed=true] option is set.
    bool is_packed;

    // The descriptor for this extension, if one exists and is known.  May be
    // NULL.  Must not be NULL if the descriptor for the extension does not
    // live in the same pool as the descriptor for the containing type.
    const FieldDescriptor* descriptor;

    // For packed fields, the size of the packed data is recorded here when
    // ByteSize() is called then used during serialization.
    // TODO(kenton):  Use atomic<int> when C++ supports it.
    mutable int cached_size;

    // Some helper methods for operations on a single Extension.
    void SerializeFieldWithCachedSizes(
        int number,
        io::CodedOutputStream* output) const;
    uint8* SerializeFieldWithCachedSizesToArray(
        int number,
        uint8* target) const;
    void SerializeMessageSetItemWithCachedSizes(
        int number,
        io::CodedOutputStream* output) const;
    uint8* SerializeMessageSetItemWithCachedSizesToArray(
        int number,
        uint8* target) const;
    int ByteSize(int number) const;
    int MessageSetItemByteSize(int number) const;
    void Clear();
    int GetSize() const;
    void Free();
    int SpaceUsedExcludingSelf() const;
  };


  // Gets the extension with the given number, creating it if it does not
  // already exist.  Returns true if the extension did not already exist.
  bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
                         Extension** result);

  // Parse a single MessageSet item -- called just after the item group start
  // tag has been read.
  bool ParseMessageSetItem(io::CodedInputStream* input,
                           ExtensionFinder* extension_finder,
                           FieldSkipper* field_skipper);


  // Hack:  RepeatedPtrFieldBase declares ExtensionSet as a friend.  This
  //   friendship should automatically extend to ExtensionSet::Extension, but
  //   unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
  //   correctly.  So, we must provide helpers for calling methods of that
  //   class.

  // Defined in extension_set_heavy.cc.
  static inline int RepeatedMessage_SpaceUsedExcludingSelf(
      RepeatedPtrFieldBase* field);

  // The Extension struct is small enough to be passed by value, so we use it
  // directly as the value type in the map rather than use pointers.  We use
  // a map rather than hash_map here because we expect most ExtensionSets will
  // only contain a small number of extensions whereas hash_map is optimized
  // for 100 elements or more.  Also, we want AppendToList() to order fields
  // by field number.
  map<int, Extension> extensions_;

  GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(ExtensionSet);
};

// These are just for convenience...
inline void ExtensionSet::SetString(int number, FieldType type,
                                    const string& value,
                                    const FieldDescriptor* descriptor) {
  MutableString(number, type, descriptor)->assign(value);
}
inline void ExtensionSet::SetRepeatedString(int number, int index,
                                            const string& value) {
  MutableRepeatedString(number, index)->assign(value);
}
inline void ExtensionSet::AddString(int number, FieldType type,
                                    const string& value,
                                    const FieldDescriptor* descriptor) {
  AddString(number, type, descriptor)->assign(value);
}

// ===================================================================
// Glue for generated extension accessors

// -------------------------------------------------------------------
// Template magic

// First we have a set of classes representing "type traits" for different
// field types.  A type traits class knows how to implement basic accessors
// for extensions of a particular type given an ExtensionSet.  The signature
// for a type traits class looks like this:
//
//   class TypeTraits {
//    public:
//     typedef ? ConstType;
//     typedef ? MutableType;
//
//     static inline ConstType Get(int number, const ExtensionSet& set);
//     static inline void Set(int number, ConstType value, ExtensionSet* set);
//     static inline MutableType Mutable(int number, ExtensionSet* set);
//
//     // Variants for repeated fields.
//     static inline ConstType Get(int number, const ExtensionSet& set,
//                                 int index);
//     static inline void Set(int number, int index,
//                            ConstType value, ExtensionSet* set);
//     static inline MutableType Mutable(int number, int index,
//                                       ExtensionSet* set);
//     static inline void Add(int number, ConstType value, ExtensionSet* set);
//     static inline MutableType Add(int number, ExtensionSet* set);
//   };
//
// Not all of these methods make sense for all field types.  For example, the
// "Mutable" methods only make sense for strings and messages, and the
// repeated methods only make sense for repeated types.  So, each type
// traits class implements only the set of methods from this signature that it
// actually supports.  This will cause a compiler error if the user tries to
// access an extension using a method that doesn't make sense for its type.
// For example, if "foo" is an extension of type "optional int32", then if you
// try to write code like:
//   my_message.MutableExtension(foo)
// you will get a compile error because PrimitiveTypeTraits<int32> does not
// have a "Mutable()" method.

// -------------------------------------------------------------------
// PrimitiveTypeTraits

// Since the ExtensionSet has different methods for each primitive type,
// we must explicitly define the methods of the type traits class for each
// known type.
template <typename Type>
class PrimitiveTypeTraits {
 public:
  typedef Type ConstType;

  static inline ConstType Get(int number, const ExtensionSet& set,
                              ConstType default_value);
  static inline void Set(int number, FieldType field_type,
                         ConstType value, ExtensionSet* set);
};

template <typename Type>
class RepeatedPrimitiveTypeTraits {
 public:
  typedef Type ConstType;

  static inline Type Get(int number, const ExtensionSet& set, int index);
  static inline void Set(int number, int index, Type value, ExtensionSet* set);
  static inline void Add(int number, FieldType field_type,
                         bool is_packed, Type value, ExtensionSet* set);
};

#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD)                       \
template<> inline TYPE PrimitiveTypeTraits<TYPE>::Get(                     \
    int number, const ExtensionSet& set, TYPE default_value) {             \
  return set.Get##METHOD(number, default_value);                           \
}                                                                          \
template<> inline void PrimitiveTypeTraits<TYPE>::Set(                     \
    int number, FieldType field_type, TYPE value, ExtensionSet* set) {     \
  set->Set##METHOD(number, field_type, value, NULL);                       \
}                                                                          \
                                                                           \
template<> inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get(             \
    int number, const ExtensionSet& set, int index) {                      \
  return set.GetRepeated##METHOD(number, index);                           \
}                                                                          \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Set(             \
    int number, int index, TYPE value, ExtensionSet* set) {                \
  set->SetRepeated##METHOD(number, index, value);                          \
}                                                                          \
template<> inline void RepeatedPrimitiveTypeTraits<TYPE>::Add(             \
    int number, FieldType field_type, bool is_packed,                      \
    TYPE value, ExtensionSet* set) {                                       \
  set->Add##METHOD(number, field_type, is_packed, value, NULL);            \
}

PROTOBUF_DEFINE_PRIMITIVE_TYPE( int32,  Int32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( int64,  Int64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32, UInt32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64, UInt64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE( float,  Float)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(  bool,   Bool)

#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE

// -------------------------------------------------------------------
// StringTypeTraits

// Strings support both Set() and Mutable().
class LIBPROTOBUF_EXPORT StringTypeTraits {
 public:
  typedef const string& ConstType;
  typedef string* MutableType;

  static inline const string& Get(int number, const ExtensionSet& set,
                                  ConstType default_value) {
    return set.GetString(number, default_value);
  }
  static inline void Set(int number, FieldType field_type,
                         const string& value, ExtensionSet* set) {
    set->SetString(number, field_type, value, NULL);
  }
  static inline string* Mutable(int number, FieldType field_type,
                                ExtensionSet* set) {
    return set->MutableString(number, field_type, NULL);
  }
};

class LIBPROTOBUF_EXPORT RepeatedStringTypeTraits {
 public:
  typedef const string& ConstType;
  typedef string* MutableType;

  static inline const string& Get(int number, const ExtensionSet& set,
                                  int index) {
    return set.GetRepeatedString(number, index);
  }
  static inline void Set(int number, int index,
                         const string& value, ExtensionSet* set) {
    set->SetRepeatedString(number, index, value);
  }
  static inline string* Mutable(int number, int index, ExtensionSet* set) {
    return set->MutableRepeatedString(number, index);
  }
  static inline void Add(int number, FieldType field_type,
                         bool /*is_packed*/, const string& value,
                         ExtensionSet* set) {
    set->AddString(number, field_type, value, NULL);
  }
  static inline string* Add(int number, FieldType field_type,
                            ExtensionSet* set) {
    return set->AddString(number, field_type, NULL);
  }
};

// -------------------------------------------------------------------
// EnumTypeTraits

// ExtensionSet represents enums using integers internally, so we have to
// static_cast around.
template <typename Type, bool IsValid(int)>
class EnumTypeTraits {
 public:
  typedef Type ConstType;

  static inline ConstType Get(int number, const ExtensionSet& set,
                              ConstType default_value) {
    return static_cast<Type>(set.GetEnum(number, default_value));
  }
  static inline void Set(int number, FieldType field_type,
                         ConstType value, ExtensionSet* set) {
    GOOGLE_DCHECK(IsValid(value));
    set->SetEnum(number, field_type, value, NULL);
  }
};

template <typename Type, bool IsValid(int)>
class RepeatedEnumTypeTraits {
 public:
  typedef Type ConstType;

  static inline ConstType Get(int number, const ExtensionSet& set, int index) {
    return static_cast<Type>(set.GetRepeatedEnum(number, index));
  }
  static inline void Set(int number, int index,
                         ConstType value, ExtensionSet* set) {
    GOOGLE_DCHECK(IsValid(value));
    set->SetRepeatedEnum(number, index, value);
  }
  static inline void Add(int number, FieldType field_type,
                         bool is_packed, ConstType value, ExtensionSet* set) {
    GOOGLE_DCHECK(IsValid(value));
    set->AddEnum(number, field_type, is_packed, value, NULL);
  }
};

// -------------------------------------------------------------------
// MessageTypeTraits

// ExtensionSet guarantees that when manipulating extensions with message
// types, the implementation used will be the compiled-in class representing
// that type.  So, we can static_cast down to the exact type we expect.
template <typename Type>
class MessageTypeTraits {
 public:
  typedef const Type& ConstType;
  typedef Type* MutableType;

  static inline ConstType Get(int number, const ExtensionSet& set,
                              ConstType default_value) {
    return static_cast<const Type&>(
        set.GetMessage(number, default_value));
  }
  static inline MutableType Mutable(int number, FieldType field_type,
                                    ExtensionSet* set) {
    return static_cast<Type*>(
      set->MutableMessage(number, field_type, Type::default_instance(), NULL));
  }
};

template <typename Type>
class RepeatedMessageTypeTraits {
 public:
  typedef const Type& ConstType;
  typedef Type* MutableType;

  static inline ConstType Get(int number, const ExtensionSet& set, int index) {
    return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
  }
  static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
    return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
  }
  static inline MutableType Add(int number, FieldType field_type,
                                ExtensionSet* set) {
    return static_cast<Type*>(
        set->AddMessage(number, field_type, Type::default_instance(), NULL));
  }
};

// -------------------------------------------------------------------
// ExtensionIdentifier

// This is the type of actual extension objects.  E.g. if you have:
//   extends Foo with optional int32 bar = 1234;
// then "bar" will be defined in C++ as:
//   ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32>, 1, false> bar(1234);
//
// Note that we could, in theory, supply the field number as a template
// parameter, and thus make an instance of ExtensionIdentifier have no
// actual contents.  However, if we did that, then using at extension
// identifier would not necessarily cause the compiler to output any sort
// of reference to any simple defined in the extension's .pb.o file.  Some
// linkers will actually drop object files that are not explicitly referenced,
// but that would be bad because it would cause this extension to not be
// registered at static initialization, and therefore using it would crash.

template <typename ExtendeeType, typename TypeTraitsType,
          FieldType field_type, bool is_packed>
class ExtensionIdentifier {
 public:
  typedef TypeTraitsType TypeTraits;
  typedef ExtendeeType Extendee;

  ExtensionIdentifier(int number, typename TypeTraits::ConstType default_value)
      : number_(number), default_value_(default_value) {}
  inline int number() const { return number_; }
  typename TypeTraits::ConstType default_value() const {
    return default_value_;
  }

 private:
  const int number_;
  typename TypeTraits::ConstType default_value_;
};

// -------------------------------------------------------------------
// Generated accessors

// This macro should be expanded in the context of a generated type which
// has extensions.
//
// We use "_proto_TypeTraits" as a type name below because "TypeTraits"
// causes problems if the class has a nested message or enum type with that
// name and "_TypeTraits" is technically reserved for the C++ library since
// it starts with an underscore followed by a capital letter.
#define GOOGLE_PROTOBUF_EXTENSION_ACCESSORS(CLASSNAME)                        \
  /* Has, Size, Clear */                                                      \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline bool HasExtension(                                                   \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const {     \
    return _extensions_.Has(id.number());                                     \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline void ClearExtension(                                                 \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) {           \
    _extensions_.ClearExtension(id.number());                                 \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline int ExtensionSize(                                                   \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const {     \
    return _extensions_.ExtensionSize(id.number());                           \
  }                                                                           \
                                                                              \
  /* Singular accessors */                                                    \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline typename _proto_TypeTraits::ConstType GetExtension(                  \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) const {     \
    return _proto_TypeTraits::Get(id.number(), _extensions_,                  \
                                  id.default_value());                        \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline typename _proto_TypeTraits::MutableType MutableExtension(            \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) {           \
    return _proto_TypeTraits::Mutable(id.number(), field_type, &_extensions_);\
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline void SetExtension(                                                   \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id,             \
      typename _proto_TypeTraits::ConstType value) {                          \
    _proto_TypeTraits::Set(id.number(), field_type, value, &_extensions_);    \
  }                                                                           \
                                                                              \
  /* Repeated accessors */                                                    \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline typename _proto_TypeTraits::ConstType GetExtension(                  \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id,             \
      int index) const {                                                      \
    return _proto_TypeTraits::Get(id.number(), _extensions_, index);          \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline typename _proto_TypeTraits::MutableType MutableExtension(            \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id,             \
      int index) {                                                            \
    return _proto_TypeTraits::Mutable(id.number(), index, &_extensions_);     \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline void SetExtension(                                                   \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id,             \
      int index, typename _proto_TypeTraits::ConstType value) {               \
    _proto_TypeTraits::Set(id.number(), index, value, &_extensions_);         \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline typename _proto_TypeTraits::MutableType AddExtension(                \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id) {           \
    return _proto_TypeTraits::Add(id.number(), field_type, &_extensions_);    \
  }                                                                           \
                                                                              \
  template <typename _proto_TypeTraits,                                       \
            ::google::protobuf::internal::FieldType field_type,                         \
            bool is_packed>                                                   \
  inline void AddExtension(                                                   \
      const ::google::protobuf::internal::ExtensionIdentifier<                          \
        CLASSNAME, _proto_TypeTraits, field_type, is_packed>& id,             \
      typename _proto_TypeTraits::ConstType value) {                          \
    _proto_TypeTraits::Add(id.number(), field_type, is_packed,                \
                           value, &_extensions_);                             \
  }

}  // namespace internal
}  // namespace protobuf

}  // namespace google
#endif  // GOOGLE_PROTOBUF_EXTENSION_SET_H__