This file is indexed.

/usr/include/boost/random/lagged_fibonacci.hpp is in libboost1.46-dev 1.46.1-7ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/* boost random/lagged_fibonacci.hpp header file
 *
 * Copyright Jens Maurer 2000-2001
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org for most recent version including documentation.
 *
 * $Id: lagged_fibonacci.hpp 60755 2010-03-22 00:45:06Z steven_watanabe $
 *
 * Revision history
 *  2001-02-18  moved to individual header files
 */

#ifndef BOOST_RANDOM_LAGGED_FIBONACCI_HPP
#define BOOST_RANDOM_LAGGED_FIBONACCI_HPP

#include <boost/config/no_tr1/cmath.hpp>
#include <iostream>
#include <algorithm>     // std::max
#include <iterator>
#include <boost/config/no_tr1/cmath.hpp>         // std::pow
#include <boost/config.hpp>
#include <boost/limits.hpp>
#include <boost/cstdint.hpp>
#include <boost/detail/workaround.hpp>
#include <boost/random/linear_congruential.hpp>
#include <boost/random/uniform_01.hpp>
#include <boost/random/detail/config.hpp>
#include <boost/random/detail/seed.hpp>
#include <boost/random/detail/pass_through_engine.hpp>

namespace boost {
namespace random {

#if BOOST_WORKAROUND(_MSC_FULL_VER, BOOST_TESTED_AT(13102292)) && BOOST_MSVC > 1300
#  define BOOST_RANDOM_EXTRACT_LF
#endif

#if defined(__APPLE_CC__) && defined(__GNUC__) && (__GNUC__ == 3) && (__GNUC_MINOR__ <= 3)
#  define BOOST_RANDOM_EXTRACT_LF
#endif

#  ifdef BOOST_RANDOM_EXTRACT_LF
namespace detail
{
  template<class IStream, class F, class RealType>
  IStream&
  extract_lagged_fibonacci_01(
      IStream& is
      , F const& f
      , unsigned int& i
      , RealType* x
      , RealType modulus)
  {
        is >> i >> std::ws;
        for(unsigned int i = 0; i < f.long_lag; ++i)
        {
            RealType value;
            is >> value >> std::ws;
            x[i] = value / modulus;
        }
        return is;
  }

  template<class IStream, class F, class UIntType>
  IStream&
  extract_lagged_fibonacci(
      IStream& is
      , F const& f
      , unsigned int& i
      , UIntType* x)
  {
      is >> i >> std::ws;
      for(unsigned int i = 0; i < f.long_lag; ++i)
          is >> x[i] >> std::ws;
      return is;
  }
}
#  endif

/** 
 * Instantiations of class template \lagged_fibonacci model a
 * \pseudo_random_number_generator. It uses a lagged Fibonacci
 * algorithm with two lags @c p and @c q:
 * x(i) = x(i-p) + x(i-q) (mod 2<sup>w</sup>) with p > q.
 */
template<class UIntType, int w, unsigned int p, unsigned int q,
         UIntType val = 0>
class lagged_fibonacci
{
public:
  typedef UIntType result_type;
  BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
  BOOST_STATIC_CONSTANT(int, word_size = w);
  BOOST_STATIC_CONSTANT(unsigned int, long_lag = p);
  BOOST_STATIC_CONSTANT(unsigned int, short_lag = q);

  /**
   * Returns: the smallest value that the generator can produce
   */
  result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return 0; }
  /**
   * Returns: the largest value that the generator can produce
   */
  result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return wordmask; }

  /**
   * Creates a new @c lagged_fibonacci generator and calls @c seed()
   */
  lagged_fibonacci() { init_wordmask(); seed(); }
  /**
   * Creates a new @c lagged_fibonacci generator and calls @c seed(value)
   */
  explicit lagged_fibonacci(uint32_t value) { init_wordmask(); seed(value); }
  /**
   * Creates a new @c lagged_fibonacci generator and calls @c seed(first, last)
   */
  template<class It> lagged_fibonacci(It& first, It last)
  { init_wordmask(); seed(first, last); }
  // compiler-generated copy ctor and assignment operator are fine

private:
  /// \cond hide_private_members
  void init_wordmask()
  {
    wordmask = 0;
    for(int j = 0; j < w; ++j)
      wordmask |= (1u << j);
  }
  /// \endcond

public:
  /**
   * Sets the state of the generator to values produced by
   * a \minstd_rand generator.
   */
  void seed(uint32_t value = 331u)
  {
    minstd_rand0 gen(value);
    for(unsigned int j = 0; j < long_lag; ++j)
      x[j] = gen() & wordmask;
    i = long_lag;
  }

  /**
   * Sets the state of the generator to values from the iterator
   * range [first, last).  If there are not enough elements in the
   * range [first, last) throws @c std::invalid_argument.
   */
  template<class It>
  void seed(It& first, It last)
  {
    // word size could be smaller than the seed values
    unsigned int j;
    for(j = 0; j < long_lag && first != last; ++j, ++first)
      x[j] = *first & wordmask;
    i = long_lag;
    if(first == last && j < long_lag)
      throw std::invalid_argument("lagged_fibonacci::seed");
  }

  /**
   * Returns: the next value of the generator
   */
  result_type operator()()
  {
    if(i >= long_lag)
      fill();
    return x[i++];
  }

  static bool validation(result_type x)
  {
    return x == val;
  }
  
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
  template<class CharT, class Traits>
  friend std::basic_ostream<CharT,Traits>&
  operator<<(std::basic_ostream<CharT,Traits>& os, const lagged_fibonacci& f)
  {
    os << f.i << " ";
    for(unsigned int i = 0; i < f.long_lag; ++i)
      os << f.x[i] << " ";
    return os;
  }

  template<class CharT, class Traits>
  friend std::basic_istream<CharT, Traits>&
  operator>>(std::basic_istream<CharT, Traits>& is, lagged_fibonacci& f)
  {
# ifdef BOOST_RANDOM_EXTRACT_LF
      return detail::extract_lagged_fibonacci(is, f, f.i, f.x);
# else
      is >> f.i >> std::ws;
      for(unsigned int i = 0; i < f.long_lag; ++i)
          is >> f.x[i] >> std::ws;
      return is;
# endif 
  }
#endif

  friend bool operator==(const lagged_fibonacci& x, const lagged_fibonacci& y)
  { return x.i == y.i && std::equal(x.x, x.x+long_lag, y.x); }
  friend bool operator!=(const lagged_fibonacci& x,
                         const lagged_fibonacci& y)
  { return !(x == y); }
#else
  // Use a member function; Streamable concept not supported.
  bool operator==(const lagged_fibonacci& rhs) const
  { return i == rhs.i && std::equal(x, x+long_lag, rhs.x); }
  bool operator!=(const lagged_fibonacci& rhs) const
  { return !(*this == rhs); }
#endif

private:
  /// \cond hide_private_members
  void fill();
  /// \endcond

  UIntType wordmask;
  unsigned int i;
  UIntType x[long_lag];
};

#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
//  A definition is required even for integral static constants
template<class UIntType, int w, unsigned int p, unsigned int q, UIntType val>
const bool lagged_fibonacci<UIntType, w, p, q, val>::has_fixed_range;
template<class UIntType, int w, unsigned int p, unsigned int q, UIntType val>
const unsigned int lagged_fibonacci<UIntType, w, p, q, val>::long_lag;
template<class UIntType, int w, unsigned int p, unsigned int q, UIntType val>
const unsigned int lagged_fibonacci<UIntType, w, p, q, val>::short_lag;
#endif

/// \cond hide_private_members

template<class UIntType, int w, unsigned int p, unsigned int q, UIntType val>
void lagged_fibonacci<UIntType, w, p, q, val>::fill()
{
  // two loops to avoid costly modulo operations
  {  // extra scope for MSVC brokenness w.r.t. for scope
  for(unsigned int j = 0; j < short_lag; ++j)
    x[j] = (x[j] + x[j+(long_lag-short_lag)]) & wordmask;
  }
  for(unsigned int j = short_lag; j < long_lag; ++j)
    x[j] = (x[j] + x[j-short_lag]) & wordmask;
  i = 0;
}



// lagged Fibonacci generator for the range [0..1)
// contributed by Matthias Troyer
// for p=55, q=24 originally by G. J. Mitchell and D. P. Moore 1958

template<class T, unsigned int p, unsigned int q>
struct fibonacci_validation
{
  BOOST_STATIC_CONSTANT(bool, is_specialized = false);
  static T value() { return 0; }
  static T tolerance() { return 0; }
};

#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
//  A definition is required even for integral static constants
template<class T, unsigned int p, unsigned int q>
const bool fibonacci_validation<T, p, q>::is_specialized;
#endif

#define BOOST_RANDOM_FIBONACCI_VAL(T,P,Q,V,E) \
template<> \
struct fibonacci_validation<T, P, Q>  \
{                                     \
  BOOST_STATIC_CONSTANT(bool, is_specialized = true);     \
  static T value() { return V; }      \
  static T tolerance()                \
{ return (std::max)(E, static_cast<T>(5*std::numeric_limits<T>::epsilon())); } \
};
// (The extra static_cast<T> in the std::max call above is actually
// unnecessary except for HP aCC 1.30, which claims that
// numeric_limits<double>::epsilon() doesn't actually return a double.)

BOOST_RANDOM_FIBONACCI_VAL(double, 607, 273, 0.4293817707235914, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 1279, 418, 0.9421630240437659, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 2281, 1252, 0.1768114046909004, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 3217, 576, 0.1956232694868209, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 4423, 2098, 0.9499762202147172, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 9689, 5502, 0.05737836943695162, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 19937, 9842, 0.5076528587449834, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 23209, 13470, 0.5414473810619185, 1e-14)
BOOST_RANDOM_FIBONACCI_VAL(double, 44497,21034, 0.254135073399297, 1e-14)

#undef BOOST_RANDOM_FIBONACCI_VAL

/// \endcond

/**
 * Instantiations of class template @c lagged_fibonacci_01 model a
 * \pseudo_random_number_generator. It uses a lagged Fibonacci
 * algorithm with two lags @c p and @c q, evaluated in floating-point
 * arithmetic: x(i) = x(i-p) + x(i-q) (mod 1) with p > q. See
 *
 *  @blockquote
 *  "Uniform random number generators for supercomputers", Richard Brent,
 *  Proc. of Fifth Australian Supercomputer Conference, Melbourne,
 *  Dec. 1992, pp. 704-706.
 *  @endblockquote
 *
 * @xmlnote
 * The quality of the generator crucially depends on the choice
 * of the parameters. User code should employ one of the sensibly
 * parameterized generators such as \lagged_fibonacci607 instead.
 * @endxmlnote
 *
 * The generator requires considerable amounts of memory for the storage
 * of its state array. For example, \lagged_fibonacci607 requires about
 * 4856 bytes and \lagged_fibonacci44497 requires about 350 KBytes.
 */
template<class RealType, int w, unsigned int p, unsigned int q>
class lagged_fibonacci_01
{
public:
  typedef RealType result_type;
  BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);
  BOOST_STATIC_CONSTANT(int, word_size = w);
  BOOST_STATIC_CONSTANT(unsigned int, long_lag = p);
  BOOST_STATIC_CONSTANT(unsigned int, short_lag = q);

  /** Constructs a @c lagged_fibonacci_01 generator and calls @c seed(). */
  lagged_fibonacci_01() { init_modulus(); seed(); }
  /** Constructs a @c lagged_fibonacci_01 generator and calls @c seed(value). */
  BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(lagged_fibonacci_01, uint32_t, value)
  { init_modulus(); seed(value); }
  /** Constructs a @c lagged_fibonacci_01 generator and calls @c seed(gen). */
  BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(lagged_fibonacci_01, Generator, gen)
  { init_modulus(); seed(gen); }
  template<class It> lagged_fibonacci_01(It& first, It last)
  { init_modulus(); seed(first, last); }
  // compiler-generated copy ctor and assignment operator are fine

private:
  /// \cond hide_private_members
  void init_modulus()
  {
#ifndef BOOST_NO_STDC_NAMESPACE
    // allow for Koenig lookup
    using std::pow;
#endif
    _modulus = pow(RealType(2), word_size);
  }
  /// \endcond

public:
  /** Calls seed(331u). */
  void seed() { seed(331u); }
  /**
   * Constructs a \minstd_rand0 generator with the constructor parameter
   * value and calls seed with it. Distinct seeds in the range
   * [1, 2147483647) will produce generators with different states. Other
   * seeds will be equivalent to some seed within this range. See
   * \linear_congruential for details.
   */
  BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(lagged_fibonacci_01, uint32_t, value)
  {
    minstd_rand0 intgen(value);
    seed(intgen);
  }

  /**
   * Sets the state of this @c lagged_fibonacci_01 to the values returned
   * by p invocations of \uniform_01<code>\<RealType\>()(gen)</code>.
   *
   * Complexity: Exactly p invocations of gen.
   */
  BOOST_RANDOM_DETAIL_GENERATOR_SEED(lagged_fibonacci, Generator, gen)
  {
    // use pass-by-reference, but wrap argument in pass_through_engine
    typedef detail::pass_through_engine<Generator&> ref_gen;
    uniform_01<ref_gen, RealType> gen01 =
      uniform_01<ref_gen, RealType>(ref_gen(gen));
    // I could have used std::generate_n, but it takes "gen" by value
    for(unsigned int j = 0; j < long_lag; ++j)
      x[j] = gen01();
    i = long_lag;
  }

  template<class It>
  void seed(It& first, It last)
  {
#ifndef BOOST_NO_STDC_NAMESPACE
    // allow for Koenig lookup
    using std::fmod;
    using std::pow;
#endif
    unsigned long mask = ~((~0u) << (w%32));   // now lowest w bits set
    RealType two32 = pow(RealType(2), 32);
    unsigned int j;
    for(j = 0; j < long_lag && first != last; ++j) {
      x[j] = RealType(0);
      for(int k = 0; k < w/32 && first != last; ++k, ++first)
        x[j] += *first / pow(two32,k+1);
      if(first != last && mask != 0) {
        x[j] += fmod((*first & mask) / _modulus, RealType(1));
        ++first;
      }
    }
    i = long_lag;
    if(first == last && j < long_lag)
      throw std::invalid_argument("lagged_fibonacci_01::seed");
  }

  result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return result_type(0); }
  result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return result_type(1); }

  result_type operator()()
  {
    if(i >= long_lag)
      fill();
    return x[i++];
  }

  static bool validation(result_type x)
  {
    result_type v = fibonacci_validation<result_type, p, q>::value();
    result_type epsilon = fibonacci_validation<result_type, p, q>::tolerance();
    // std::abs is a source of trouble: sometimes, it's not overloaded
    // for double, plus the usual namespace std noncompliance -> avoid it
    // using std::abs;
    // return abs(x - v) < 5 * epsilon
    return x > v - epsilon && x < v + epsilon;
  }
  
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE

#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS
  template<class CharT, class Traits>
  friend std::basic_ostream<CharT,Traits>&
  operator<<(std::basic_ostream<CharT,Traits>& os, const lagged_fibonacci_01&f)
  {
#ifndef BOOST_NO_STDC_NAMESPACE
    // allow for Koenig lookup
    using std::pow;
#endif
    os << f.i << " ";
    std::ios_base::fmtflags oldflags = os.flags(os.dec | os.fixed | os.left); 
    for(unsigned int i = 0; i < f.long_lag; ++i)
      os << f.x[i] * f._modulus << " ";
    os.flags(oldflags);
    return os;
  }

  template<class CharT, class Traits>
  friend std::basic_istream<CharT, Traits>&
  operator>>(std::basic_istream<CharT, Traits>& is, lagged_fibonacci_01& f)
    {
# ifdef BOOST_RANDOM_EXTRACT_LF
        return detail::extract_lagged_fibonacci_01(is, f, f.i, f.x, f._modulus);
# else
        is >> f.i >> std::ws;
        for(unsigned int i = 0; i < f.long_lag; ++i) {
            typename lagged_fibonacci_01::result_type value;
            is >> value >> std::ws;
            f.x[i] = value / f._modulus;
        }
        return is;
# endif 
    }
#endif

  friend bool operator==(const lagged_fibonacci_01& x,
                         const lagged_fibonacci_01& y)
  { return x.i == y.i && std::equal(x.x, x.x+long_lag, y.x); }
  friend bool operator!=(const lagged_fibonacci_01& x,
                         const lagged_fibonacci_01& y)
  { return !(x == y); }
#else
  // Use a member function; Streamable concept not supported.
  bool operator==(const lagged_fibonacci_01& rhs) const
  { return i == rhs.i && std::equal(x, x+long_lag, rhs.x); }
  bool operator!=(const lagged_fibonacci_01& rhs) const
  { return !(*this == rhs); }
#endif

private:
  /// \cond hide_private_members
  void fill();
  /// \endcond
  unsigned int i;
  RealType x[long_lag];
  RealType _modulus;
};

#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
//  A definition is required even for integral static constants
template<class RealType, int w, unsigned int p, unsigned int q>
const bool lagged_fibonacci_01<RealType, w, p, q>::has_fixed_range;
template<class RealType, int w, unsigned int p, unsigned int q>
const unsigned int lagged_fibonacci_01<RealType, w, p, q>::long_lag;
template<class RealType, int w, unsigned int p, unsigned int q>
const unsigned int lagged_fibonacci_01<RealType, w, p, q>::short_lag;
template<class RealType, int w, unsigned int p, unsigned int q>
const int lagged_fibonacci_01<RealType,w,p,q>::word_size;

#endif

/// \cond hide_private_members
template<class RealType, int w, unsigned int p, unsigned int q>
void lagged_fibonacci_01<RealType, w, p, q>::fill()
{
  // two loops to avoid costly modulo operations
  {  // extra scope for MSVC brokenness w.r.t. for scope
  for(unsigned int j = 0; j < short_lag; ++j) {
    RealType t = x[j] + x[j+(long_lag-short_lag)];
    if(t >= RealType(1))
      t -= RealType(1);
    x[j] = t;
  }
  }
  for(unsigned int j = short_lag; j < long_lag; ++j) {
    RealType t = x[j] + x[j-short_lag];
    if(t >= RealType(1))
      t -= RealType(1);
    x[j] = t;
  }
  i = 0;
}
/// \endcond

} // namespace random

#ifdef BOOST_RANDOM_DOXYGEN
namespace detail {
/**
 * The specializations lagged_fibonacci607 ... lagged_fibonacci44497
 * use well tested lags.
 *
 * See
 *
 *  @blockquote
 *  "On the Periods of Generalized Fibonacci Recurrences", Richard P. Brent
 *  Computer Sciences Laboratory Australian National University, December 1992
 *  @endblockquote
 *
 * The lags used here can be found in
 *
 *  @blockquote
 *  "Uniform random number generators for supercomputers", Richard Brent,
 *  Proc. of Fifth Australian Supercomputer Conference, Melbourne,
 *  Dec. 1992, pp. 704-706.
 *  @endblockquote
 */
struct lagged_fibonacci_doc {};
}
#endif

/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 607, 273> lagged_fibonacci607;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 1279, 418> lagged_fibonacci1279;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 2281, 1252> lagged_fibonacci2281;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 3217, 576> lagged_fibonacci3217;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 4423, 2098> lagged_fibonacci4423;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 9689, 5502> lagged_fibonacci9689;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 19937, 9842> lagged_fibonacci19937;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 23209, 13470> lagged_fibonacci23209;
/**
 * @copydoc boost::detail::lagged_fibonacci_doc
 */
typedef random::lagged_fibonacci_01<double, 48, 44497, 21034> lagged_fibonacci44497;


// It is possible to partially specialize uniform_01<> on lagged_fibonacci_01<>
// to help the compiler generate efficient code.  For GCC, this seems useless,
// because GCC optimizes (x-0)/(1-0) to (x-0).  This is good enough for now.

} // namespace boost

#endif // BOOST_RANDOM_LAGGED_FIBONACCI_HPP