/usr/share/texmf-texlive/dvips/pst-3dplot/pst-3dplot.pro is in texlive-pstricks 2009-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 | %% $Id: pst-3dplot.pro 136 2009-10-06 21:37:53Z herbert $
%%
%% This is file `pst-3dplot.pro',
%%
%% IMPORTANT NOTICE:
%%
%% Package `pst-3dplot.tex'
%%
%% Herbert Voss <voss _at_ PSTricks.de>
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
%% in directory macros/latex/base/lppl.txt.
%%
%% DESCRIPTION:
%% `pst-3dplot' is a PSTricks package to draw 3d curves and graphical objects
%%
%%
%% version 0.29 / 2009-10-06 Herbert Voss <voss _at_ PSTricks.de>
%% with contributions of Darrell Lamm <darrell.lamm _at_ gtri.gatech.edu<
%%
%
/tx@3DPlotDict 200 dict def
tx@3DPlotDict begin
%
/printDot { gsave 2 copy 2 0 360 arc fill stroke grestore } def
%
/saveCoor {
dzUnit mul /z ED
dyUnit mul /y ED
dxUnit mul /x ED
} def
%
/ConvertTo2D {
RotatePoint
1 { % dummy loop, will run only 1 time, allows exit
coorType 0 le { % the default |
/x2D x leftHanded not { neg } if Alpha cos mul y Alpha sin mul add def % /\ co system
/y2D x leftHanded { neg } if Alpha sin mul y Alpha cos mul add neg Beta sin mul z Beta cos mul add def
exit } if
coorType 1 le {
/x2D y x Alpha 90 sub sin mul sub def % |/_ co system, no shortened x axis
/y2D z x Alpha 90 sub cos mul sub def
exit } if
coorType 2 le { % coorType |/_ with a 1/sqrt(2) shortend x-axis and 135 degrees
/x2D y x 0.5 mul sub def
/y2D z x 0.5 mul sub def
exit } if
coorType 3 le { % coorType |/_ with a 1/sqrt(2) shortend x-axis and 135 degrees
/x2D y x -0.5 mul sub def
/y2D z x -0.5 mul sub def
exit } if
coorType 4 le { % Normalbild in Trimetrie Skalierung so, dass coorType2
/x2D x -0.5 mul y 1 mul add def
/y2D x -0.5 mul y -0.25 mul add z 1 mul add def
exit } if
} repeat
} def
%
/Conv3D2D { /z ED /y ED /x ED ConvertTo2D x2D y2D } def
%
/ConvertToCartesian {
/latitude exch def
/longitude exch def
/Radius exch def
1 { % dummy loop, will run only 1 time, allows exit
SphericalCoorType 0 le { % the default |
/z { Radius latitude sin mul } def
/x { Radius longitude cos mul latitude cos mul } def
/y { Radius longitude sin mul latitude cos mul } def
exit } if
SphericalCoorType 2 le {
/z { Radius longitude cos mul } def
/x { Radius longitude sin mul latitude cos mul} def
/y { Radius longitude sin mul latitude sin mul } def
exit } if
} repeat
} def
%
/ConvCylToCartesian { % r phi h -> x y z
3 1 roll % h r phi
/Phi ED
/Radius ED % h->z on stack
Radius Phi cos mul exch % x z
Radius Phi sin mul exch % x y z
} def
%
/SphericalTo2D {
x y z ConvertToCartesian ConvertTo2D
} def
%
/CylinderTo2D { % r phi h
x y z ConvCylToCartesian ConvertTo2D
} def
%
/convertStackTo2D {
counttomark
/n ED /n3 n 3 div cvi def
n3 {
n -3 roll
SphericalCoor { ConvertToCartesian } { saveCoor } ifelse
ConvertTo2D
x2D xUnit y2D yUnit
/n n 1 sub def
} repeat
} def
%
% the angle in the parameter equation for an ellipse is not proportional to the real angle!
% phi=atan(b*tan(angle)/a)+floor(angle/180+0.5)*180
%
/getPhi { % on stack: vecA vecB angle
3 dict begin
/angle exch def /vecB exch def /vecA exch def
angle cvi 90 mod 0 eq { angle } { vecA angle tan mul vecB atan
angle 180 div .5 add floor 180 mul add } ifelse
end
} def
%
/RotSet (set ) def
%
/eulerRotation false def
% Matrix multiplication procedure
/matmul {
/M@tMulDict 20 dict def
M@tMulDict begin
/m2 ED
/m1 ED
m1 dup length 2 sub 2 getinterval aload pop
/col1max ED
/row1max ED
m2 dup length 2 sub 2 getinterval aload pop
/col2max ED
/row2max ED
/m3 row1max col2max mul 2 add array def
m3 dup length 2 sub row1max col2max 2 array astore putinterval
0 1 row1max 1 sub {
/row ED
0 1 col2max 1 sub {
/col ED
/sum 0 def
0 1 col1max 1 sub{
/rowcol ED
sum
m1 row col1max mul rowcol add get
m2 rowcol col2max mul col add get
mul add
/sum ED
} for
m3 row col2max mul col add sum put
} for
} for
m3
end % end of M@tMulDict
} def
%
/SetMQuaternion {
/MnewTOold 11 array def
/Qu@ternionDict 30 dict def
Qu@ternionDict begin
/normRotVec xRotVec yRotVec zRotVec 3 array astore VecNorm def
normRotVec 0 gt
{/xRotVecNorm xRotVec normRotVec div def
/yRotVecNorm yRotVec normRotVec div def
/zRotVecNorm zRotVec normRotVec div def
RotAngle}
{/xRotVecNorm 1 def
/yRotVecNorm 0 def
/zRotVecNorm 0 def
0} ifelse
2 div dup
/q0 exch cos def
sin dup dup
/q1 exch xRotVecNorm mul def
/q2 exch yRotVecNorm mul def
/q3 exch zRotVecNorm mul def
/q0q0 q0 q0 mul def
/q0q1 q0 q1 mul def
/q0q2 q0 q2 mul def
/q0q3 q0 q3 mul def
/q1q1 q1 q1 mul def
/q1q2 q1 q2 mul def
/q1q3 q1 q3 mul def
/q2q2 q2 q2 mul def
/q2q3 q2 q3 mul def
/q3q3 q3 q3 mul def
MnewTOold 0 q0q0 q1q1 add q2q2 sub q3q3 sub put
MnewTOold 1 q1q2 q0q3 sub 2 mul put
MnewTOold 2 q1q3 q0q2 add 2 mul put
MnewTOold 3 q1q2 q0q3 add 2 mul put
MnewTOold 4 q0q0 q1q1 sub q2q2 add q3q3 sub put
MnewTOold 5 q2q3 q0q1 sub 2 mul put
MnewTOold 6 q1q3 q0q2 sub 2 mul put
MnewTOold 7 q2q3 q0q1 add 2 mul put
MnewTOold 8 q0q0 q1q1 sub q2q2 sub q3q3 add put
MnewTOold 9 3 put
MnewTOold 10 3 put
end % end of Qu@ternionDict
} def
%
/SetMxyz {
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 3 3 11 array astore /MnewTOold ED
RotSequence cvx exec % Now create a new MnewTOold using xyz, etc.
} def
%
/ConcatMQuaternion {
MnewTOold % Push onto stack
SetMQuaternion % Uses [xyz]RotVec and RotAngle to make MnewToOld
MnewTOold matmul /MnewTOold ED
} def
%
/ConcatMxyz {
MnewTOold % Push onto stack
SetMxyz % Uses RotX, etc. to set MnewTOold
MnewTOold matmul /MnewTOold ED
} def
%
/RotatePoint{
MnewTOold x y z 3 1 5 array astore matmul
0 3 getinterval aload pop
/z ED
/y ED
/x ED
} def
%
/makeMoldTOnew {
/MoldTOnew 11 array def
MoldTOnew 0 MnewTOold 0 get put
MoldTOnew 1 MnewTOold 3 get put
MoldTOnew 2 MnewTOold 6 get put
MoldTOnew 3 MnewTOold 1 get put
MoldTOnew 4 MnewTOold 4 get put
MoldTOnew 5 MnewTOold 7 get put
MoldTOnew 6 MnewTOold 2 get put
MoldTOnew 7 MnewTOold 5 get put
MoldTOnew 8 MnewTOold 8 get put
MoldTOnew 9 3 put
MoldTOnew 10 3 put
} def
%
/RotXaxis {
eulerRotation
{1 0 0}
{makeMoldTOnew MoldTOnew 1 0 0 3 1 5 array astore matmul
0 3 getinterval aload pop} ifelse
/zRotVec ED
/yRotVec ED
/xRotVec ED
/RotAngle RotX def
ConcatMQuaternion
} def
/RotYaxis {
eulerRotation
{0 1 0}
{makeMoldTOnew MoldTOnew 0 1 0 3 1 5 array astore matmul
0 3 getinterval aload pop} ifelse
/zRotVec ED
/yRotVec ED
/xRotVec ED
/RotAngle RotY def
ConcatMQuaternion
} def
/RotZaxis {
eulerRotation
{0 0 1}
{makeMoldTOnew MoldTOnew 0 0 1 3 1 5 array astore matmul
0 3 getinterval aload pop} ifelse
/zRotVec ED
/yRotVec ED
/xRotVec ED
/RotAngle RotZ def
ConcatMQuaternion
} def
/xyz { RotXaxis RotYaxis RotZaxis } def
/yxz { RotYaxis RotXaxis RotZaxis } def
/yzx { RotYaxis RotZaxis RotXaxis } def
/xzy { RotXaxis RotZaxis RotYaxis } def
/zxy { RotZaxis RotXaxis RotYaxis } def
/zyx { RotZaxis RotYaxis RotXaxis } def
/quaternion { } def % Null
%
/VecNorm { 0 exch { dup mul add } forall sqrt } def
%
/UnitVec { % on stack is [a]; returns a vector with [a][a]/|a|=1
dup VecNorm /norm ED
norm 0 lt {/norm 0 def} if
{ norm div } forall 3 array astore } def
%
/AxB { % on the stack are the two vectors [a][b]
aload pop /b3 ED /b2 ED /b1 ED
aload pop /a3 ED /a2 ED /a1 ED
a2 b3 mul a3 b2 mul sub
a3 b1 mul a1 b3 mul sub
a1 b2 mul a2 b1 mul sub
3 array astore } def
%
/AaddB { % on the stack are the two vectors [a][b]
aload pop /b3 ED /b2 ED /b1 ED
aload pop /a3 ED /a2 ED /a1 ED
a1 b1 add a2 b2 add a3 b3 add
3 array astore } def
%
/AmulC { % on stack is [a] and c; returns [a] mul c
/factor ED { factor mul } forall 3 array astore } def
%
%
% 3D objects
/tx@ProjThreeD {% adopted from pst-3d
/z ED /y ED /x ED
Matrix3D aload pop
z mul exch y mul add exch x mul add
4 1 roll
z mul exch y mul add exch x mul add
exch } def
%
/setColorLight { % expects 7 values on stack C M Y K xL yL zL
% les rayons de lumi�re
xLight dup mul yLight dup mul zLight dup mul add add sqrt /NormeLight ED
% the color values
/K ED
/Yellow ED
/Magenta ED
/Cyan ED
} def
%
/facetteSphere {
newpath
/Xpoint Rsphere theta cos mul phi cos mul CX add def
/Ypoint Rsphere theta sin mul phi cos mul CY add def
/Zpoint Rsphere phi sin mul CZ add def
Xpoint Ypoint Zpoint tx@ProjThreeD moveto
theta 1 theta increment add {%
/theta1 ED
/Xpoint Rsphere theta1 cos mul phi cos mul CX add def
/Ypoint Rsphere theta1 sin mul phi cos mul CY add def
/Zpoint Rsphere phi sin mul CZ add def
Xpoint Ypoint Zpoint tx@ProjThreeD lineto
} for
phi 1 phi increment add {
/phi1 ED
/Xpoint Rsphere theta increment add cos mul phi1 cos mul CX add def
/Ypoint Rsphere theta increment add sin mul phi1 cos mul CY add def
/Zpoint Rsphere phi1 sin mul CZ add def
Xpoint Ypoint Zpoint tx@ProjThreeD lineto
} for
theta increment add -1 theta {%
/theta1 ED
/Xpoint Rsphere theta1 cos mul phi increment add cos mul CX add def
/Ypoint Rsphere theta1 sin mul phi increment add cos mul CY add def
/Zpoint Rsphere phi increment add sin mul CZ add def
Xpoint Ypoint Zpoint tx@ProjThreeD lineto
} for
phi increment add -1 phi {
/phi1 ED
/Xpoint Rsphere theta cos mul phi1 cos mul CX add def
/Ypoint Rsphere theta sin mul phi1 cos mul CY add def
/Zpoint Rsphere phi1 sin mul CZ add def
Xpoint Ypoint Zpoint tx@ProjThreeD lineto
} for
closepath
} def
%
/MaillageSphere {
% on stack must be x y z Radius increment C M Y K
setColorLight
/increment ED
/Rsphere ED
/CZ ED
/CY ED
/CX ED
/StartTheta 0 def
/condition { PSfacetteSphere 0 ge } def
-90 increment 90 increment sub {%
/phi ED
StartTheta increment 360 StartTheta add increment sub {%
/theta ED
% Centre de la facette
/Xpoint Rsphere theta increment 2 div add cos mul phi increment 2 div add cos mul CX add def
/Ypoint Rsphere theta increment 2 div add sin mul phi increment 2 div add cos mul CY add def
/Zpoint Rsphere phi increment 2 div add sin mul CZ add def
% normale � la facette
/nXfacette Xpoint CX sub def
/nYfacette Ypoint CY sub def
/nZfacette Zpoint CZ sub def
% test de visibilit�
/PSfacetteSphere
vX nXfacette mul
vY nYfacette mul add
vZ nZfacette mul add
def
condition {
gsave
facetteSphere
/cosV { 1 xLight nXfacette mul
yLight nYfacette mul
zLight nZfacette mul
add add
NormeLight
nXfacette dup mul
nYfacette dup mul
nZfacette dup mul
add add sqrt mul div sub } bind def
Cyan cosV mul Magenta cosV mul Yellow cosV mul K cosV mul setcmykcolor fill
grestore
% 0 setgray
showgrid { facetteSphere stroke } if
} if
} for
% /StartTheta StartTheta increment 2 div add def
} for
} def
%
%---------------------- Cylinder ---------------------------
%
/PlanCoupeCylinder { %
/TableauxPoints [
0 1 359 {
/phi ED
[ Radius phi Height ConvCyl2d ] % on décrit le cercle
} for
] def
newpath
TableauxPoints 0 get aload pop moveto
1 1 359 { TableauxPoints exch get aload pop lineto } for
closepath
} def
%
/facetteCylinder { %
newpath
Radius phi currentHeight ConvCyl2d moveto
phi 1 phi dAngle add { % loop variable on stack
Radius exch currentHeight ConvCyl2d lineto
} for
phi dAngle add -1 phi { % fill dHeight
Radius exch currentHeight dHeight add ConvCyl2d lineto
} for
closepath
} def % facette
%
/MaillageCylinder { % on stack true or false for saving values
{ setColorLight % expects 4 values on stack C M Y K
/dHeight ED /dAngle ED /Height ED /Radius ED
/CZ ED /CY ED /CX ED } if
%
0 dHeight Height dHeight sub {
/currentHeight ED
0 dAngle 360 dAngle sub {
/phi ED
% Normal vector of the center
/nXfacetteCylinder Radius phi dAngle 2 div add cos mul CX add def
/nYfacetteCylinder Radius phi dAngle 2 div add sin mul CY add def
/nZfacetteCylinder currentHeight dHeight 2 div add CZ add def
/NormeN
nXfacetteCylinder dup mul
nYfacetteCylinder dup mul
nZfacetteCylinder dup mul
add add sqrt def
NormeN 0 eq { /NormeN 1e-10 def } if
% test de visibilité
/PSfacetteCylinder
vX nXfacetteCylinder mul
vY nYfacetteCylinder mul add
vZ nZfacetteCylinder mul add def
condition {
facetteCylinder
/cosV
1 xLight nXfacetteCylinder mul
yLight nYfacetteCylinder mul
zLight nZfacetteCylinder mul
add add
NormeLight NormeN mul div sub def
Cyan Magenta Yellow K
cosV mul 4 1 roll cosV mul 4 1 roll
cosV dup mul mul 4 1 roll cosV dup mul mul 4 1 roll
setcmykcolor fill
showgrid {
0 setgray
facetteCylinder % drawing the segments
stroke } if
} if
} for
} for
} def
%
%------------------------ Cylinder type II -----------------------
%
/MoveTo { Conv3D2D moveto } def
/LineTo { Conv3D2D lineto } def
/IIIDEllipse { % x y z rA rB startAngle endAngle Wedge
/dAngle 1 def
/isWedge ED
/endAngle ED
/startAngle ED
/radiusB ED
/radiusA ED
startAngle cos radiusA mul startAngle sin radiusB mul 0
isWedge { 0 0 moveto LineTo }{ MoveTo } ifelse
/Angle startAngle def
startAngle dAngle endAngle {
/Angle ED
Angle cos radiusA mul Angle sin radiusB mul 0 LineTo
} for
isWedge { 0 0 lineto } if
} def
/IIIDCircle { % x y z r startAngle endAngle Wedge
7 3 roll % startAngle endAngle Wedge x y z r
dup % startAngle endAngle Wedge x y z r r
8 -3 roll
IIIDEllipse
} def
/IIIDWedge { % x y z r startAngle endAngle
true IIIDCircle
} def
/IIIDCylinder {% x y z r h start end wedge
/isWedge ED
/increment ED
/endAngle ED
/startAngle ED
/height ED
/radius ED
startAngle increment endAngle {
/Angle ED
radius Angle 0 ConvCylToCartesian MoveTo
radius Angle height ConvCylToCartesian LineTo
} for
stroke
} def
%
%---------------------- Box ---------------------------
%
/PlanCoupeBox { % x y z
/TableauxPoints [
[ CX CY CZ Height add ConvBox2d ] % top or bottom
[ CX CY Depth add CZ Height add ConvBox2d ]
[ CX Width add CY Depth add CZ Height add ConvBox2d ]
[ CX Width add CY CZ Height add ConvBox2d ]
[ CX CY CZ Height add ConvBox2d ] % bottom
] def
newpath
TableauxPoints 0 get aload pop moveto
0 1 3 {
TableauxPoints exch get aload pop
lineto } for
closepath
} def
%
/facetteBox { %
newpath
dup
1 eq { % back
CX CY CZ ConvBox2d moveto
CX CY CZ Height add ConvBox2d lineto
CX Width add CY CZ Height add ConvBox2d lineto
CX Width add CY CZ ConvBox2d lineto
CX CY CZ ConvBox2d lineto
} if
dup
2 eq { % right
CX CY CZ ConvBox2d moveto
CX CY CZ Height add ConvBox2d lineto
CX CY Depth add CZ Height add ConvBox2d lineto
CX CY Depth add CZ ConvBox2d lineto
CX CY CZ ConvBox2d lineto
} if
dup
3 eq { % left
CX Width add CY CZ ConvBox2d moveto
CX Width add CY Depth add CZ ConvBox2d lineto
CX Width add CY Depth add CZ Height add ConvBox2d lineto
CX Width add CY CZ Height add ConvBox2d lineto
CX Width add CY CZ ConvBox2d lineto
} if
4 eq { % front
CX CY Depth add CZ ConvBox2d moveto
CX CY Depth add CZ Height add ConvBox2d lineto
CX Width add CY Depth add CZ Height add ConvBox2d lineto
CX Width add CY Depth add CZ ConvBox2d lineto
CX CY Depth add CZ ConvBox2d lineto
} if
closepath
} def % facette
%
/TestPlane { % on stack x y z of the plane center and # of plane
/nZfacetteBox ED /nYfacetteBox ED /nXfacetteBox ED
/Plane ED
/NormeN
nXfacetteBox dup mul
nYfacetteBox dup mul
nZfacetteBox dup mul
add add sqrt def
NormeN 0 eq { /NormeN 1e-10 def } if
% test de visibilit�
/PSfacetteBox
vX nXfacetteBox mul
vY nYfacetteBox mul add
vZ nZfacetteBox mul add def
condition {
Plane facetteBox
/cosV
1 xLight nXfacetteBox mul
yLight nYfacetteBox mul
zLight nZfacetteBox mul
add add
NormeLight NormeN mul div sub def
Cyan Magenta Yellow K
cosV mul 4 1 roll cosV mul 4 1 roll
cosV dup mul mul 4 1 roll cosV dup mul mul 4 1 roll
setcmykcolor fill
0 setgray
Plane facetteBox % drawing the segments
stroke
} if
} def
%
/MaillageBox { % on stack true or false for saving values
{ setColorLight % expects 4 values on stack C M Y K
/Depth ED /Height ED /Width ED
/CZ ED /CY ED /CX ED } if
%
% Normal vector of the box center
/PlaneSet [
[ Width 2 div CX add
CY
Height 2 div CZ add ] % normal back
[ CX
Depth 2 div CY add
Height 2 div CZ add ] % normal right
[ Width CX add
Depth 2 div CY add
Height 2 div CZ add ] % normal left
[ Width 2 div CX add
Depth CY add
Height 2 div CZ add ] % normal front
] def
PlaneSequence length 0 eq { % user defined?
Alpha abs cvi 360 mod /iAlpha ED
iAlpha 90 lt { [ 1 2 3 4 ]
}{ iAlpha 180 lt { [ 2 4 1 3 ]
}{ iAlpha 270 lt { [ 3 4 1 2 ] }{ [ 3 1 4 2] } ifelse } ifelse } ifelse
}{ PlaneSequence } ifelse
{ dup 1 sub PlaneSet exch get aload pop TestPlane } forall
} def
%
%--------------------------- Paraboloid -----------------------------
/PlanCoupeParaboloid {
/Z height store
/V {Z sqrt} bind def
/TableauxPoints [
0 1 359 {
/U ED [ U U Z V calculate2DPoint ] % on d�crit le cercle
} for
] def
newpath
TableauxPoints 0 get aload pop moveto
0 1 359 {
/compteur ED
TableauxPoints compteur get aload pop
lineto } for
closepath
} def
%
/facetteParaboloid{
newpath
U U Z V calculate2DPoint moveto
U 1 U increment add {%
/U1 ED
U1 U1 Z V calculate2DPoint lineto
} for
Z pas10 Z pas add pas10 add{
/Z1 ED
/V {Z1 sqrt} bind def
U1 U1 Z1 V calculate2DPoint lineto
} for
U increment add -1 U {%
/U2 ED
U2 U2 Z pas add V calculate2DPoint lineto
} for
Z pas add pas10 sub pas10 neg Z pas10 sub {
/Z2 ED
/V Z2 abs sqrt def
U U Z2 V calculate2DPoint lineto
} for
closepath
} def % facette
%
/MaillageParaboloid {
% on stack true or false for saving values
{ setColorLight % expects 7 values on stack C M Y K xL yL zL
% /CZ ED /CY ED /CX ED
} if
0 pas height pas sub {%
/Z ED
/V Z sqrt def
0 increment 360 increment sub {%
/U ED
% Centre de la facette
/Ucentre U increment 2 div add def
/Vcentre Z pas 2 div add sqrt def
% normale à la facette
/nXfacetteParaboloid 2 Vcentre dup mul mul Ucentre cos mul radius mul def
/nYfacetteParaboloid 2 Vcentre dup mul mul Ucentre sin mul radius mul def
/nZfacetteParaboloid Vcentre neg radius dup mul mul def
/NormeN {
nXfacetteParaboloid dup mul
nYfacetteParaboloid dup mul
nZfacetteParaboloid dup mul
add add sqrt} bind def
NormeN 0 eq {/NormeN 1e-10 def} if
% test de visibilit�
/PSfacetteParaboloid vX nXfacetteParaboloid mul
vY nYfacetteParaboloid mul add
vZ nZfacetteParaboloid mul add def
condition {
facetteParaboloid
/cosV 1 xLight nXfacetteParaboloid mul
yLight nYfacetteParaboloid mul
zLight nZfacetteParaboloid mul
add add
NormeLight
NormeN mul div sub def
Cyan Magenta Yellow K
cosV mul 4 1 roll cosV mul 4 1 roll cosV dup mul mul 4 1 roll cosV dup mul mul 4 1 roll
setcmykcolor fill
showgrid {
0 setgray
facetteParaboloid
stroke } if
} if
} for
} for
} def
%
% ------------------------------------ math stuff ----------------------------------
%
% Matrix A in arrays of rows A[[row1][row2]...]
% with [row1]=[a11 a12 ... b1]
% returns on stack solution vector X=[x1 x2 ... xn]
/SolveLinEqSystem { % on stack matrix M=[A,b] (A*x=b)
10 dict begin % hold all ocal
/A exch def
/Rows A length def % Rows = number of rows
/Cols A 0 get length def % Cols = number of columns
/Index [ 0 1 Rows 1 sub { } for ] def % Index = [0 1 2 ... Rows-1]
/col 0 def
/row 0 def
/PR Rows array def % PR[c] = pivot row for row row
{ % starts the loop, find pivot entry in row r
col Cols ge row Rows ge or { exit } if % col < Cols and row < Rows else exit
/pRow row def % pRow = pivot row
/max A row get col get abs def % get A[row[col]], first A[0,0]
row 1 add 1 Rows 1 sub { % starts for loop 1 1 Rows-1
/j exch def % index counter
/x A j get col get abs def % get A[j[r]]
x max gt { % x>max, then save position
/pRow j def
/max x def
} if
} for % now we have the row with biggest A[0,1]
% with pRow = the pivot row
max 0 gt { % swap entries pRow and row in i
/tmp Index row get def
Index row Index pRow get put
Index pRow tmp put % and columns pRow and row in A
/tmp A row get def
A row A pRow get put
A pRow tmp put % pivot
/row0 A row get def % the pivoting row
/p0 row0 col get def % the pivot value
row 1 add 1 Rows 1 sub { % start for loop
/j exch def
/c1 A j get def
/p c1 col get p0 div def
c1 col p put % subtract (p1/p0)*row[i] from row[j]
col 1 add 1 Cols 1 sub { % start for loop
/i exch def
c1 dup i exch % c1 i c1
i get row0 i get p mul sub put
} for
} for
PR row col put
/col col 1 add def
/row row 1 add def
}{ % all zero entries
/row row 1 add def % continue loop with same row
} ifelse
} loop
/X A def % solution vector
A Rows 1 sub get dup
Cols 1 sub get exch
Cols 2 sub get div
X Rows 1 sub 3 -1 roll put % X[n]
Rows 2 sub -1 0 { % for loop to calculate X[i]
/xi exch def % current index
A xi get % i-th row
/Axi exch def
/sum 0 def
Cols 2 sub -1 xi 1 add {
/n exch def
/sum sum Axi n get X n get mul add def
} for
Axi Cols 1 sub get % b=Axi[Cols-1]
sum sub % b-sum
Axi xi get div % b-sum / Axi[xi]
X xi 3 -1 roll put % X[xi]
} for
X
end
} def
%
% u -> e_u with |e_u|=1
/vector-unit { 1 dict begin
dup vector-length 1 exch div
vector-scale
end
} def
%
% u v -> u+v
/vector-add { 1 dict begin
/v exch def
[ exch
0 % u i
exch { % i u[i]
v % i u[i] v
2 index get add % i u[i]+v[i]
exch 1 add % i
} forall
pop
]
end
} def
%
% u v -> u-v
/vector-sub { 1 dict begin
/v exch def
[ exch
0 % u i
exch { % i u[i]
v % i u[i] v
2 index get sub % i u[i]+v[i]
exch 1 add % i
} forall
pop
]
end } def
%
% [v] c -> [c.v]
/vector-scale { 1 dict begin
/c exch def
[ exch
{ % s i u[i]
c mul % s i u[i] v
} forall
]
end } def
%
%
% [u] [v] -> [u x v]
/vector-prod { %% x1 y1 z1 x2 y2 z2
6 dict begin
aload pop
/zp exch def /yp exch def /xp exch def
aload pop
/z exch def /y exch def /x exch def
[ y zp mul z yp mul sub
z xp mul x zp mul sub
x yp mul y xp mul sub ]
end
} def
%
% [u] [v] -> u.v
/vector-mul { %% x1 y1 z1 x2 y2 z2
6 dict begin
aload pop
/zp exch def /yp exch def /xp exch def
aload pop
/z exch def /y exch def /x exch def
x xp mul y yp mul add z zp mul add
end
} def
%
% [x y z ... ] -> r
% watch out for overflow
/vector-length { 1 dict begin
dup
% find maximum entry
/max 0 def
{ % max
abs dup max gt {
% if abs gt max
/max exch def
} {
pop
} ifelse
} forall
max 0 ne {
0 exch
{ % 0 v[i]
max div dup mul add
} forall
sqrt
max mul
} {
pop 0
} ifelse
end } def
%
end % tx@3DPlotDict
|