/usr/share/perl/5.14.2/Math/BigInt.pm is in perl-modules 5.14.2-6ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 | package Math::BigInt;
#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similar)
# sign : +,-,NaN,+inf,-inf
# _a : accuracy
# _p : precision
# _f : flags, used by MBF to flag parts of a float as untouchable
# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!
my $class = "Math::BigInt";
use 5.006002;
$VERSION = '1.994';
@ISA = qw(Exporter);
@EXPORT_OK = qw(objectify bgcd blcm);
# _trap_inf and _trap_nan are internal and should never be accessed from the
# outside
use vars qw/$round_mode $accuracy $precision $div_scale $rnd_mode
$upgrade $downgrade $_trap_nan $_trap_inf/;
use strict;
# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third parameter is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.
# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.
# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.
use overload
'=' => sub { $_[0]->copy(); },
# some shortcuts for speed (assumes that reversed order of arguments is routed
# to normal '+' and we thus can always modify first arg. If this is changed,
# this breaks and must be adjusted.)
'+=' => sub { $_[0]->badd($_[1]); },
'-=' => sub { $_[0]->bsub($_[1]); },
'*=' => sub { $_[0]->bmul($_[1]); },
'/=' => sub { scalar $_[0]->bdiv($_[1]); },
'%=' => sub { $_[0]->bmod($_[1]); },
'^=' => sub { $_[0]->bxor($_[1]); },
'&=' => sub { $_[0]->band($_[1]); },
'|=' => sub { $_[0]->bior($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
'<<=' => sub { $_[0]->blsft($_[1]); },
'>>=' => sub { $_[0]->brsft($_[1]); },
# not supported by Perl yet
'..' => \&_pointpoint,
'<=>' => sub { my $rc = $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
$_[0]->bcmp($_[1]);
$rc = 1 unless defined $rc;
$rc <=> 0;
},
# we need '>=' to get things like "1 >= NaN" right:
'>=' => sub { my $rc = $_[2] ?
ref($_[0])->bcmp($_[1],$_[0]) :
$_[0]->bcmp($_[1]);
# if there was a NaN involved, return false
return '' unless defined $rc;
$rc >= 0;
},
'cmp' => sub {
$_[2] ?
"$_[1]" cmp $_[0]->bstr() :
$_[0]->bstr() cmp "$_[1]" },
'cos' => sub { $_[0]->copy->bcos(); },
'sin' => sub { $_[0]->copy->bsin(); },
'atan2' => sub { $_[2] ?
ref($_[0])->new($_[1])->batan2($_[0]) :
$_[0]->copy()->batan2($_[1]) },
# are not yet overloadable
#'hex' => sub { print "hex"; $_[0]; },
#'oct' => sub { print "oct"; $_[0]; },
# log(N) is log(N, e), where e is Euler's number
'log' => sub { $_[0]->copy()->blog($_[1], undef); },
'exp' => sub { $_[0]->copy()->bexp($_[1]); },
'int' => sub { $_[0]->copy(); },
'neg' => sub { $_[0]->copy()->bneg(); },
'abs' => sub { $_[0]->copy()->babs(); },
'sqrt' => sub { $_[0]->copy()->bsqrt(); },
'~' => sub { $_[0]->copy()->bnot(); },
# for subtract it's a bit tricky to not modify b: b-a => -a+b
'-' => sub { my $c = $_[0]->copy; $_[2] ?
$c->bneg()->badd( $_[1]) :
$c->bsub( $_[1]) },
'+' => sub { $_[0]->copy()->badd($_[1]); },
'*' => sub { $_[0]->copy()->bmul($_[1]); },
'/' => sub {
$_[2] ? ref($_[0])->new($_[1])->bdiv($_[0]) : $_[0]->copy->bdiv($_[1]);
},
'%' => sub {
$_[2] ? ref($_[0])->new($_[1])->bmod($_[0]) : $_[0]->copy->bmod($_[1]);
},
'**' => sub {
$_[2] ? ref($_[0])->new($_[1])->bpow($_[0]) : $_[0]->copy->bpow($_[1]);
},
'<<' => sub {
$_[2] ? ref($_[0])->new($_[1])->blsft($_[0]) : $_[0]->copy->blsft($_[1]);
},
'>>' => sub {
$_[2] ? ref($_[0])->new($_[1])->brsft($_[0]) : $_[0]->copy->brsft($_[1]);
},
'&' => sub {
$_[2] ? ref($_[0])->new($_[1])->band($_[0]) : $_[0]->copy->band($_[1]);
},
'|' => sub {
$_[2] ? ref($_[0])->new($_[1])->bior($_[0]) : $_[0]->copy->bior($_[1]);
},
'^' => sub {
$_[2] ? ref($_[0])->new($_[1])->bxor($_[0]) : $_[0]->copy->bxor($_[1]);
},
# can modify arg of ++ and --, so avoid a copy() for speed, but don't
# use $_[0]->bone(), it would modify $_[0] to be 1!
'++' => sub { $_[0]->binc() },
'--' => sub { $_[0]->bdec() },
# if overloaded, O(1) instead of O(N) and twice as fast for small numbers
'bool' => sub {
# this kludge is needed for perl prior 5.6.0 since returning 0 here fails :-/
# v5.6.1 dumps on this: return !$_[0]->is_zero() || undef; :-(
my $t = undef;
$t = 1 if !$_[0]->is_zero();
$t;
},
# the original qw() does not work with the TIESCALAR below, why?
# Order of arguments unsignificant
'""' => sub { $_[0]->bstr(); },
'0+' => sub { $_[0]->numify(); }
;
##############################################################################
# global constants, flags and accessory
# These vars are public, but their direct usage is not recommended, use the
# accessor methods instead
$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
$accuracy = undef;
$precision = undef;
$div_scale = 40;
$upgrade = undef; # default is no upgrade
$downgrade = undef; # default is no downgrade
# These are internally, and not to be used from the outside at all
$_trap_nan = 0; # are NaNs ok? set w/ config()
$_trap_inf = 0; # are infs ok? set w/ config()
my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do the low level math
# default is Calc.pm
my $IMPORT = 0; # was import() called yet?
# used to make require work
my %WARN; # warn only once for low-level libs
my %CAN; # cache for $CALC->can(...)
my %CALLBACKS; # callbacks to notify on lib loads
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
$rnd_mode = 'even';
sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
sub FETCH { return $round_mode; }
sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
BEGIN
{
# tie to enable $rnd_mode to work transparently
tie $rnd_mode, 'Math::BigInt';
# set up some handy alias names
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
##############################################################################
sub round_mode
{
no strict 'refs';
# make Class->round_mode() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
my $m = shift;
if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$m'");
}
return ${"${class}::round_mode"} = $m;
}
${"${class}::round_mode"};
}
sub upgrade
{
no strict 'refs';
# make Class->upgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
return ${"${class}::upgrade"} = $_[0];
}
${"${class}::upgrade"};
}
sub downgrade
{
no strict 'refs';
# make Class->downgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0)
{
return ${"${class}::downgrade"} = $_[0];
}
${"${class}::downgrade"};
}
sub div_scale
{
no strict 'refs';
# make Class->div_scale() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0])
{
if ($_[0] < 0)
{
require Carp; Carp::croak ('div_scale must be greater than zero');
}
${"${class}::div_scale"} = $_[0];
}
${"${class}::div_scale"};
}
sub accuracy
{
# $x->accuracy($a); ref($x) $a
# $x->accuracy(); ref($x)
# Class->accuracy(); class
# Class->accuracy($a); class $a
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
# need to set new value?
if (@_ > 0)
{
my $a = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$a = $a->numify() if ref($a) && $a->can('numify');
if (defined $a)
{
# also croak on non-numerical
if (!$a || $a <= 0)
{
require Carp;
Carp::croak ('Argument to accuracy must be greater than zero');
}
if (int($a) != $a)
{
require Carp;
Carp::croak ('Argument to accuracy must be an integer');
}
}
if (ref($x))
{
# $object->accuracy() or fallback to global
$x->bround($a) if $a; # not for undef, 0
$x->{_a} = $a; # set/overwrite, even if not rounded
delete $x->{_p}; # clear P
$a = ${"${class}::accuracy"} unless defined $a; # proper return value
}
else
{
${"${class}::accuracy"} = $a; # set global A
${"${class}::precision"} = undef; # clear global P
}
return $a; # shortcut
}
my $a;
# $object->accuracy() or fallback to global
$a = $x->{_a} if ref($x);
# but don't return global undef, when $x's accuracy is 0!
$a = ${"${class}::accuracy"} if !defined $a;
$a;
}
sub precision
{
# $x->precision($p); ref($x) $p
# $x->precision(); ref($x)
# Class->precision(); class
# Class->precision($p); class $p
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
if (@_ > 0)
{
my $p = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$p = $p->numify() if ref($p) && $p->can('numify');
if ((defined $p) && (int($p) != $p))
{
require Carp; Carp::croak ('Argument to precision must be an integer');
}
if (ref($x))
{
# $object->precision() or fallback to global
$x->bfround($p) if $p; # not for undef, 0
$x->{_p} = $p; # set/overwrite, even if not rounded
delete $x->{_a}; # clear A
$p = ${"${class}::precision"} unless defined $p; # proper return value
}
else
{
${"${class}::precision"} = $p; # set global P
${"${class}::accuracy"} = undef; # clear global A
}
return $p; # shortcut
}
my $p;
# $object->precision() or fallback to global
$p = $x->{_p} if ref($x);
# but don't return global undef, when $x's precision is 0!
$p = ${"${class}::precision"} if !defined $p;
$p;
}
sub config
{
# return (or set) configuration data as hash ref
my $class = shift || 'Math::BigInt';
no strict 'refs';
if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH')))
{
# try to set given options as arguments from hash
my $args = $_[0];
if (ref($args) ne 'HASH')
{
$args = { @_ };
}
# these values can be "set"
my $set_args = {};
foreach my $key (
qw/trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale/
)
{
$set_args->{$key} = $args->{$key} if exists $args->{$key};
delete $args->{$key};
}
if (keys %$args > 0)
{
require Carp;
Carp::croak ("Illegal key(s) '",
join("','",keys %$args),"' passed to $class\->config()");
}
foreach my $key (keys %$set_args)
{
if ($key =~ /^trap_(inf|nan)\z/)
{
${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
next;
}
# use a call instead of just setting the $variable to check argument
$class->$key($set_args->{$key});
}
}
# now return actual configuration
my $cfg = {
lib => $CALC,
lib_version => ${"${CALC}::VERSION"},
class => $class,
trap_nan => ${"${class}::_trap_nan"},
trap_inf => ${"${class}::_trap_inf"},
version => ${"${class}::VERSION"},
};
foreach my $key (qw/
upgrade downgrade precision accuracy round_mode div_scale
/)
{
$cfg->{$key} = ${"${class}::$key"};
};
if (@_ == 1 && (ref($_[0]) ne 'HASH'))
{
# calls of the style config('lib') return just this value
return $cfg->{$_[0]};
}
$cfg;
}
sub _scale_a
{
# select accuracy parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$scale,$mode) = @_;
$scale = $x->{_a} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::accuracy' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale)
{
$scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
$scale = int($scale);
}
($scale,$mode);
}
sub _scale_p
{
# select precision parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x,$scale,$mode) = @_;
$scale = $x->{_p} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::precision' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale)
{
$scale = $scale->can('numify') ? $scale->numify() : "$scale" if ref($scale);
$scale = int($scale);
}
($scale,$mode);
}
##############################################################################
# constructors
sub copy
{
# if two arguments, the first one is the class to "swallow" subclasses
if (@_ > 1)
{
my $self = bless {
sign => $_[1]->{sign},
value => $CALC->_copy($_[1]->{value}),
}, $_[0] if @_ > 1;
$self->{_a} = $_[1]->{_a} if defined $_[1]->{_a};
$self->{_p} = $_[1]->{_p} if defined $_[1]->{_p};
return $self;
}
my $self = bless {
sign => $_[0]->{sign},
value => $CALC->_copy($_[0]->{value}),
}, ref($_[0]);
$self->{_a} = $_[0]->{_a} if defined $_[0]->{_a};
$self->{_p} = $_[0]->{_p} if defined $_[0]->{_p};
$self;
}
sub new
{
# create a new BigInt object from a string or another BigInt object.
# see hash keys documented at top
# the argument could be an object, so avoid ||, && etc on it, this would
# cause costly overloaded code to be called. The only allowed ops are
# ref() and defined.
my ($class,$wanted,$a,$p,$r) = @_;
# avoid numify-calls by not using || on $wanted!
return $class->bzero($a,$p) if !defined $wanted; # default to 0
return $class->copy($wanted,$a,$p,$r)
if ref($wanted) && $wanted->isa($class); # MBI or subclass
$class->import() if $IMPORT == 0; # make require work
my $self = bless {}, $class;
# shortcut for "normal" numbers
if ((!ref $wanted) && ($wanted =~ /^([+-]?)[1-9][0-9]*\z/))
{
$self->{sign} = $1 || '+';
if ($wanted =~ /^[+-]/)
{
# remove sign without touching wanted to make it work with constants
my $t = $wanted; $t =~ s/^[+-]//;
$self->{value} = $CALC->_new($t);
}
else
{
$self->{value} = $CALC->_new($wanted);
}
no strict 'refs';
if ( (defined $a) || (defined $p)
|| (defined ${"${class}::precision"})
|| (defined ${"${class}::accuracy"})
)
{
$self->round($a,$p,$r) unless (@_ == 4 && !defined $a && !defined $p);
}
return $self;
}
# handle '+inf', '-inf' first
if ($wanted =~ /^[+-]?inf\z/)
{
$self->{sign} = $wanted; # set a default sign for bstr()
return $self->binf($wanted);
}
# split str in m mantissa, e exponent, i integer, f fraction, v value, s sign
my ($mis,$miv,$mfv,$es,$ev) = _split($wanted);
if (!ref $mis)
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted is not a number in $class");
}
$self->{value} = $CALC->_zero();
$self->{sign} = $nan;
return $self;
}
if (!ref $miv)
{
# _from_hex or _from_bin
$self->{value} = $mis->{value};
$self->{sign} = $mis->{sign};
return $self; # throw away $mis
}
# make integer from mantissa by adjusting exp, then convert to bigint
$self->{sign} = $$mis; # store sign
$self->{value} = $CALC->_zero(); # for all the NaN cases
my $e = int("$$es$$ev"); # exponent (avoid recursion)
if ($e > 0)
{
my $diff = $e - CORE::length($$mfv);
if ($diff < 0) # Not integer
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 1\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
else # diff >= 0
{
# adjust fraction and add it to value
#print "diff > 0 $$miv\n";
$$miv = $$miv . ($$mfv . '0' x $diff);
}
}
else
{
if ($$mfv ne '') # e <= 0
{
# fraction and negative/zero E => NOI
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 2 \$\$mfv '$$mfv'\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
elsif ($e < 0)
{
# xE-y, and empty mfv
#print "xE-y\n";
$e = abs($e);
if ($$miv !~ s/0{$e}$//) # can strip so many zero's?
{
if ($_trap_nan)
{
require Carp; Carp::croak("$wanted not an integer in $class");
}
#print "NOI 3\n";
return $upgrade->new($wanted,$a,$p,$r) if defined $upgrade;
$self->{sign} = $nan;
}
}
}
$self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
$self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
# if any of the globals is set, use them to round and store them inside $self
# do not round for new($x,undef,undef) since that is used by MBF to signal
# no rounding
$self->round($a,$p,$r) unless @_ == 4 && !defined $a && !defined $p;
$self;
}
sub bnan
{
# create a bigint 'NaN', if given a BigInt, set it to 'NaN'
my $self = shift;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_nan"})
{
require Carp;
Carp::croak ("Tried to set $self to NaN in $class\::bnan()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bnan');
if ($self->can('_bnan'))
{
# use subclass to initialize
$self->_bnan();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = $nan;
delete $self->{_a}; delete $self->{_p}; # rounding NaN is silly
$self;
}
sub binf
{
# create a bigint '+-inf', if given a BigInt, set it to '+-inf'
# the sign is either '+', or if given, used from there
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign !~ /^-(inf)?$/;
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
no strict 'refs';
if (${"${class}::_trap_inf"})
{
require Carp;
Carp::croak ("Tried to set $self to +-inf in $class\::binf()");
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('binf');
if ($self->can('_binf'))
{
# use subclass to initialize
$self->_binf();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$sign = $sign . 'inf' if $sign !~ /inf$/; # - => -inf
$self->{sign} = $sign;
($self->{_a},$self->{_p}) = @_; # take over requested rounding
$self;
}
sub bzero
{
# create a bigint '+0', if given a BigInt, set it to 0
my $self = shift;
$self = __PACKAGE__ if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bzero');
if ($self->can('_bzero'))
{
# use subclass to initialize
$self->_bzero();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_zero();
}
$self->{sign} = '+';
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bzero($a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
sub bone
{
# create a bigint '+1' (or -1 if given sign '-'),
# if given a BigInt, set it to +1 or -1, respectively
my $self = shift;
my $sign = shift; $sign = '+' if !defined $sign || $sign ne '-';
$self = $class if !defined $self;
if (!ref($self))
{
my $c = $self; $self = {}; bless $self, $c;
}
$self->import() if $IMPORT == 0; # make require work
return if $self->modify('bone');
if ($self->can('_bone'))
{
# use subclass to initialize
$self->_bone();
}
else
{
# otherwise do our own thing
$self->{value} = $CALC->_one();
}
$self->{sign} = $sign;
if (@_ > 0)
{
if (@_ > 3)
{
# call like: $x->bone($sign,$a,$p,$r,$y);
($self,$self->{_a},$self->{_p}) = $self->_find_round_parameters(@_);
}
else
{
# call like: $x->bone($sign,$a,$p,$r);
$self->{_a} = $_[0]
if ( (!defined $self->{_a}) || (defined $_[0] && $_[0] > $self->{_a}));
$self->{_p} = $_[1]
if ( (!defined $self->{_p}) || (defined $_[1] && $_[1] > $self->{_p}));
}
}
$self;
}
##############################################################################
# string conversion
sub bsstr
{
# (ref to BFLOAT or num_str ) return num_str
# Convert number from internal format to scientific string format.
# internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($m,$e) = $x->parts();
#$m->bstr() . 'e+' . $e->bstr(); # e can only be positive in BigInt
# 'e+' because E can only be positive in BigInt
$m->bstr() . 'e+' . $CALC->_str($e->{value});
}
sub bstr
{
# make a string from bigint object
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $es = ''; $es = $x->{sign} if $x->{sign} eq '-';
$es.$CALC->_str($x->{value});
}
sub numify
{
# Make a "normal" scalar from a BigInt object
my $x = shift; $x = $class->new($x) unless ref $x;
return $x->bstr() if $x->{sign} !~ /^[+-]$/;
my $num = $CALC->_num($x->{value});
return -$num if $x->{sign} eq '-';
$num;
}
##############################################################################
# public stuff (usually prefixed with "b")
sub sign
{
# return the sign of the number: +/-/-inf/+inf/NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign};
}
sub _find_round_parameters
{
# After any operation or when calling round(), the result is rounded by
# regarding the A & P from arguments, local parameters, or globals.
# !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
# This procedure finds the round parameters, but it is for speed reasons
# duplicated in round. Otherwise, it is tested by the testsuite and used
# by fdiv().
# returns ($self) or ($self,$a,$p,$r) - sets $self to NaN of both A and P
# were requested/defined (locally or globally or both)
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# convert to normal scalar for speed and correctness in inner parts
$a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
$p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return ($self) unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return ($self->bnan()) if defined $a && defined $p; # error
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
$a = int($a) if defined $a;
$p = int($p) if defined $p;
($self,$a,$p,$r);
}
sub round
{
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
# for speed reasons, _find_round_parameters is embedded here:
my ($self,$a,$p,$r,@args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $c = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a)
{
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p)
{
# even if $a is defined, take $p, to signal error for both defined
foreach ($self,@args)
{
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$c\::accuracy"} unless defined $a;
$p = ${"$c\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return $self unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return $self->bnan() if defined $a && defined $p;
$r = ${"$c\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/)
{
require Carp; Carp::croak ("Unknown round mode '$r'");
}
# now round, by calling either fround or ffround:
if (defined $a)
{
$self->bround(int($a),$r) if !defined $self->{_a} || $self->{_a} >= $a;
}
else # both can't be undefined due to early out
{
$self->bfround(int($p),$r) if !defined $self->{_p} || $self->{_p} <= $p;
}
# bround() or bfround() already called bnorm() if nec.
$self;
}
sub bnorm
{
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x;
}
sub babs
{
# (BINT or num_str) return BINT
# make number absolute, or return absolute BINT from string
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->modify('babs');
# post-normalized abs for internal use (does nothing for NaN)
$x->{sign} =~ s/^-/+/;
$x;
}
sub bneg
{
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->modify('bneg');
# for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
$x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
$x;
}
sub bcmp
{
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT or num_str, BINT or num_str) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bcmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# have same sign, so compare absolute values. Don't make tests for zero here
# because it's actually slower than testin in Calc (especially w/ Pari et al)
# post-normalized compare for internal use (honors signs)
if ($x->{sign} eq '+')
{
# $x and $y both > 0
return $CALC->_acmp($x->{value},$y->{value});
}
# $x && $y both < 0
$CALC->_acmp($y->{value},$x->{value}); # swaped acmp (lib returns 0,1,-1)
}
sub bacmp
{
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT, BINT) return cond_code
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
return $upgrade->bacmp($x,$y) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
$CALC->_acmp($x->{value},$y->{value}); # lib does only 0,1,-1
}
sub badd
{
# add second arg (BINT or string) to first (BINT) (modifies first)
# return result as BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('badd');
return $upgrade->badd($upgrade->new($x),$upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
$r[3] = $y; # no push!
# inf and NaN handling
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
my ($sx, $sy) = ( $x->{sign}, $y->{sign} ); # get signs
if ($sx eq $sy)
{
$x->{value} = $CALC->_add($x->{value},$y->{value}); # same sign, abs add
}
else
{
my $a = $CALC->_acmp ($y->{value},$x->{value}); # absolute compare
if ($a > 0)
{
$x->{value} = $CALC->_sub($y->{value},$x->{value},1); # abs sub w/ swap
$x->{sign} = $sy;
}
elsif ($a == 0)
{
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
}
else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
}
}
$x->round(@r);
}
sub bsub
{
# (BINT or num_str, BINT or num_str) return BINT
# subtract second arg from first, modify first
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bsub');
return $upgrade->new($x)->bsub($upgrade->new($y),@r) if defined $upgrade &&
((!$x->isa($self)) || (!$y->isa($self)));
return $x->round(@r) if $y->is_zero();
# To correctly handle the lone special case $x->bsub($x), we note the sign
# of $x, then flip the sign from $y, and if the sign of $x did change, too,
# then we caught the special case:
my $xsign = $x->{sign};
$y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
if ($xsign ne $x->{sign})
{
# special case of $x->bsub($x) results in 0
return $x->bzero(@r) if $xsign =~ /^[+-]$/;
return $x->bnan(); # NaN, -inf, +inf
}
$x->badd($y,@r); # badd does not leave internal zeros
$y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no round nec.
}
sub binc
{
# increment arg by one
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('binc');
if ($x->{sign} eq '+')
{
$x->{value} = $CALC->_inc($x->{value});
return $x->round($a,$p,$r);
}
elsif ($x->{sign} eq '-')
{
$x->{value} = $CALC->_dec($x->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
return $x->round($a,$p,$r);
}
# inf, nan handling etc
$x->badd($self->bone(),$a,$p,$r); # badd does round
}
sub bdec
{
# decrement arg by one
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bdec');
if ($x->{sign} eq '-')
{
# x already < 0
$x->{value} = $CALC->_inc($x->{value});
}
else
{
return $x->badd($self->bone('-'),@r) unless $x->{sign} eq '+'; # inf or NaN
# >= 0
if ($CALC->_is_zero($x->{value}))
{
# == 0
$x->{value} = $CALC->_one(); $x->{sign} = '-'; # 0 => -1
}
else
{
# > 0
$x->{value} = $CALC->_dec($x->{value});
}
}
$x->round(@r);
}
sub blog
{
# calculate $x = $a ** $base + $b and return $a (e.g. the log() to base
# $base of $x)
# set up parameters
my ($self,$x,$base,@r) = (undef,@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$base,@r) = objectify(2,@_);
}
return $x if $x->modify('blog');
$base = $self->new($base) if defined $base && !ref $base;
# inf, -inf, NaN, <0 => NaN
return $x->bnan()
if $x->{sign} ne '+' || (defined $base && $base->{sign} ne '+');
return $upgrade->blog($upgrade->new($x),$base,@r) if
defined $upgrade;
# fix for bug #24969:
# the default base is e (Euler's number) which is not an integer
if (!defined $base)
{
require Math::BigFloat;
my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->{sign} = $u->{sign};
return $x;
}
my ($rc,$exact) = $CALC->_log_int($x->{value},$base->{value});
return $x->bnan() unless defined $rc; # not possible to take log?
$x->{value} = $rc;
$x->round(@r);
}
sub bnok
{
# Calculate n over k (binomial coefficient or "choose" function) as integer.
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bnok');
return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
return $x->binf() if $x->{sign} eq '+inf';
# k > n or k < 0 => 0
my $cmp = $x->bacmp($y);
return $x->bzero() if $cmp < 0 || $y->{sign} =~ /^-/;
# k == n => 1
return $x->bone(@r) if $cmp == 0;
if ($CALC->can('_nok'))
{
$x->{value} = $CALC->_nok($x->{value},$y->{value});
}
else
{
# ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7
# ( - ) = --------- = --------------- = --------- = 5 * - * -
# ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3
if (!$y->is_zero())
{
my $z = $x - $y;
$z->binc();
my $r = $z->copy(); $z->binc();
my $d = $self->new(2);
while ($z->bacmp($x) <= 0) # f <= x ?
{
$r->bmul($z); $r->bdiv($d);
$z->binc(); $d->binc();
}
$x->{value} = $r->{value}; $x->{sign} = '+';
}
else { $x->bone(); }
}
$x->round(@r);
}
sub bexp
{
# Calculate e ** $x (Euler's number to the power of X), truncated to
# an integer value.
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->modify('bexp');
# inf, -inf, NaN, <0 => NaN
return $x->bnan() if $x->{sign} eq 'NaN';
return $x->bone() if $x->is_zero();
return $x if $x->{sign} eq '+inf';
return $x->bzero() if $x->{sign} eq '-inf';
my $u;
{
# run through Math::BigFloat unless told otherwise
require Math::BigFloat unless defined $upgrade;
local $upgrade = 'Math::BigFloat' unless defined $upgrade;
# calculate result, truncate it to integer
$u = $upgrade->bexp($upgrade->new($x),@r);
}
if (!defined $upgrade)
{
$u = $u->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->round(@r);
}
else { $x = $u; }
}
sub blcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# Lowest Common Multiple
my $y = shift; my ($x);
if (ref($y))
{
$x = $y->copy();
}
else
{
$x = $class->new($y);
}
my $self = ref($x);
while (@_)
{
my $y = shift; $y = $self->new($y) if !ref ($y);
$x = __lcm($x,$y);
}
$x;
}
sub bgcd
{
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)
my $y = shift;
$y = $class->new($y) if !ref($y);
my $self = ref($y);
my $x = $y->copy()->babs(); # keep arguments
return $x->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@_)
{
$y = shift; $y = $self->new($y) if !ref($y);
return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
$x->{value} = $CALC->_gcd($x->{value},$y->{value});
last if $CALC->_is_one($x->{value});
}
$x;
}
sub bnot
{
# (num_str or BINT) return BINT
# represent ~x as twos-complement number
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
my ($self,$x,$a,$p,$r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bnot');
$x->binc()->bneg(); # binc already does round
}
##############################################################################
# is_foo test routines
# we don't need $self, so undef instead of ref($_[0]) make it slightly faster
sub is_zero
{
# return true if arg (BINT or num_str) is zero (array '+', '0')
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
$CALC->_is_zero($x->{value});
}
sub is_nan
{
# return true if arg (BINT or num_str) is NaN
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} eq $nan ? 1 : 0;
}
sub is_inf
{
# return true if arg (BINT or num_str) is +-inf
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
if (defined $sign)
{
$sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
$sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
return $x->{sign} =~ /^$sign$/ ? 1 : 0;
}
$x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
}
sub is_one
{
# return true if arg (BINT or num_str) is +1, or -1 if sign is given
my ($self,$x,$sign) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$sign = '+' if !defined $sign || $sign ne '-';
return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
$CALC->_is_one($x->{value});
}
sub is_odd
{
# return true when arg (BINT or num_str) is odd, false for even
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_odd($x->{value});
}
sub is_even
{
# return true when arg (BINT or num_str) is even, false for odd
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_even($x->{value});
}
sub is_positive
{
# return true when arg (BINT or num_str) is positive (> 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if $x->{sign} eq '+inf'; # +inf is positive
# 0+ is neither positive nor negative
($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
}
sub is_negative
{
# return true when arg (BINT or num_str) is negative (< 0)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not
}
sub is_int
{
# return true when arg (BINT or num_str) is an integer
# always true for BigInt, but different for BigFloats
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
$x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
}
###############################################################################
sub bmul
{
# multiply the first number by the second number
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmul');
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
return $upgrade->bmul($x,$upgrade->new($y),@r)
if defined $upgrade && !$y->isa($self);
$r[3] = $y; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
$x->round(@r);
}
sub bmuladd
{
# multiply two numbers and then add the third to the result
# (BINT or num_str, BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,$z,@r) = objectify(3,@_);
return $x if $x->modify('bmuladd');
return $x->bnan() if ($x->{sign} eq $nan) ||
($y->{sign} eq $nan) ||
($z->{sign} eq $nan);
# inf handling of x and y
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# inf handling x*y and z
if (($z->{sign} =~ /^[+-]inf$/))
{
# something +-inf => +-inf
$x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
}
return $upgrade->bmuladd($x,$upgrade->new($y),$upgrade->new($z),@r)
if defined $upgrade && (!$y->isa($self) || !$z->isa($self) || !$x->isa($self));
# TODO: what if $y and $z have A or P set?
$r[3] = $z; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value},$y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs
if ($sx eq $sz)
{
$x->{value} = $CALC->_add($x->{value},$z->{value}); # same sign, abs add
}
else
{
my $a = $CALC->_acmp ($z->{value},$x->{value}); # absolute compare
if ($a > 0)
{
$x->{value} = $CALC->_sub($z->{value},$x->{value},1); # abs sub w/ swap
$x->{sign} = $sz;
}
elsif ($a == 0)
{
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
}
else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
}
}
$x->round(@r);
}
sub _div_inf
{
# helper function that handles +-inf cases for bdiv()/bmod() to reuse code
my ($self,$x,$y) = @_;
# NaN if x == NaN or y == NaN or x==y==0
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan()
if (($x->is_nan() || $y->is_nan()) ||
($x->is_zero() && $y->is_zero()));
# +-inf / +-inf == NaN, remainder also NaN
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
return wantarray ? ($x->bnan(),$self->bnan()) : $x->bnan();
}
# x / +-inf => 0, remainder x (works even if x == 0)
if ($y->{sign} =~ /^[+-]inf$/)
{
my $t = $x->copy(); # bzero clobbers up $x
return wantarray ? ($x->bzero(),$t) : $x->bzero()
}
# 5 / 0 => +inf, -6 / 0 => -inf
# +inf / 0 = inf, inf, and -inf / 0 => -inf, -inf
# exception: -8 / 0 has remainder -8, not 8
# exception: -inf / 0 has remainder -inf, not inf
if ($y->is_zero())
{
# +-inf / 0 => special case for -inf
return wantarray ? ($x,$x->copy()) : $x if $x->is_inf();
if (!$x->is_zero() && !$x->is_inf())
{
my $t = $x->copy(); # binf clobbers up $x
return wantarray ?
($x->binf($x->{sign}),$t) : $x->binf($x->{sign})
}
}
# last case: +-inf / ordinary number
my $sign = '+inf';
$sign = '-inf' if substr($x->{sign},0,1) ne $y->{sign};
$x->{sign} = $sign;
return wantarray ? ($x,$self->bzero()) : $x;
}
sub bdiv
{
# (dividend: BINT or num_str, divisor: BINT or num_str) return
# (BINT,BINT) (quo,rem) or BINT (only rem)
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bdiv');
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
return $upgrade->bdiv($upgrade->new($x),$upgrade->new($y),@r)
if defined $upgrade;
$r[3] = $y; # no push!
# calc new sign and in case $y == +/- 1, return $x
my $xsign = $x->{sign}; # keep
$x->{sign} = ($x->{sign} ne $y->{sign} ? '-' : '+');
if (wantarray)
{
my $rem = $self->bzero();
($x->{value},$rem->{value}) = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$rem->{_a} = $x->{_a};
$rem->{_p} = $x->{_p};
$x->round(@r);
if (! $CALC->_is_zero($rem->{value}))
{
$rem->{sign} = $y->{sign};
$rem = $y->copy()->bsub($rem) if $xsign ne $y->{sign}; # one of them '-'
}
else
{
$rem->{sign} = '+'; # dont leave -0
}
$rem->round(@r);
return ($x,$rem);
}
$x->{value} = $CALC->_div($x->{value},$y->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value});
$x->round(@r);
}
###############################################################################
# modulus functions
sub bmod
{
# modulus (or remainder)
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmod');
$r[3] = $y; # no push!
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero())
{
my ($d,$r) = $self->_div_inf($x,$y);
$x->{sign} = $r->{sign};
$x->{value} = $r->{value};
return $x->round(@r);
}
# calc new sign and in case $y == +/- 1, return $x
$x->{value} = $CALC->_mod($x->{value},$y->{value});
if (!$CALC->_is_zero($x->{value}))
{
$x->{value} = $CALC->_sub($y->{value},$x->{value},1) # $y-$x
if ($x->{sign} ne $y->{sign});
$x->{sign} = $y->{sign};
}
else
{
$x->{sign} = '+'; # dont leave -0
}
$x->round(@r);
}
sub bmodinv
{
# Return modular multiplicative inverse: z is the modular inverse of x (mod
# y) if and only if x*z (mod y) = 1 (mod y). If the modulus y is larger than
# one, x and z are relative primes (i.e., their greatest common divisor is
# one).
#
# If no modular multiplicative inverse exists, NaN is returned.
# set up parameters
my ($self,$x,$y,@r) = (undef,@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bmodinv');
# Return NaN if one or both arguments is +inf, -inf, or nan.
return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
$x->{sign} !~ /^[+-]$/);
# Return NaN if $y is zero; 1 % 0 makes no sense.
return $x->bnan() if $y->is_zero();
# Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
# integers $x.
return $x->bzero() if ($y->is_one() ||
$y->is_one('-'));
# Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
# $x = 0 is when $y = 1 or $y = -1, but that was covered above.
#
# Note that computing $x modulo $y here affects the value we'll feed to
# $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
# 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
# $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
# The value if $x is affected only when $x and $y have opposite signs.
$x->bmod($y);
return $x->bnan() if $x->is_zero();
# Compute the modular multiplicative inverse of the absolute values. We'll
# correct for the signs of $x and $y later. Return NaN if no GCD is found.
($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
return $x->bnan() if !defined $x->{value};
# Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions
# <= 1.32 return undef rather than a "+" for the sign.
$x->{sign} = '+' unless defined $x->{sign};
# When one or both arguments are negative, we have the following
# relations. If x and y are positive:
#
# modinv(-x, -y) = -modinv(x, y)
# modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y)
# modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y)
# We must swap the sign of the result if the original $x is negative.
# However, we must compensate for ignoring the signs when computing the
# inverse modulo. The net effect is that we must swap the sign of the
# result if $y is negative.
$x -> bneg() if $y->{sign} eq '-';
# Compute $x modulo $y again after correcting the sign.
$x -> bmod($y) if $x->{sign} ne $y->{sign};
return $x;
}
sub bmodpow
{
# Modular exponentiation. Raises a very large number to a very large exponent
# in a given very large modulus quickly, thanks to binary exponentiation.
# Supports negative exponents.
my ($self,$num,$exp,$mod,@r) = objectify(3,@_);
return $num if $num->modify('bmodpow');
# When the exponent 'e' is negative, use the following relation, which is
# based on finding the multiplicative inverse 'd' of 'b' modulo 'm':
#
# b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m)
$num->bmodinv($mod) if ($exp->{sign} eq '-');
# Check for valid input. All operands must be finite, and the modulus must be
# non-zero.
return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->is_zero());
# Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting
# value is zero, the output is also zero, regardless of the signs on 'a' and
# 'm'.
my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value});
my $sign = '+';
# If the resulting value is non-zero, we have four special cases, depending
# on the signs on 'a' and 'm'.
unless ($CALC->_is_zero($value)) {
# There is a negative sign on 'a' (= $num**$exp) only if the number we
# are exponentiating ($num) is negative and the exponent ($exp) is odd.
if ($num->{sign} eq '-' && $exp->is_odd()) {
# When both the number 'a' and the modulus 'm' have a negative sign,
# use this relation:
#
# -a (mod -m) = -(a (mod m))
if ($mod->{sign} eq '-') {
$sign = '-';
}
# When only the number 'a' has a negative sign, use this relation:
#
# -a (mod m) = m - (a (mod m))
else {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '+';
}
} else {
# When only the modulus 'm' has a negative sign, use this relation:
#
# a (mod -m) = (a (mod m)) - m
# = -(m - (a (mod m)))
if ($mod->{sign} eq '-') {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '-';
}
# When neither the number 'a' nor the modulus 'm' have a negative
# sign, directly return the already computed value.
#
# (a (mod m))
}
}
$num->{value} = $value;
$num->{sign} = $sign;
return $num;
}
###############################################################################
sub bfac
{
# (BINT or num_str, BINT or num_str) return BINT
# compute factorial number from $x, modify $x in place
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
$x->{value} = $CALC->_fac($x->{value});
$x->round(@r);
}
sub bpow
{
# (BINT or num_str, BINT or num_str) return BINT
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
# modifies first argument
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bpow');
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
{
# +-inf ** +-inf
return $x->bnan();
}
# +-inf ** Y
if ($x->{sign} =~ /^[+-]inf/)
{
# +inf ** 0 => NaN
return $x->bnan() if $y->is_zero();
# -inf ** -1 => 1/inf => 0
return $x->bzero() if $y->is_one('-') && $x->is_negative();
# +inf ** Y => inf
return $x if $x->{sign} eq '+inf';
# -inf ** Y => -inf if Y is odd
return $x if $y->is_odd();
return $x->babs();
}
# X ** +-inf
# 1 ** +inf => 1
return $x if $x->is_one();
# 0 ** inf => 0
return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
# 0 ** -inf => inf
return $x->binf() if $x->is_zero();
# -1 ** -inf => NaN
return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
# -X ** -inf => 0
return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
# -1 ** inf => NaN
return $x->bnan() if $x->{sign} eq '-';
# X ** inf => inf
return $x->binf() if $y->{sign} =~ /^[+]/;
# X ** -inf => 0
return $x->bzero();
}
return $upgrade->bpow($upgrade->new($x),$y,@r)
if defined $upgrade && (!$y->isa($self) || $y->{sign} eq '-');
$r[3] = $y; # no push!
# cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
return $x->binf()
if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
$x->{value} = $CALC->_pow($x->{value},$y->{value});
$x->{sign} = $new_sign;
$x->{sign} = '+' if $CALC->_is_zero($y->{value});
$x->round(@r);
}
sub blsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('blsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
$x->{value} = $CALC->_lsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub brsft
{
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
# set up parameters
my ($self,$x,$y,$n,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$n,@r) = objectify(2,@_);
}
return $x if $x->modify('brsft');
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
return $x->round(@r) if $y->is_zero();
return $x->bzero(@r) if $x->is_zero(); # 0 => 0
$n = 2 if !defined $n; return $x->bnan() if $n <= 0 || $y->{sign} eq '-';
# this only works for negative numbers when shifting in base 2
if (($x->{sign} eq '-') && ($n == 2))
{
return $x->round(@r) if $x->is_one('-'); # -1 => -1
if (!$y->is_one())
{
# although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et al
# but perhaps there is a better emulation for two's complement shift...
# if $y != 1, we must simulate it by doing:
# convert to bin, flip all bits, shift, and be done
$x->binc(); # -3 => -2
my $bin = $x->as_bin();
$bin =~ s/^-0b//; # strip '-0b' prefix
$bin =~ tr/10/01/; # flip bits
# now shift
if ($y >= CORE::length($bin))
{
$bin = '0'; # shifting to far right creates -1
# 0, because later increment makes
# that 1, attached '-' makes it '-1'
# because -1 >> x == -1 !
}
else
{
$bin =~ s/.{$y}$//; # cut off at the right side
$bin = '1' . $bin; # extend left side by one dummy '1'
$bin =~ tr/10/01/; # flip bits back
}
my $res = $self->new('0b'.$bin); # add prefix and convert back
$res->binc(); # remember to increment
$x->{value} = $res->{value}; # take over value
return $x->round(@r); # we are done now, magic, isn't?
}
# x < 0, n == 2, y == 1
$x->bdec(); # n == 2, but $y == 1: this fixes it
}
$x->{value} = $CALC->_rsft($x->{value},$y->{value},$n);
$x->round(@r);
}
sub band
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x & y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('band');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_and($x->{value},$y->{value});
return $x->round(@r);
}
if ($CAN{signed_and})
{
$x->{value} = $CALC->_signed_and($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_band($self,$x,$y,$sx,$sy,@r);
}
sub bior
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x | y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bior');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_or($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_or})
{
$x->{value} = $CALC->_signed_or($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bior($self,$x,$y,$sx,$sy,@r);
}
sub bxor
{
#(BINT or num_str, BINT or num_str) return BINT
# compute x ^ y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->modify('bxor');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# don't use lib for negative values
if ($sx == 1 && $sy == 1)
{
$x->{value} = $CALC->_xor($x->{value},$y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_xor})
{
$x->{value} = $CALC->_signed_xor($x->{value},$y->{value},$sx,$sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bxor($self,$x,$y,$sx,$sy,@r);
}
sub length
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
my $e = $CALC->_len($x->{value});
wantarray ? ($e,0) : $e;
}
sub digit
{
# return the nth decimal digit, negative values count backward, 0 is right
my ($self,$x,$n) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$n = $n->numify() if ref($n);
$CALC->_digit($x->{value},$n||0);
}
sub _trailing_zeros
{
# return the amount of trailing zeros in $x (as scalar)
my $x = shift;
$x = $class->new($x) unless ref $x;
return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
$CALC->_zeros($x->{value}); # must handle odd values, 0 etc
}
sub bsqrt
{
# calculate square root of $x
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bsqrt');
return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
return $upgrade->bsqrt($x,@r) if defined $upgrade;
$x->{value} = $CALC->_sqrt($x->{value});
$x->round(@r);
}
sub broot
{
# calculate $y'th root of $x
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
$y = $self->new(2) unless defined $y;
# objectify is costly, so avoid it
if ((!ref($x)) || (ref($x) ne ref($y)))
{
($self,$x,$y,@r) = objectify(2,$self || $class,@_);
}
return $x if $x->modify('broot');
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x->round(@r)
if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
return $upgrade->new($x)->broot($upgrade->new($y),@r) if defined $upgrade;
$x->{value} = $CALC->_root($x->{value},$y->{value});
$x->round(@r);
}
sub exponent
{
# return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
my $s = $x->{sign}; $s =~ s/^[+-]//; # NaN, -inf,+inf => NaN or inf
return $self->new($s);
}
return $self->bone() if $x->is_zero();
# 12300 => 2 trailing zeros => exponent is 2
$self->new( $CALC->_zeros($x->{value}) );
}
sub mantissa
{
# return the mantissa (compatible to Math::BigFloat, e.g. reduced)
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/)
{
# for NaN, +inf, -inf: keep the sign
return $self->new($x->{sign});
}
my $m = $x->copy(); delete $m->{_p}; delete $m->{_a};
# that's a bit inefficient:
my $zeros = $CALC->_zeros($m->{value});
$m->brsft($zeros,10) if $zeros != 0;
$m;
}
sub parts
{
# return a copy of both the exponent and the mantissa
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
($x->mantissa(),$x->exponent());
}
##############################################################################
# rounding functions
sub bfround
{
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 || $n == 1 => round to integer
my $x = shift; my $self = ref($x) || $x; $x = $self->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_p(@_);
return $x if !defined $scale || $x->modify('bfround'); # no-op
# no-op for BigInts if $n <= 0
$x->bround( $x->length()-$scale, $mode) if $scale > 0;
delete $x->{_a}; # delete to save memory
$x->{_p} = $scale; # store new _p
$x;
}
sub _scan_for_nonzero
{
# internal, used by bround() to scan for non-zeros after a '5'
my ($x,$pad,$xs,$len) = @_;
return 0 if $len == 1; # "5" is trailed by invisible zeros
my $follow = $pad - 1;
return 0 if $follow > $len || $follow < 1;
# use the string form to check whether only '0's follow or not
substr ($xs,-$follow) =~ /[^0]/ ? 1 : 0;
}
sub fround
{
# Exists to make life easier for switch between MBF and MBI (should we
# autoload fxxx() like MBF does for bxxx()?)
my $x = shift; $x = $class->new($x) unless ref $x;
$x->bround(@_);
}
sub bround
{
# accuracy: +$n preserve $n digits from left,
# -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
# no-op for $n == 0
# and overwrite the rest with 0's, return normalized number
# do not return $x->bnorm(), but $x
my $x = shift; $x = $class->new($x) unless ref $x;
my ($scale,$mode) = $x->_scale_a(@_);
return $x if !defined $scale || $x->modify('bround'); # no-op
if ($x->is_zero() || $scale == 0)
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
# we have fewer digits than we want to scale to
my $len = $x->length();
# convert $scale to a scalar in case it is an object (put's a limit on the
# number length, but this would already limited by memory constraints), makes
# it faster
$scale = $scale->numify() if ref ($scale);
# scale < 0, but > -len (not >=!)
if (($scale < 0 && $scale < -$len-1) || ($scale >= $len))
{
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
# count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
my ($pad,$digit_round,$digit_after);
$pad = $len - $scale;
$pad = abs($scale-1) if $scale < 0;
# do not use digit(), it is very costly for binary => decimal
# getting the entire string is also costly, but we need to do it only once
my $xs = $CALC->_str($x->{value});
my $pl = -$pad-1;
# pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
# pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
$digit_round = '0'; $digit_round = substr($xs,$pl,1) if $pad <= $len;
$pl++; $pl ++ if $pad >= $len;
$digit_after = '0'; $digit_after = substr($xs,$pl,1) if $pad > 0;
# in case of 01234 we round down, for 6789 up, and only in case 5 we look
# closer at the remaining digits of the original $x, remember decision
my $round_up = 1; # default round up
$round_up -- if
($mode eq 'trunc') || # trunc by round down
($digit_after =~ /[01234]/) || # round down anyway,
# 6789 => round up
($digit_after eq '5') && # not 5000...0000
($x->_scan_for_nonzero($pad,$xs,$len) == 0) &&
(
($mode eq 'even') && ($digit_round =~ /[24680]/) ||
($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
($mode eq '+inf') && ($x->{sign} eq '-') ||
($mode eq '-inf') && ($x->{sign} eq '+') ||
($mode eq 'zero') # round down if zero, sign adjusted below
);
my $put_back = 0; # not yet modified
if (($pad > 0) && ($pad <= $len))
{
substr($xs,-$pad,$pad) = '0' x $pad; # replace with '00...'
$put_back = 1; # need to put back
}
elsif ($pad > $len)
{
$x->bzero(); # round to '0'
}
if ($round_up) # what gave test above?
{
$put_back = 1; # need to put back
$pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
# we modify directly the string variant instead of creating a number and
# adding it, since that is faster (we already have the string)
my $c = 0; $pad ++; # for $pad == $len case
while ($pad <= $len)
{
$c = substr($xs,-$pad,1) + 1; $c = '0' if $c eq '10';
substr($xs,-$pad,1) = $c; $pad++;
last if $c != 0; # no overflow => early out
}
$xs = '1'.$xs if $c == 0;
}
$x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
$x->{_a} = $scale if $scale >= 0;
if ($scale < 0)
{
$x->{_a} = $len+$scale;
$x->{_a} = 0 if $scale < -$len;
}
$x;
}
sub bfloor
{
# return integer less or equal then number; no-op since it's already integer
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub bceil
{
# return integer greater or equal then number; no-op since it's already int
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
$x->round(@r);
}
sub as_number
{
# An object might be asked to return itself as bigint on certain overloaded
# operations. This does exactly this, so that sub classes can simple inherit
# it or override with their own integer conversion routine.
$_[0]->copy();
}
sub as_hex
{
# return as hex string, with prefixed 0x
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = '';
$s = $x->{sign} if $x->{sign} eq '-';
$s . $CALC->_as_hex($x->{value});
}
sub as_bin
{
# return as binary string, with prefixed 0b
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
return $s . $CALC->_as_bin($x->{value});
}
sub as_oct
{
# return as octal string, with prefixed 0
my $x = shift; $x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $s = ''; $s = $x->{sign} if $x->{sign} eq '-';
return $s . $CALC->_as_oct($x->{value});
}
##############################################################################
# private stuff (internal use only)
sub objectify
{
# check for strings, if yes, return objects instead
# the first argument is number of args objectify() should look at it will
# return $count+1 elements, the first will be a classname. This is because
# overloaded '""' calls bstr($object,undef,undef) and this would result in
# useless objects being created and thrown away. So we cannot simple loop
# over @_. If the given count is 0, all arguments will be used.
# If the second arg is a ref, use it as class.
# If not, try to use it as classname, unless undef, then use $class
# (aka Math::BigInt). The latter shouldn't happen,though.
# caller: gives us:
# $x->badd(1); => ref x, scalar y
# Class->badd(1,2); => classname x (scalar), scalar x, scalar y
# Class->badd( Class->(1),2); => classname x (scalar), ref x, scalar y
# Math::BigInt::badd(1,2); => scalar x, scalar y
# In the last case we check number of arguments to turn it silently into
# $class,1,2. (We can not take '1' as class ;o)
# badd($class,1) is not supported (it should, eventually, try to add undef)
# currently it tries 'Math::BigInt' + 1, which will not work.
# some shortcut for the common cases
# $x->unary_op();
return (ref($_[1]),$_[1]) if (@_ == 2) && ($_[0]||0 == 1) && ref($_[1]);
my $count = abs(shift || 0);
my (@a,$k,$d); # resulting array, temp, and downgrade
if (ref $_[0])
{
# okay, got object as first
$a[0] = ref $_[0];
}
else
{
# nope, got 1,2 (Class->xxx(1) => Class,1 and not supported)
$a[0] = $class;
$a[0] = shift if $_[0] =~ /^[A-Z].*::/; # classname as first?
}
no strict 'refs';
# disable downgrading, because Math::BigFLoat->foo('1.0','2.0') needs floats
if (defined ${"$a[0]::downgrade"})
{
$d = ${"$a[0]::downgrade"};
${"$a[0]::downgrade"} = undef;
}
my $up = ${"$a[0]::upgrade"};
# print STDERR "# Now in objectify, my class is today $a[0], count = $count\n";
if ($count == 0)
{
while (@_)
{
$k = shift;
if (!ref($k))
{
$k = $a[0]->new($k);
}
elsif (!defined $up && ref($k) ne $a[0])
{
# foreign object, try to convert to integer
$k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
}
push @a,$k;
}
}
else
{
while ($count > 0)
{
$count--;
$k = shift;
if (!ref($k))
{
$k = $a[0]->new($k);
}
elsif (ref($k) ne $a[0] and !defined $up || ref $k ne $up)
{
# foreign object, try to convert to integer
$k->can('as_number') ? $k = $k->as_number() : $k = $a[0]->new($k);
}
push @a,$k;
}
push @a,@_; # return other params, too
}
if (! wantarray)
{
require Carp; Carp::croak ("$class objectify needs list context");
}
${"$a[0]::downgrade"} = $d;
@a;
}
sub _register_callback
{
my ($class,$callback) = @_;
if (ref($callback) ne 'CODE')
{
require Carp;
Carp::croak ("$callback is not a coderef");
}
$CALLBACKS{$class} = $callback;
}
sub import
{
my $self = shift;
$IMPORT++; # remember we did import()
my @a; my $l = scalar @_;
my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die
for ( my $i = 0; $i < $l ; $i++ )
{
if ($_[$i] eq ':constant')
{
# this causes overlord er load to step in
overload::constant
integer => sub { $self->new(shift) },
binary => sub { $self->new(shift) };
}
elsif ($_[$i] eq 'upgrade')
{
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] =~ /^(lib|try|only)\z/)
{
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
# lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
$warn_or_die = 1 if $_[$i] eq 'lib';
$warn_or_die = 2 if $_[$i] eq 'only';
$i++;
}
else
{
push @a, $_[$i];
}
}
# any non :constant stuff is handled by our parent, Exporter
if (@a > 0)
{
require Exporter;
$self->SUPER::import(@a); # need it for subclasses
$self->export_to_level(1,$self,@a); # need it for MBF
}
# try to load core math lib
my @c = split /\s*,\s*/,$CALC;
foreach (@c)
{
$_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
}
push @c, \'Calc' # if all fail, try these
if $warn_or_die < 2; # but not for "only"
$CALC = ''; # signal error
foreach my $l (@c)
{
# fallback libraries are "marked" as \'string', extract string if nec.
my $lib = $l; $lib = $$l if ref($l);
next if ($lib || '') eq '';
$lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
$lib =~ s/\.pm$//;
if ($] < 5.006)
{
# Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
# used in the same script, or eval("") inside import().
my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm
require File::Spec;
$file = File::Spec->catfile (@parts, $file);
eval { require "$file"; $lib->import( @c ); }
}
else
{
eval "use $lib qw/@c/;";
}
if ($@ eq '')
{
my $ok = 1;
# loaded it ok, see if the api_version() is high enough
if ($lib->can('api_version') && $lib->api_version() >= 1.0)
{
$ok = 0;
# api_version matches, check if it really provides anything we need
for my $method (qw/
one two ten
str num
add mul div sub dec inc
acmp len digit is_one is_zero is_even is_odd
is_two is_ten
zeros new copy check
from_hex from_oct from_bin as_hex as_bin as_oct
rsft lsft xor and or
mod sqrt root fac pow modinv modpow log_int gcd
/)
{
if (!$lib->can("_$method"))
{
if (($WARN{$lib}||0) < 2)
{
require Carp;
Carp::carp ("$lib is missing method '_$method'");
$WARN{$lib} = 1; # still warn about the lib
}
$ok++; last;
}
}
}
if ($ok == 0)
{
$CALC = $lib;
if ($warn_or_die > 0 && ref($l))
{
require Carp;
my $msg = "Math::BigInt: couldn't load specified math lib(s), fallback to $lib";
Carp::carp ($msg) if $warn_or_die == 1;
Carp::croak ($msg) if $warn_or_die == 2;
}
last; # found a usable one, break
}
else
{
if (($WARN{$lib}||0) < 2)
{
my $ver = eval "\$$lib\::VERSION" || 'unknown';
require Carp;
Carp::carp ("Cannot load outdated $lib v$ver, please upgrade");
$WARN{$lib} = 2; # never warn again
}
}
}
}
if ($CALC eq '')
{
require Carp;
if ($warn_or_die == 2)
{
Carp::croak ("Couldn't load specified math lib(s) and fallback disallowed");
}
else
{
Carp::croak ("Couldn't load any math lib(s), not even fallback to Calc.pm");
}
}
# notify callbacks
foreach my $class (keys %CALLBACKS)
{
&{$CALLBACKS{$class}}($CALC);
}
# Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
# functions
%CAN = ();
for my $method (qw/ signed_and signed_or signed_xor /)
{
$CAN{$method} = $CALC->can("_$method") ? 1 : 0;
}
# import done
}
sub from_hex {
# Create a bigint from a hexadecimal string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(0?x)?
(
[0-9a-fA-F]*
( _ [0-9a-fA-F]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_hex('0x' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# CORE::hex() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
sub from_oct {
# Create a bigint from an octal string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(
[0-7]*
( _ [0-7]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_oct('0' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# CORE::oct() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
sub from_bin {
# Create a bigint from a binary string.
my ($self, $str) = @_;
if ($str =~ s/
^
( [+-]? )
(0?b)?
(
[01]*
( _ [01]+ )*
)
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# Initialize output.
my $x = Math::BigInt->bzero();
# The library method requires a prefix.
$x->{value} = $CALC->_from_bin('0b' . $chrs);
# Place the sign.
if ($sign eq '-' && ! $CALC->_is_zero($x->{value})) {
$x->{sign} = '-';
}
return $x;
}
# For consistency with from_hex() and from_oct(), we return NaN when the
# input is invalid.
return $self->bnan();
}
sub _split
{
# input: num_str; output: undef for invalid or
# (\$mantissa_sign,\$mantissa_value,\$mantissa_fraction,\$exp_sign,\$exp_value)
# Internal, take apart a string and return the pieces.
# Strip leading/trailing whitespace, leading zeros, underscore and reject
# invalid input.
my $x = shift;
# strip white space at front, also extraneous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
# shortcut, if nothing to split, return early
if ($x =~ /^[+-]?[0-9]+\z/)
{
$x =~ s/^([+-])0*([0-9])/$2/; my $sign = $1 || '+';
return (\$sign, \$x, \'', \'', \0);
}
# invalid starting char?
return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string
return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string
# strip underscores between digits
$x =~ s/([0-9])_([0-9])/$1$2/g;
$x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3
# some possible inputs:
# 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
# .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
my ($m,$e,$last) = split /[Ee]/,$x;
return if defined $last; # last defined => 1e2E3 or others
$e = '0' if !defined $e || $e eq "";
# sign,value for exponent,mantint,mantfrac
my ($es,$ev,$mis,$miv,$mfv);
# valid exponent?
if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$es = $1; $ev = $2;
# valid mantissa?
return if $m eq '.' || $m eq '';
my ($mi,$mf,$lastf) = split /\./,$m;
return if defined $lastf; # lastf defined => 1.2.3 or others
$mi = '0' if !defined $mi;
$mi .= '0' if $mi =~ /^[\-\+]?$/;
$mf = '0' if !defined $mf || $mf eq '';
if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$mis = $1||'+'; $miv = $2;
return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros
$mfv = $1;
# handle the 0e999 case here
$ev = 0 if $miv eq '0' && $mfv eq '';
return (\$mis,\$miv,\$mfv,\$es,\$ev);
}
}
return; # NaN, not a number
}
##############################################################################
# internal calculation routines (others are in Math::BigInt::Calc etc)
sub __lcm
{
# (BINT or num_str, BINT or num_str) return BINT
# does modify first argument
# LCM
my ($x,$ty) = @_;
return $x->bnan() if ($x->{sign} eq $nan) || ($ty->{sign} eq $nan);
my $method = ref($x) . '::bgcd';
no strict 'refs';
$x * $ty / &$method($x,$ty);
}
###############################################################################
# trigonometric functions
sub bpi
{
# Calculate PI to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer, that is, always returns '3'.
my ($self,$n) = @_;
if (@_ == 1)
{
# called like Math::BigInt::bpi(10);
$n = $self; $self = $class;
}
$self = ref($self) if ref($self);
return $upgrade->new($n) if defined $upgrade;
# hard-wired to "3"
$self->new(3);
}
sub bcos
{
# Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bcos');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bcos(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub bsin
{
# Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('bsin');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bsin(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub batan2
{
# calculate arcus tangens of ($y/$x)
# set up parameters
my ($self,$y,$x,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$y,$x,@r) = objectify(2,@_);
}
return $y if $y->modify('batan2');
return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
# Y X
# != 0 -inf result is +- pi
if ($x->is_inf() || $y->is_inf())
{
# upgrade to BigFloat etc.
return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
if ($y->is_inf())
{
if ($x->{sign} eq '-inf')
{
# calculate 3 pi/4 => 2.3.. => 2
$y->bone( substr($y->{sign},0,1) );
$y->bmul($self->new(2));
}
elsif ($x->{sign} eq '+inf')
{
# calculate pi/4 => 0.7 => 0
$y->bzero();
}
else
{
# calculate pi/2 => 1.5 => 1
$y->bone( substr($y->{sign},0,1) );
}
}
else
{
if ($x->{sign} eq '+inf')
{
# calculate pi/4 => 0.7 => 0
$y->bzero();
}
else
{
# PI => 3.1415.. => 3
$y->bone( substr($y->{sign},0,1) );
$y->bmul($self->new(3));
}
}
return $y;
}
return $upgrade->new($y)->batan2($upgrade->new($x),@r) if defined $upgrade;
require Math::BigFloat;
my $r = Math::BigFloat->new($y)->batan2(Math::BigFloat->new($x),@r)->as_int();
$x->{value} = $r->{value};
$x->{sign} = $r->{sign};
$x;
}
sub batan
{
# Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($self,$x,@r) = ref($_[0]) ? (undef,@_) : objectify(1,@_);
return $x if $x->modify('batan');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->batan(@r) if defined $upgrade;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->batan(@r);
$x->{value} = $CALC->_new( $x->as_int()->bstr() );
$x->round(@r);
}
###############################################################################
# this method returns 0 if the object can be modified, or 1 if not.
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)
sub modify () { 0; }
1;
__END__
=pod
=head1 NAME
Math::BigInt - Arbitrary size integer/float math package
=head1 SYNOPSIS
use Math::BigInt;
# or make it faster with huge numbers: install (optional)
# Math::BigInt::GMP and always use (it will fall back to
# pure Perl if the GMP library is not installed):
# (See also the L<MATH LIBRARY> section!)
# will warn if Math::BigInt::GMP cannot be found
use Math::BigInt lib => 'GMP';
# to suppress the warning use this:
# use Math::BigInt try => 'GMP';
# dies if GMP cannot be loaded:
# use Math::BigInt only => 'GMP';
my $str = '1234567890';
my @values = (64,74,18);
my $n = 1; my $sign = '-';
# Number creation
my $x = Math::BigInt->new($str); # defaults to 0
my $y = $x->copy(); # make a true copy
my $nan = Math::BigInt->bnan(); # create a NotANumber
my $zero = Math::BigInt->bzero(); # create a +0
my $inf = Math::BigInt->binf(); # create a +inf
my $inf = Math::BigInt->binf('-'); # create a -inf
my $one = Math::BigInt->bone(); # create a +1
my $mone = Math::BigInt->bone('-'); # create a -1
my $pi = Math::BigInt->bpi(); # returns '3'
# see Math::BigFloat::bpi()
$h = Math::BigInt->new('0x123'); # from hexadecimal
$b = Math::BigInt->new('0b101'); # from binary
$o = Math::BigInt->from_oct('0101'); # from octal
# Testing (don't modify their arguments)
# (return true if the condition is met, otherwise false)
$x->is_zero(); # if $x is +0
$x->is_nan(); # if $x is NaN
$x->is_one(); # if $x is +1
$x->is_one('-'); # if $x is -1
$x->is_odd(); # if $x is odd
$x->is_even(); # if $x is even
$x->is_pos(); # if $x > 0
$x->is_neg(); # if $x < 0
$x->is_inf($sign); # if $x is +inf, or -inf (sign is default '+')
$x->is_int(); # if $x is an integer (not a float)
# comparing and digit/sign extraction
$x->bcmp($y); # compare numbers (undef,<0,=0,>0)
$x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
$x->sign(); # return the sign, either +,- or NaN
$x->digit($n); # return the nth digit, counting from right
$x->digit(-$n); # return the nth digit, counting from left
# The following all modify their first argument. If you want to preserve
# $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
# necessary when mixing $a = $b assignments with non-overloaded math.
$x->bzero(); # set $x to 0
$x->bnan(); # set $x to NaN
$x->bone(); # set $x to +1
$x->bone('-'); # set $x to -1
$x->binf(); # set $x to inf
$x->binf('-'); # set $x to -inf
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bnorm(); # normalize (no-op in BigInt)
$x->bnot(); # two's complement (bit wise not)
$x->binc(); # increment $x by 1
$x->bdec(); # decrement $x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmuladd($y,$z); # $x = $x * $y + $z
$x->bmod($y); # modulus (x % y)
$x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
$x->bmodinv($mod); # modular multiplicative inverse
$x->bpow($y); # power of arguments (x ** y)
$x->blsft($y); # left shift in base 2
$x->brsft($y); # right shift in base 2
# returns (quo,rem) or quo if in scalar context
$x->blsft($y,$n); # left shift by $y places in base $n
$x->brsft($y,$n); # right shift by $y places in base $n
# returns (quo,rem) or quo if in scalar context
$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
$x->bxor($y); # bitwise exclusive or
$x->bnot(); # bitwise not (two's complement)
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->bnok($y); # x over y (binomial coefficient n over k)
$x->blog(); # logarithm of $x to base e (Euler's number)
$x->blog($base); # logarithm of $x to base $base (f.i. 2)
$x->bexp(); # calculate e ** $x where e is Euler's number
$x->round($A,$P,$mode); # round to accuracy or precision using mode $mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # $n > 0: round $nth digits,
# $n < 0: round to the $nth digit after the
# dot, no-op for BigInts
# The following do not modify their arguments in BigInt (are no-ops),
# but do so in BigFloat:
$x->bfloor(); # return integer less or equal than $x
$x->bceil(); # return integer greater or equal than $x
# The following do not modify their arguments:
# greatest common divisor (no OO style)
my $gcd = Math::BigInt::bgcd(@values);
# lowest common multiple (no OO style)
my $lcm = Math::BigInt::blcm(@values);
$x->length(); # return number of digits in number
($xl,$f) = $x->length(); # length of number and length of fraction part,
# latter is always 0 digits long for BigInts
$x->exponent(); # return exponent as BigInt
$x->mantissa(); # return (signed) mantissa as BigInt
$x->parts(); # return (mantissa,exponent) as BigInt
$x->copy(); # make a true copy of $x (unlike $y = $x;)
$x->as_int(); # return as BigInt (in BigInt: same as copy())
$x->numify(); # return as scalar (might overflow!)
# conversion to string (do not modify their argument)
$x->bstr(); # normalized string (e.g. '3')
$x->bsstr(); # norm. string in scientific notation (e.g. '3E0')
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
$x->as_bin(); # as signed binary string with prefixed 0b
$x->as_oct(); # as signed octal string with prefixed 0
# precision and accuracy (see section about rounding for more)
$x->precision(); # return P of $x (or global, if P of $x undef)
$x->precision($n); # set P of $x to $n
$x->accuracy(); # return A of $x (or global, if A of $x undef)
$x->accuracy($n); # set A $x to $n
# Global methods
Math::BigInt->precision(); # get/set global P for all BigInt objects
Math::BigInt->accuracy(); # get/set global A for all BigInt objects
Math::BigInt->round_mode(); # get/set global round mode, one of
# 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
Math::BigInt->config(); # return hash containing configuration
=head1 DESCRIPTION
All operators (including basic math operations) are overloaded if you
declare your big integers as
$i = new Math::BigInt '123_456_789_123_456_789';
Operations with overloaded operators preserve the arguments which is
exactly what you expect.
=over 2
=item Input
Input values to these routines may be any string, that looks like a number
and results in an integer, including hexadecimal and binary numbers.
Scalars holding numbers may also be passed, but note that non-integer numbers
may already have lost precision due to the conversion to float. Quote
your input if you want BigInt to see all the digits:
$x = Math::BigInt->new(12345678890123456789); # bad
$x = Math::BigInt->new('12345678901234567890'); # good
You can include one underscore between any two digits.
This means integer values like 1.01E2 or even 1000E-2 are also accepted.
Non-integer values result in NaN.
Hexadecimal (prefixed with "0x") and binary numbers (prefixed with "0b")
are accepted, too. Please note that octal numbers are not recognized
by new(), so the following will print "123":
perl -MMath::BigInt -le 'print Math::BigInt->new("0123")'
To convert an octal number, use from_oct();
perl -MMath::BigInt -le 'print Math::BigInt->from_oct("0123")'
Currently, Math::BigInt::new() defaults to 0, while Math::BigInt::new('')
results in 'NaN'. This might change in the future, so use always the following
explicit forms to get a zero or NaN:
$zero = Math::BigInt->bzero();
$nan = Math::BigInt->bnan();
C<bnorm()> on a BigInt object is now effectively a no-op, since the numbers
are always stored in normalized form. If passed a string, creates a BigInt
object from the input.
=item Output
Output values are BigInt objects (normalized), except for the methods which
return a string (see L<SYNOPSIS>).
Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
C<is_nan()>, etc.) return true or false, while others (C<bcmp()>, C<bacmp()>)
return either undef (if NaN is involved), <0, 0 or >0 and are suited for sort.
=back
=head1 METHODS
Each of the methods below (except config(), accuracy() and precision())
accepts three additional parameters. These arguments C<$A>, C<$P> and C<$R>
are C<accuracy>, C<precision> and C<round_mode>. Please see the section about
L<ACCURACY and PRECISION> for more information.
=head2 config()
use Data::Dumper;
print Dumper ( Math::BigInt->config() );
print Math::BigInt->config()->{lib},"\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
key Description
Example
============================================================
lib Name of the low-level math library
Math::BigInt::Calc
lib_version Version of low-level math library (see 'lib')
0.30
class The class name of config() you just called
Math::BigInt
upgrade To which class math operations might be upgraded
Math::BigFloat
downgrade To which class math operations might be downgraded
undef
precision Global precision
undef
accuracy Global accuracy
undef
round_mode Global round mode
even
version version number of the class you used
1.61
div_scale Fallback accuracy for div
40
trap_nan If true, traps creation of NaN via croak()
1
trap_inf If true, traps creation of +inf/-inf via croak()
1
The following values can be set by passing C<config()> a reference to a hash:
trap_inf trap_nan
upgrade downgrade precision accuracy round_mode div_scale
Example:
$new_cfg = Math::BigInt->config( { trap_inf => 1, precision => 5 } );
=head2 accuracy()
$x->accuracy(5); # local for $x
CLASS->accuracy(5); # global for all members of CLASS
# Note: This also applies to new()!
$A = $x->accuracy(); # read out accuracy that affects $x
$A = CLASS->accuracy(); # read out global accuracy
Set or get the global or local accuracy, aka how many significant digits the
results have. If you set a global accuracy, then this also applies to new()!
Warning! The accuracy I<sticks>, e.g. once you created a number under the
influence of C<< CLASS->accuracy($A) >>, all results from math operations with
that number will also be rounded.
In most cases, you should probably round the results explicitly using one of
L<round()>, L<bround()> or L<bfround()> or by passing the desired accuracy
to the math operation as additional parameter:
my $x = Math::BigInt->new(30000);
my $y = Math::BigInt->new(7);
print scalar $x->copy()->bdiv($y, 2); # print 4300
print scalar $x->copy()->bdiv($y)->bround(2); # print 4300
Please see the section about L<ACCURACY and PRECISION> for further details.
Value must be greater than zero. Pass an undef value to disable it:
$x->accuracy(undef);
Math::BigInt->accuracy(undef);
Returns the current accuracy. For C<< $x->accuracy() >> it will return either
the local accuracy, or if not defined, the global. This means the return value
represents the accuracy that will be in effect for $x:
$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->accuracy(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # $x will be automatically rounded!
print "$x $y\n"; # '123500 1234567'
print $x->accuracy(),"\n"; # will be 4
print $y->accuracy(),"\n"; # also 4, since global is 4
print Math::BigInt->accuracy(5),"\n"; # set to 5, print 5
print $x->accuracy(),"\n"; # still 4
print $y->accuracy(),"\n"; # 5, since global is 5
Note: Works also for subclasses like Math::BigFloat. Each class has it's own
globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.
=head2 precision()
$x->precision(-2); # local for $x, round at the second digit right of the dot
$x->precision(2); # ditto, round at the second digit left of the dot
CLASS->precision(5); # Global for all members of CLASS
# This also applies to new()!
CLASS->precision(-5); # ditto
$P = CLASS->precision(); # read out global precision
$P = $x->precision(); # read out precision that affects $x
Note: You probably want to use L<accuracy()> instead. With L<accuracy> you
set the number of digits each result should have, with L<precision> you
set the place where to round!
C<precision()> sets or gets the global or local precision, aka at which digit
before or after the dot to round all results. A set global precision also
applies to all newly created numbers!
In Math::BigInt, passing a negative number precision has no effect since no
numbers have digits after the dot. In L<Math::BigFloat>, it will round all
results to P digits after the dot.
Please see the section about L<ACCURACY and PRECISION> for further details.
Pass an undef value to disable it:
$x->precision(undef);
Math::BigInt->precision(undef);
Returns the current precision. For C<< $x->precision() >> it will return either
the local precision of $x, or if not defined, the global. This means the return
value represents the prevision that will be in effect for $x:
$y = Math::BigInt->new(1234567); # unrounded
print Math::BigInt->precision(4),"\n"; # set 4, print 4
$x = Math::BigInt->new(123456); # will be automatically rounded
print $x; # print "120000"!
Note: Works also for subclasses like L<Math::BigFloat>. Each class has its
own globals separated from Math::BigInt, but it is possible to subclass
Math::BigInt and make the globals of the subclass aliases to the ones from
Math::BigInt.
=head2 brsft()
$x->brsft($y,$n);
Shifts $x right by $y in base $n. Default is base 2, used are usually 10 and
2, but others work, too.
Right shifting usually amounts to dividing $x by $n ** $y and truncating the
result:
$x = Math::BigInt->new(10);
$x->brsft(1); # same as $x >> 1: 5
$x = Math::BigInt->new(1234);
$x->brsft(2,10); # result 12
There is one exception, and that is base 2 with negative $x:
$x = Math::BigInt->new(-5);
print $x->brsft(1);
This will print -3, not -2 (as it would if you divide -5 by 2 and truncate the
result).
=head2 new()
$x = Math::BigInt->new($str,$A,$P,$R);
Creates a new BigInt object from a scalar or another BigInt object. The
input is accepted as decimal, hex (with leading '0x') or binary (with leading
'0b').
See L<Input> for more info on accepted input formats.
=head2 from_oct()
$x = Math::BigInt->from_oct("0775"); # input is octal
Interpret the input as an octal string and return the corresponding value. A
"0" (zero) prefix is optional. A single underscore character may be placed
right after the prefix, if present, or between any two digits. If the input is
invalid, a NaN is returned.
=head2 from_hex()
$x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal
Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=head2 from_bin()
$x = Math::BigInt->from_bin("0b10011"); # input is binary
Interpret the input as a binary string. A "0b" or "b" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=head2 bnan()
$x = Math::BigInt->bnan();
Creates a new BigInt object representing NaN (Not A Number).
If used on an object, it will set it to NaN:
$x->bnan();
=head2 bzero()
$x = Math::BigInt->bzero();
Creates a new BigInt object representing zero.
If used on an object, it will set it to zero:
$x->bzero();
=head2 binf()
$x = Math::BigInt->binf($sign);
Creates a new BigInt object representing infinity. The optional argument is
either '-' or '+', indicating whether you want infinity or minus infinity.
If used on an object, it will set it to infinity:
$x->binf();
$x->binf('-');
=head2 bone()
$x = Math::BigInt->binf($sign);
Creates a new BigInt object representing one. The optional argument is
either '-' or '+', indicating whether you want one or minus one.
If used on an object, it will set it to one:
$x->bone(); # +1
$x->bone('-'); # -1
=head2 is_one()/is_zero()/is_nan()/is_inf()
$x->is_zero(); # true if arg is +0
$x->is_nan(); # true if arg is NaN
$x->is_one(); # true if arg is +1
$x->is_one('-'); # true if arg is -1
$x->is_inf(); # true if +inf
$x->is_inf('-'); # true if -inf (sign is default '+')
These methods all test the BigInt for being one specific value and return
true or false depending on the input. These are faster than doing something
like:
if ($x == 0)
=head2 is_pos()/is_neg()/is_positive()/is_negative()
$x->is_pos(); # true if > 0
$x->is_neg(); # true if < 0
The methods return true if the argument is positive or negative, respectively.
C<NaN> is neither positive nor negative, while C<+inf> counts as positive, and
C<-inf> is negative. A C<zero> is neither positive nor negative.
These methods are only testing the sign, and not the value.
C<is_positive()> and C<is_negative()> are aliases to C<is_pos()> and
C<is_neg()>, respectively. C<is_positive()> and C<is_negative()> were
introduced in v1.36, while C<is_pos()> and C<is_neg()> were only introduced
in v1.68.
=head2 is_odd()/is_even()/is_int()
$x->is_odd(); # true if odd, false for even
$x->is_even(); # true if even, false for odd
$x->is_int(); # true if $x is an integer
The return true when the argument satisfies the condition. C<NaN>, C<+inf>,
C<-inf> are not integers and are neither odd nor even.
In BigInt, all numbers except C<NaN>, C<+inf> and C<-inf> are integers.
=head2 bcmp()
$x->bcmp($y);
Compares $x with $y and takes the sign into account.
Returns -1, 0, 1 or undef.
=head2 bacmp()
$x->bacmp($y);
Compares $x with $y while ignoring their sign. Returns -1, 0, 1 or undef.
=head2 sign()
$x->sign();
Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
If you want $x to have a certain sign, use one of the following methods:
$x->babs(); # '+'
$x->babs()->bneg(); # '-'
$x->bnan(); # 'NaN'
$x->binf(); # '+inf'
$x->binf('-'); # '-inf'
=head2 digit()
$x->digit($n); # return the nth digit, counting from right
If C<$n> is negative, returns the digit counting from left.
=head2 bneg()
$x->bneg();
Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
and '-inf', respectively. Does nothing for NaN or zero.
=head2 babs()
$x->babs();
Set the number to its absolute value, e.g. change the sign from '-' to '+'
and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
numbers.
=head2 bnorm()
$x->bnorm(); # normalize (no-op)
=head2 bnot()
$x->bnot();
Two's complement (bitwise not). This is equivalent to
$x->binc()->bneg();
but faster.
=head2 binc()
$x->binc(); # increment x by 1
=head2 bdec()
$x->bdec(); # decrement x by 1
=head2 badd()
$x->badd($y); # addition (add $y to $x)
=head2 bsub()
$x->bsub($y); # subtraction (subtract $y from $x)
=head2 bmul()
$x->bmul($y); # multiplication (multiply $x by $y)
=head2 bmuladd()
$x->bmuladd($y,$z);
Multiply $x by $y, and then add $z to the result,
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bdiv()
$x->bdiv($y); # divide, set $x to quotient
# return (quo,rem) or quo if scalar
=head2 bmod()
$x->bmod($y); # modulus (x % y)
=head2 bmodinv()
$x->bmodinv($mod); # modular multiplicative inverse
Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
$y = $x -> copy() -> bmodinv($mod)
then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
satisfying
($x * $y) % $mod = 1 % $mod
If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
inverse exists.
=head2 bmodpow()
$num->bmodpow($exp,$mod); # modular exponentiation
# ($num**$exp % $mod)
Returns the value of C<$num> taken to the power C<$exp> in the modulus
C<$mod> using binary exponentiation. C<bmodpow> is far superior to
writing
$num ** $exp % $mod
because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
C<bmodpow> also supports negative exponents.
bmodpow($num, -1, $mod)
is exactly equivalent to
bmodinv($num, $mod)
=head2 bpow()
$x->bpow($y); # power of arguments (x ** y)
=head2 blog()
$x->blog($base, $accuracy); # logarithm of x to the base $base
If C<$base> is not defined, Euler's number (e) is used:
print $x->blog(undef, 100); # log(x) to 100 digits
=head2 bexp()
$x->bexp($accuracy); # calculate e ** X
Calculates the expression C<e ** $x> where C<e> is Euler's number.
This method was added in v1.82 of Math::BigInt (April 2007).
See also L<blog()>.
=head2 bnok()
$x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
( n ) n!
| - | = -------
( k ) k!(n-k)!
This method was added in v1.84 of Math::BigInt (April 2007).
=head2 bpi()
print Math::BigInt->bpi(100), "\n"; # 3
Returns PI truncated to an integer, with the argument being ignored. This means
under BigInt this always returns C<3>.
If upgrading is in effect, returns PI, rounded to N digits with the
current rounding mode:
use Math::BigFloat;
use Math::BigInt upgrade => Math::BigFloat;
print Math::BigInt->bpi(3), "\n"; # 3.14
print Math::BigInt->bpi(100), "\n"; # 3.1415....
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bcos()
my $x = Math::BigInt->new(1);
print $x->bcos(100), "\n";
Calculate the cosinus of $x, modifying $x in place.
In BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bsin()
my $x = Math::BigInt->new(1);
print $x->bsin(100), "\n";
Calculate the sinus of $x, modifying $x in place.
In BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 batan2()
my $x = Math::BigInt->new(1);
my $y = Math::BigInt->new(1);
print $y->batan2($x), "\n";
Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place.
In BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 batan()
my $x = Math::BigFloat->new(0.5);
print $x->batan(100), "\n";
Calculate the arcus tangens of $x, modifying $x in place.
In BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 blsft()
$x->blsft($y); # left shift in base 2
$x->blsft($y,$n); # left shift, in base $n (like 10)
=head2 brsft()
$x->brsft($y); # right shift in base 2
$x->brsft($y,$n); # right shift, in base $n (like 10)
=head2 band()
$x->band($y); # bitwise and
=head2 bior()
$x->bior($y); # bitwise inclusive or
=head2 bxor()
$x->bxor($y); # bitwise exclusive or
=head2 bnot()
$x->bnot(); # bitwise not (two's complement)
=head2 bsqrt()
$x->bsqrt(); # calculate square-root
=head2 broot()
$x->broot($N);
Calculates the N'th root of C<$x>.
=head2 bfac()
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
=head2 round()
$x->round($A,$P,$round_mode);
Round $x to accuracy C<$A> or precision C<$P> using the round mode
C<$round_mode>.
=head2 bround()
$x->bround($N); # accuracy: preserve $N digits
=head2 bfround()
$x->bfround($N);
If N is > 0, rounds to the Nth digit from the left. If N < 0, rounds to
the Nth digit after the dot. Since BigInts are integers, the case N < 0
is a no-op for them.
Examples:
Input N Result
===================================================
123456.123456 3 123500
123456.123456 2 123450
123456.123456 -2 123456.12
123456.123456 -3 123456.123
=head2 bfloor()
$x->bfloor();
Set $x to the integer less or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.
=head2 bceil()
$x->bceil();
Set $x to the integer greater or equal than $x. This is a no-op in BigInt, but
does change $x in BigFloat.
=head2 bgcd()
bgcd(@values); # greatest common divisor (no OO style)
=head2 blcm()
blcm(@values); # lowest common multiple (no OO style)
head2 length()
$x->length();
($xl,$fl) = $x->length();
Returns the number of digits in the decimal representation of the number.
In list context, returns the length of the integer and fraction part. For
BigInt's, the length of the fraction part will always be 0.
=head2 exponent()
$x->exponent();
Return the exponent of $x as BigInt.
=head2 mantissa()
$x->mantissa();
Return the signed mantissa of $x as BigInt.
=head2 parts()
$x->parts(); # return (mantissa,exponent) as BigInt
=head2 copy()
$x->copy(); # make a true copy of $x (unlike $y = $x;)
=head2 as_int()/as_number()
$x->as_int();
Returns $x as a BigInt (truncated towards zero). In BigInt this is the same as
C<copy()>.
C<as_number()> is an alias to this method. C<as_number> was introduced in
v1.22, while C<as_int()> was only introduced in v1.68.
=head2 bstr()
$x->bstr();
Returns a normalized string representation of C<$x>.
=head2 bsstr()
$x->bsstr(); # normalized string in scientific notation
=head2 as_hex()
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
=head2 as_bin()
$x->as_bin(); # as signed binary string with prefixed 0b
=head2 as_oct()
$x->as_oct(); # as signed octal string with prefixed 0
=head2 numify()
print $x->numify();
This returns a normal Perl scalar from $x. It is used automatically
whenever a scalar is needed, for instance in array index operations.
This loses precision, to avoid this use L<as_int()> instead.
=head2 modify()
$x->modify('bpowd');
This method returns 0 if the object can be modified with the given
operation, or 1 if not.
This is used for instance by L<Math::BigInt::Constant>.
=head2 upgrade()/downgrade()
Set/get the class for downgrade/upgrade operations. Thuis is used
for instance by L<bignum>. The defaults are '', thus the following
operation will create a BigInt, not a BigFloat:
my $i = Math::BigInt->new(123);
my $f = Math::BigFloat->new('123.1');
print $i + $f,"\n"; # print 246
=head2 div_scale()
Set/get the number of digits for the default precision in divide
operations.
=head2 round_mode()
Set/get the current round mode.
=head1 ACCURACY and PRECISION
Since version v1.33, Math::BigInt and Math::BigFloat have full support for
accuracy and precision based rounding, both automatically after every
operation, as well as manually.
This section describes the accuracy/precision handling in Math::Big* as it
used to be and as it is now, complete with an explanation of all terms and
abbreviations.
Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.
In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).
During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) will be used.
=head2 Precision P
A fixed number of digits before (positive) or after (negative)
the decimal point. For example, 123.45 has a precision of -2. 0 means an
integer like 123 (or 120). A precision of 2 means two digits to the left
of the decimal point are zero, so 123 with P = 1 becomes 120. Note that
numbers with zeros before the decimal point may have different precisions,
because 1200 can have p = 0, 1 or 2 (depending on what the initial value
was). It could also have p < 0, when the digits after the decimal point
are zero.
The string output (of floating point numbers) will be padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 -3 1000 1000
1234 -2 1200 1200
1234.5 -1 1230 1230
1234.001 1 1234 1234.0
1234.01 0 1234 1234
1234.01 2 1234.01 1234.01
1234.01 5 1234.01 1234.01000
For BigInts, no padding occurs.
=head2 Accuracy A
Number of significant digits. Leading zeros are not counted. A
number may have an accuracy greater than the non-zero digits
when there are zeros in it or trailing zeros. For example, 123.456 has
A of 6, 10203 has 5, 123.0506 has 7, 123.450000 has 8 and 0.000123 has 3.
The string output (of floating point numbers) will be padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 3 1230 1230
1234.01 6 1234.01 1234.01
1234.1 8 1234.1 1234.1000
For BigInts, no padding occurs.
=head2 Fallback F
When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.
=head2 Rounding mode R
When rounding a number, different 'styles' or 'kinds'
of rounding are possible. (Note that random rounding, as in
Math::Round, is not implemented.)
=over 2
=item 'trunc'
truncation invariably removes all digits following the
rounding place, replacing them with zeros. Thus, 987.65 rounded
to tens (P=1) becomes 980, and rounded to the fourth sigdig
becomes 987.6 (A=4). 123.456 rounded to the second place after the
decimal point (P=-2) becomes 123.46.
All other implemented styles of rounding attempt to round to the
"nearest digit." If the digit D immediately to the right of the
rounding place (skipping the decimal point) is greater than 5, the
number is incremented at the rounding place (possibly causing a
cascade of incrementation): e.g. when rounding to units, 0.9 rounds
to 1, and -19.9 rounds to -20. If D < 5, the number is similarly
truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.
However the results of other styles of rounding differ if the
digit immediately to the right of the rounding place (skipping the
decimal point) is 5 and if there are no digits, or no digits other
than 0, after that 5. In such cases:
=item 'even'
rounds the digit at the rounding place to 0, 2, 4, 6, or 8
if it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
=item 'odd'
rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if
it is not already. E.g., when rounding to the first sigdig, 0.45
becomes 0.5, -0.55 becomes -0.5, but 0.5501 becomes 0.6.
=item '+inf'
round to plus infinity, i.e. always round up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5,
and 0.4501 also becomes 0.5.
=item '-inf'
round to minus infinity, i.e. always round down. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6,
but 0.4501 becomes 0.5.
=item 'zero'
round to zero, i.e. positive numbers down, negative ones up.
E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.5, but 0.4501 becomes 0.5.
=item 'common'
round up if the digit immediately to the right of the rounding place
is 5 or greater, otherwise round down. E.g., 0.15 becomes 0.2 and
0.149 becomes 0.1.
=back
The handling of A & P in MBI/MBF (the old core code shipped with Perl
versions <= 5.7.2) is like this:
=over 2
=item Precision
* ffround($p) is able to round to $p number of digits after the decimal
point
* otherwise P is unused
=item Accuracy (significant digits)
* fround($a) rounds to $a significant digits
* only fdiv() and fsqrt() take A as (optional) parameter
+ other operations simply create the same number (fneg etc), or more (fmul)
of digits
+ rounding/truncating is only done when explicitly calling one of fround
or ffround, and never for BigInt (not implemented)
* fsqrt() simply hands its accuracy argument over to fdiv.
* the documentation and the comment in the code indicate two different ways
on how fdiv() determines the maximum number of digits it should calculate,
and the actual code does yet another thing
POD:
max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
Comment:
result has at most max(scale, length(dividend), length(divisor)) digits
Actual code:
scale = max(scale, length(dividend)-1,length(divisor)-1);
scale += length(divisor) - length(dividend);
So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10+9-3).
Actually, the 'difference' added to the scale is calculated from the
number of "significant digits" in dividend and divisor, which is derived
by looking at the length of the mantissa. Which is wrong, since it includes
the + sign (oops) and actually gets 2 for '+100' and 4 for '+101'. Oops
again. Thus 124/3 with div_scale=1 will get you '41.3' based on the strange
assumption that 124 has 3 significant digits, while 120/7 will get you
'17', not '17.1' since 120 is thought to have 2 significant digits.
The rounding after the division then uses the remainder and $y to determine
whether it must round up or down.
? I have no idea which is the right way. That's why I used a slightly more
? simple scheme and tweaked the few failing testcases to match it.
=back
This is how it works now:
=over 2
=item Setting/Accessing
* You can set the A global via C<< Math::BigInt->accuracy() >> or
C<< Math::BigFloat->accuracy() >> or whatever class you are using.
* You can also set P globally by using C<< Math::SomeClass->precision() >>
likewise.
* Globals are classwide, and not inherited by subclasses.
* to undefine A, use C<< Math::SomeCLass->accuracy(undef); >>
* to undefine P, use C<< Math::SomeClass->precision(undef); >>
* Setting C<< Math::SomeClass->accuracy() >> clears automatically
C<< Math::SomeClass->precision() >>, and vice versa.
* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P'th place to the right of the
decimal point; positive values mean to the left of the decimal point.
P of 0 means round to integer.
* to find out the current global A, use C<< Math::SomeClass->accuracy() >>
* to find out the current global P, use C<< Math::SomeClass->precision() >>
* use C<< $x->accuracy() >> respective C<< $x->precision() >> for the local
setting of C<< $x >>.
* Please note that C<< $x->accuracy() >> respective C<< $x->precision() >>
return eventually defined global A or P, when C<< $x >>'s A or P is not
set.
=item Creating numbers
* When you create a number, you can give the desired A or P via:
$x = Math::BigInt->new($number,$A,$P);
* Only one of A or P can be defined, otherwise the result is NaN
* If no A or P is give ($x = Math::BigInt->new($number) form), then the
globals (if set) will be used. Thus changing the global defaults later on
will not change the A or P of previously created numbers (i.e., A and P of
$x will be what was in effect when $x was created)
* If given undef for A and P, B<no> rounding will occur, and the globals will
B<not> be used. This is used by subclasses to create numbers without
suffering rounding in the parent. Thus a subclass is able to have its own
globals enforced upon creation of a number by using
C<< $x = Math::BigInt->new($number,undef,undef) >>:
use Math::BigInt::SomeSubclass;
use Math::BigInt;
Math::BigInt->accuracy(2);
Math::BigInt::SomeSubClass->accuracy(3);
$x = Math::BigInt::SomeSubClass->new(1234);
$x is now 1230, and not 1200. A subclass might choose to implement
this otherwise, e.g. falling back to the parent's A and P.
=item Usage
* If A or P are enabled/defined, they are used to round the result of each
operation according to the rules below
* Negative P is ignored in Math::BigInt, since BigInts never have digits
after the decimal point
* Math::BigFloat uses Math::BigInt internally, but setting A or P inside
Math::BigInt as globals does not tamper with the parts of a BigFloat.
A flag is used to mark all Math::BigFloat numbers as 'never round'.
=item Precedence
* It only makes sense that a number has only one of A or P at a time.
If you set either A or P on one object, or globally, the other one will
be automatically cleared.
* If two objects are involved in an operation, and one of them has A in
effect, and the other P, this results in an error (NaN).
* A takes precedence over P (Hint: A comes before P).
If neither of them is defined, nothing is used, i.e. the result will have
as many digits as it can (with an exception for fdiv/fsqrt) and will not
be rounded.
* There is another setting for fdiv() (and thus for fsqrt()). If neither of
A or P is defined, fdiv() will use a fallback (F) of $div_scale digits.
If either the dividend's or the divisor's mantissa has more digits than
the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what would
happen with unlimited A and P in the case of 1/3 :-)
* fdiv will calculate (at least) 4 more digits than required (determined by
A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001 with A
or P of 5, but this can not be helped - or can it?)
* Thus you can have the math done by on Math::Big* class in two modi:
+ never round (this is the default):
This is done by setting A and P to undef. No math operation
will round the result, with fdiv() and fsqrt() as exceptions to guard
against overflows. You must explicitly call bround(), bfround() or
round() (the latter with parameters).
Note: Once you have rounded a number, the settings will 'stick' on it
and 'infect' all other numbers engaged in math operations with it, since
local settings have the highest precedence. So, to get SaferRound[tm],
use a copy() before rounding like this:
$x = Math::BigFloat->new(12.34);
$y = Math::BigFloat->new(98.76);
$z = $x * $y; # 1218.6984
print $x->copy()->fround(3); # 12.3 (but A is now 3!)
$z = $x * $y; # still 1218.6984, without
# copy would have been 1210!
+ round after each op:
After each single operation (except for testing like is_zero()), the
method round() is called and the result is rounded appropriately. By
setting proper values for A and P, you can have all-the-same-A or
all-the-same-P modes. For example, Math::Currency might set A to undef,
and P to -2, globally.
?Maybe an extra option that forbids local A & P settings would be in order,
?so that intermediate rounding does not 'poison' further math?
=item Overriding globals
* you will be able to give A, P and R as an argument to all the calculation
routines; the second parameter is A, the third one is P, and the fourth is
R (shift right by one for binary operations like badd). P is used only if
the first parameter (A) is undefined. These three parameters override the
globals in the order detailed as follows, i.e. the first defined value
wins:
(local: per object, global: global default, parameter: argument to sub)
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is taken)
+ local P (if defined on both of the operands: bigger one is taken)
+ global A
+ global P
+ global F
* fsqrt() will hand its arguments to fdiv(), as it used to, only now for two
arguments (A and P) instead of one
=item Local settings
* You can set A or P locally by using C<< $x->accuracy() >> or
C<< $x->precision() >>
and thus force different A and P for different objects/numbers.
* Setting A or P this way immediately rounds $x to the new value.
* C<< $x->accuracy() >> clears C<< $x->precision() >>, and vice versa.
=item Rounding
* the rounding routines will use the respective global or local settings.
fround()/bround() is for accuracy rounding, while ffround()/bfround()
is for precision
* the two rounding functions take as the second parameter one of the
following rounding modes (R):
'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
* you can set/get the global R by using C<< Math::SomeClass->round_mode() >>
or by setting C<< $Math::SomeClass::round_mode >>
* after each operation, C<< $result->round() >> is called, and the result may
eventually be rounded (that is, if A or P were set either locally,
globally or as parameter to the operation)
* to manually round a number, call C<< $x->round($A,$P,$round_mode); >>
this will round the number by using the appropriate rounding function
and then normalize it.
* rounding modifies the local settings of the number:
$x = Math::BigFloat->new(123.456);
$x->accuracy(5);
$x->bround(4);
Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
will be 4 from now on.
=item Default values
* R: 'even'
* F: 40
* A: undef
* P: undef
=item Remarks
* The defaults are set up so that the new code gives the same results as
the old code (except in a few cases on fdiv):
+ Both A and P are undefined and thus will not be used for rounding
after each operation.
+ round() is thus a no-op, unless given extra parameters A and P
=back
=head1 Infinity and Not a Number
While BigInt has extensive handling of inf and NaN, certain quirks remain.
=over 2
=item oct()/hex()
These perl routines currently (as of Perl v.5.8.6) cannot handle passed
inf.
te@linux:~> perl -wle 'print 2 ** 3333'
inf
te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
1
te@linux:~> perl -wle 'print oct(2 ** 3333)'
0
te@linux:~> perl -wle 'print hex(2 ** 3333)'
Illegal hexadecimal digit 'i' ignored at -e line 1.
0
The same problems occur if you pass them Math::BigInt->binf() objects. Since
overloading these routines is not possible, this cannot be fixed from BigInt.
=item ==, !=, <, >, <=, >= with NaNs
BigInt's bcmp() routine currently returns undef to signal that a NaN was
involved in a comparison. However, the overload code turns that into
either 1 or '' and thus operations like C<< NaN != NaN >> might return
wrong values.
=item log(-inf)
C<< log(-inf) >> is highly weird. Since log(-x)=pi*i+log(x), then
log(-inf)=pi*i+inf. However, since the imaginary part is finite, the real
infinity "overshadows" it, so the number might as well just be infinity.
However, the result is a complex number, and since BigInt/BigFloat can only
have real numbers as results, the result is NaN.
=item exp(), cos(), sin(), atan2()
These all might have problems handling infinity right.
=back
=head1 INTERNALS
The actual numbers are stored as unsigned big integers (with separate sign).
You should neither care about nor depend on the internal representation; it
might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
instead relying on the internal representation.
=head2 MATH LIBRARY
Math with the numbers is done (by default) by a module called
C<Math::BigInt::Calc>. This is equivalent to saying:
use Math::BigInt try => 'Calc';
You can change this backend library by using:
use Math::BigInt try => 'GMP';
B<Note>: General purpose packages should not be explicit about the library
to use; let the script author decide which is best.
If your script works with huge numbers and Calc is too slow for them,
you can also for the loading of one of these libraries and if none
of them can be used, the code will die:
use Math::BigInt only => 'GMP,Pari';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigInt try => 'Foo,Math::BigInt::Bar';
The library that is loaded last will be used. Note that this can be
overwritten at any time by loading a different library, and numbers
constructed with different libraries cannot be used in math operations
together.
=head3 What library to use?
B<Note>: General purpose packages should not be explicit about the library
to use; let the script author decide which is best.
L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big
numbers much faster than Calc, however it is slower when dealing with very
small numbers (less than about 20 digits) and when converting very large
numbers to decimal (for instance for printing, rounding, calculating their
length in decimal etc).
So please select carefully what library you want to use.
Different low-level libraries use different formats to store the numbers.
However, you should B<NOT> depend on the number having a specific format
internally.
See the respective math library module documentation for further details.
=head2 SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You will get '+inf' when dividing a positive number by 0, and
'-inf' when dividing any negative number by 0.
=head2 mantissa(), exponent() and parts()
C<mantissa()> and C<exponent()> return the said parts of the BigInt such
that:
$m = $x->mantissa();
$e = $x->exponent();
$y = $m * ( 10 ** $e );
print "ok\n" if $x == $y;
C<< ($m,$e) = $x->parts() >> is just a shortcut that gives you both of them
in one go. Both the returned mantissa and exponent have a sign.
Currently, for BigInts C<$e> is always 0, except +inf and -inf, where it is
C<+inf>; and for NaN, where it is C<NaN>; and for C<$x == 0>, where it is C<1>
(to be compatible with Math::BigFloat's internal representation of a zero as
C<0E1>).
C<$m> is currently just a copy of the original number. The relation between
C<$e> and C<$m> will stay always the same, though their real values might
change.
=head1 EXAMPLES
use Math::BigInt;
sub bint { Math::BigInt->new(shift); }
$x = Math::BigInt->bstr("1234") # string "1234"
$x = "$x"; # same as bstr()
$x = Math::BigInt->bneg("1234"); # BigInt "-1234"
$x = Math::BigInt->babs("-12345"); # BigInt "12345"
$x = Math::BigInt->bnorm("-0.00"); # BigInt "0"
$x = bint(1) + bint(2); # BigInt "3"
$x = bint(1) + "2"; # ditto (auto-BigIntify of "2")
$x = bint(1); # BigInt "1"
$x = $x + 5 / 2; # BigInt "3"
$x = $x ** 3; # BigInt "27"
$x *= 2; # BigInt "54"
$x = Math::BigInt->new(0); # BigInt "0"
$x--; # BigInt "-1"
$x = Math::BigInt->badd(4,5) # BigInt "9"
print $x->bsstr(); # 9e+0
Examples for rounding:
use Math::BigFloat;
use Test;
$x = Math::BigFloat->new(123.4567);
$y = Math::BigFloat->new(123.456789);
Math::BigFloat->accuracy(4); # no more A than 4
ok ($x->copy()->fround(),123.4); # even rounding
print $x->copy()->fround(),"\n"; # 123.4
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->fround(),"\n"; # 123.5
Math::BigFloat->accuracy(5); # no more A than 5
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->fround(),"\n"; # 123.46
$y = $x->copy()->fround(4),"\n"; # A = 4: 123.4
print "$y, ",$y->accuracy(),"\n"; # 123.4, 4
Math::BigFloat->accuracy(undef); # A not important now
Math::BigFloat->precision(2); # P important
print $x->copy()->bnorm(),"\n"; # 123.46
print $x->copy()->fround(),"\n"; # 123.46
Examples for converting:
my $x = Math::BigInt->new('0b1'.'01' x 123);
print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
=head1 Autocreating constants
After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
and binary constants in the given scope are converted to C<Math::BigInt>.
This conversion happens at compile time.
In particular,
perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
prints the integer value of C<2**100>. Note that without conversion of
constants the expression 2**100 will be calculated as perl scalar.
Please note that strings and floating point constants are not affected,
so that
use Math::BigInt qw/:constant/;
$x = 1234567890123456789012345678901234567890
+ 123456789123456789;
$y = '1234567890123456789012345678901234567890'
+ '123456789123456789';
do not work. You need an explicit Math::BigInt->new() around one of the
operands. You should also quote large constants to protect loss of precision:
use Math::BigInt;
$x = Math::BigInt->new('1234567889123456789123456789123456789');
Without the quotes Perl would convert the large number to a floating point
constant at compile time and then hand the result to BigInt, which results in
an truncated result or a NaN.
This also applies to integers that look like floating point constants:
use Math::BigInt ':constant';
print ref(123e2),"\n";
print ref(123.2e2),"\n";
will print nothing but newlines. Use either L<bignum> or L<Math::BigFloat>
to get this to work.
=head1 PERFORMANCE
Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form
$x += $y is MUCH faster than $x = $x + $y since making the copy of $x takes
more time then the actual addition.
With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. A test implementation of COW did show
performance gains for overloaded math, but introduced a performance loss due
to a constant overhead for all other operations. So Math::BigInt does currently
not COW.
The rewritten version of this module (vs. v0.01) is slower on certain
operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
does now more work and handles much more cases. The time spent in these
operations is usually gained in the other math operations so that code on
the average should get (much) faster. If they don't, please contact the author.
Some operations may be slower for small numbers, but are significantly faster
for big numbers. Other operations are now constant (O(1), like C<bneg()>,
C<babs()> etc), instead of O(N) and thus nearly always take much less time.
These optimizations were done on purpose.
If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you.
=head2 Alternative math libraries
You can use an alternative library to drive Math::BigInt. See the section
L<MATH LIBRARY> for more information.
For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
=head2 SUBCLASSING
=head1 Subclassing Math::BigInt
The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:
=over 2
=item *
The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The
reason for this is that Math::BigInt is optimized to call the object methods
directly.
=item *
The private object hash keys like C<< $x->{sign} >> may not be changed, but
additional keys can be added, like C<< $x->{_custom} >>.
=item *
Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it
to support different storage methods.
=back
More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that
needs to merely change the output only needs to overload C<bstr()>.
All other object methods and overloaded functions can be directly inherited
from the parent class.
At the very minimum, any subclass will need to provide its own C<new()> and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:
# Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = 'even';
$div_scale = 40;
Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:
$upgrade = undef;
$downgrade = undef;
This allows Math::BigInt to correctly retrieve package globals from the
subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.
Don't forget to
use overload;
in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.
=head1 UPGRADING
When used like this:
use Math::BigInt upgrade => 'Foo::Bar';
certain operations will 'upgrade' their calculation and thus the result to
the class Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
use Math::BigInt upgrade => 'Math::BigFloat';
As a shortcut, you can use the module C<bignum>:
use bignum;
Also good for one-liners:
perl -Mbignum -le 'print 2 ** 255'
This makes it possible to mix arguments of different classes (as in 2.5 + 2)
as well es preserve accuracy (as in sqrt(3)).
Beware: This feature is not fully implemented yet.
=head2 Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade
is in effect, they will always hand up their work:
=over 2
=item bsqrt()
=item div()
=item blog()
=item bexp()
=back
Beware: This list is not complete.
All other methods upgrade themselves only when one (or all) of their
arguments are of the class mentioned in $upgrade (This might change in later
versions to a more sophisticated scheme):
=head1 EXPORTS
C<Math::BigInt> exports nothing by default, but can export the following methods:
bgcd
blcm
=head1 CAVEATS
Some things might not work as you expect them. Below is documented what is
known to be troublesome:
=over 1
=item bstr(), bsstr() and 'cmp'
Both C<bstr()> and C<bsstr()> as well as automated stringify via overload now
drop the leading '+'. The old code would return '+3', the new returns '3'.
This is to be consistent with Perl and to make C<cmp> (especially with
overloading) to work as you expect. It also solves problems with C<Test.pm>,
because its C<ok()> uses 'eq' internally.
Mark Biggar said, when asked about to drop the '+' altogether, or make only
C<cmp> work:
I agree (with the first alternative), don't add the '+' on positive
numbers. It's not as important anymore with the new internal
form for numbers. It made doing things like abs and neg easier,
but those have to be done differently now anyway.
So, the following examples will now work all as expected:
use Test;
BEGIN { plan tests => 1 }
use Math::BigInt;
my $x = new Math::BigInt 3*3;
my $y = new Math::BigInt 3*3;
ok ($x,3*3);
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq '9';
print "$x eq 9" if $x eq 3*3;
Additionally, the following still works:
print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;
There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparison, but Perl will represent some numbers as 100 and others
as 1e+308. If in doubt, convert both arguments to Math::BigInt before
comparing them as strings:
use Test;
BEGIN { plan tests => 3 }
use Math::BigInt;
$x = Math::BigInt->new('1e56'); $y = 1e56;
ok ($x,$y); # will fail
ok ($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
ok ($x,$y); # okay
Alternatively, simple use C<< <=> >> for comparisons, this will get it
always right. There is not yet a way to get a number automatically represented
as a string that matches exactly the way Perl represents it.
See also the section about L<Infinity and Not a Number> for problems in
comparing NaNs.
=item int()
C<int()> will return (at least for Perl v5.7.1 and up) another BigInt, not a
Perl scalar:
$x = Math::BigInt->new(123);
$y = int($x); # BigInt 123
$x = Math::BigFloat->new(123.45);
$y = int($x); # BigInt 123
In all Perl versions you can use C<as_number()> or C<as_int> for the same
effect:
$x = Math::BigFloat->new(123.45);
$y = $x->as_number(); # BigInt 123
$y = $x->as_int(); # ditto
This also works for other subclasses, like Math::String.
If you want a real Perl scalar, use C<numify()>:
$y = $x->numify(); # 123 as scalar
This is seldom necessary, though, because this is done automatically, like
when you access an array:
$z = $array[$x]; # does work automatically
=item length
The following will probably not do what you expect:
$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30
It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like:
print scalar $c->length(),"\n"; # prints 3
=item bdiv
The following will probably not do what you expect:
print $c->bdiv(10000),"\n";
It prints both quotient and remainder since print calls C<bdiv()> in list
context. Also, C<bdiv()> will modify $c, so be careful. You probably want
to use
print $c / 10000,"\n";
print scalar $c->bdiv(10000),"\n"; # or if you want to modify $c
instead.
The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
non-zero) always has the same sign as the second operand; so, for
example,
1 / 4 => ( 0, 1)
1 / -4 => (-1,-3)
-3 / 4 => (-1, 1)
-3 / -4 => ( 0,-3)
-11 / 2 => (-5,1)
11 /-2 => (-5,-1)
As a consequence, the behavior of the operator % agrees with the
behavior of Perl's built-in % operator (as documented in the perlop
manpage), and the equation
$x == ($x / $y) * $y + ($x % $y)
holds true for any $x and $y, which justifies calling the two return
values of bdiv() the quotient and remainder. The only exception to this rule
are when $y == 0 and $x is negative, then the remainder will also be
negative. See below under "infinity handling" for the reasoning behind this.
Perl's 'use integer;' changes the behaviour of % and / for scalars, but will
not change BigInt's way to do things. This is because under 'use integer' Perl
will do what the underlying C thinks is right and this is different for each
system. If you need BigInt's behaving exactly like Perl's 'use integer', bug
the author to implement it ;)
=item infinity handling
Here are some examples that explain the reasons why certain results occur while
handling infinity:
The following table shows the result of the division and the remainder, so that
the equation above holds true. Some "ordinary" cases are strewn in to show more
clearly the reasoning:
A / B = C, R so that C * B + R = A
=========================================================
5 / 8 = 0, 5 0 * 8 + 5 = 5
0 / 8 = 0, 0 0 * 8 + 0 = 0
0 / inf = 0, 0 0 * inf + 0 = 0
0 /-inf = 0, 0 0 * -inf + 0 = 0
5 / inf = 0, 5 0 * inf + 5 = 5
5 /-inf = 0, 5 0 * -inf + 5 = 5
-5/ inf = 0, -5 0 * inf + -5 = -5
-5/-inf = 0, -5 0 * -inf + -5 = -5
inf/ 5 = inf, 0 inf * 5 + 0 = inf
-inf/ 5 = -inf, 0 -inf * 5 + 0 = -inf
inf/ -5 = -inf, 0 -inf * -5 + 0 = inf
-inf/ -5 = inf, 0 inf * -5 + 0 = -inf
5/ 5 = 1, 0 1 * 5 + 0 = 5
-5/ -5 = 1, 0 1 * -5 + 0 = -5
inf/ inf = 1, 0 1 * inf + 0 = inf
-inf/-inf = 1, 0 1 * -inf + 0 = -inf
inf/-inf = -1, 0 -1 * -inf + 0 = inf
-inf/ inf = -1, 0 1 * -inf + 0 = -inf
8/ 0 = inf, 8 inf * 0 + 8 = 8
inf/ 0 = inf, inf inf * 0 + inf = inf
0/ 0 = NaN
These cases below violate the "remainder has the sign of the second of the two
arguments", since they wouldn't match up otherwise.
A / B = C, R so that C * B + R = A
========================================================
-inf/ 0 = -inf, -inf -inf * 0 + inf = -inf
-8/ 0 = -inf, -8 -inf * 0 + 8 = -8
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
It will not do what you think, e.g. making a copy of $x. Instead it just makes
a second reference to the B<same> object and stores it in $y. Thus anything
that modifies $x (except overloaded operators) will modify $y, and vice versa.
Or in other words, C<=> is only safe if you modify your BigInts only via
overloaded math. As soon as you use a method call it breaks:
$x->bmul(2);
print "$x, $y\n"; # prints '10, 10'
If you want a true copy of $x, use:
$y = $x->copy();
You can also chain the calls like this, this will make first a copy and then
multiply it by 2:
$y = $x->copy()->bmul(2);
See also the documentation for overload.pm regarding C<=>.
=item bpow
C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three will
modify $x, the last one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone
The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
=item Overloading -$x
The following:
$x = -$x;
is slower than
$x->bneg();
since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later will get overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
=item Mixing different object types
In Perl you will get a floating point value if you do one of the following:
$float = 5.0 + 2;
$float = 2 + 5.0;
$float = 5 / 2;
With overloaded math, only the first two variants will result in a BigFloat:
use Math::BigInt;
use Math::BigFloat;
$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInteger->new(5);
$mbi = Math::BigInteger->new(2);
# what actually gets called:
$float = $mbf + $mbi; # $mbf->badd()
$float = $mbf / $mbi; # $mbf->bdiv()
$integer = $mbi + $mbf; # $mbi->badd()
$integer = $mbi2 / $mbi; # $mbi2->bdiv()
$integer = $mbi2 / $mbf; # $mbi2->bdiv()
This is because math with overloaded operators follows the first (dominating)
operand, and the operation of that is called and returns thus the result. So,
Math::BigInt::bdiv() will always return a Math::BigInt, regardless whether
the result should be a Math::BigFloat or the second operant is one.
To get a Math::BigFloat you either need to call the operation manually,
make sure the operands are already of the proper type or casted to that type
via Math::BigFloat->new():
$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
Beware of simple "casting" the entire expression, this would only convert
the already computed result:
$float = Math::BigFloat->new($mbi2 / $mbi); # = 2.0 thus wrong!
Beware also of the order of more complicated expressions like:
$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.
Scalar values are a bit different, since:
$float = 2 + $mbf;
$float = $mbf + 2;
will both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
One solution to you problem might be autoupgrading|upgrading. See the
pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
=item bsqrt()
C<bsqrt()> works only good if the result is a big integer, e.g. the square
root of 144 is 12, but from 12 the square root is 3, regardless of rounding
mode. The reason is that the result is always truncated to an integer.
If you want a better approximation of the square root, then use:
$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode('even');
print $x->copy->bsqrt(),"\n"; # 4
Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
=item brsft()
For negative numbers in base see also L<brsft|brsft>.
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<Math::BigFloat>, L<Math::BigRat> and L<Math::Big> as well as
L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
The package at
L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
more documentation including a full version history, testcases, empty
subclass files and benchmarks.
=head1 AUTHORS
Original code by Mark Biggar, overloaded interface by Ilya Zakharevich.
Completely rewritten by Tels http://bloodgate.com in late 2000, 2001 - 2006
and still at it in 2007.
Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (incomplete) list. If you miss your name, please drop me a
mail. Thank you!
=cut
|