This file is indexed.

/usr/share/pyshared/Crypto/PublicKey/ElGamal.py is in python-crypto 2.4.1-1ubuntu0.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#
#   ElGamal.py : ElGamal encryption/decryption and signatures
#
#  Part of the Python Cryptography Toolkit
#
#  Originally written by: A.M. Kuchling
#
# ===================================================================
# The contents of this file are dedicated to the public domain.  To
# the extent that dedication to the public domain is not available,
# everyone is granted a worldwide, perpetual, royalty-free,
# non-exclusive license to exercise all rights associated with the
# contents of this file for any purpose whatsoever.
# No rights are reserved.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ===================================================================

__revision__ = "$Id$"

from Crypto.PublicKey.pubkey import *
from Crypto.Util import number

class error (Exception):
    pass

# Generate an ElGamal key with N bits
def generate(bits, randfunc, progress_func=None):
    """generate(bits:int, randfunc:callable, progress_func:callable)

    Generate an ElGamal key of length 'bits', using 'randfunc' to get
    random data and 'progress_func', if present, to display
    the progress of the key generation.
    """
    obj=ElGamalobj()
    # Generate a safe prime p
    # See Algorithm 4.86 in Handbook of Applied Cryptography
    if progress_func:
        progress_func('p\n')
    while 1:
        q = bignum(getPrime(bits-1, randfunc))
        obj.p = 2*q+1
        if number.isPrime(obj.p, randfunc=randfunc):
            break
    # Generate generator g
    # See Algorithm 4.80 in Handbook of Applied Cryptography
    # Note that the order of the group is n=p-1=2q, where q is prime
    if progress_func:
        progress_func('g\n')
    while 1:
        # We must avoid g=2 because of Bleichenbacher's attack described
        # in "Generating ElGamal signatures without knowning the secret key",
        # 1996
        #
        obj.g = number.getRandomRange(3, obj.p, randfunc)
        safe = 1
        if pow(obj.g, 2, obj.p)==1:
            safe=0
        if safe and pow(obj.g, q, obj.p)==1:
            safe=0
        # Discard g if it divides p-1 because of the attack described
        # in Note 11.67 (iii) in HAC
        if safe and divmod(obj.p-1, obj.g)[1]==0:
            safe=0
        # g^{-1} must not divide p-1 because of Khadir's attack
        # described in "Conditions of the generator for forging ElGamal
        # signature", 2011
        ginv = number.inverse(obj.g, obj.p)
        if safe and divmod(obj.p-1, ginv)[1]==0:
            safe=0
        if safe:
            break
    # Generate private key x
    if progress_func:
        progress_func('x\n')
    obj.x=number.getRandomRange(2, obj.p-1, randfunc)
    # Generate public key y
    if progress_func:
        progress_func('y\n')
    obj.y = pow(obj.g, obj.x, obj.p)
    return obj

def construct(tuple):
    """construct(tuple:(long,long,long,long)|(long,long,long,long,long)))
             : ElGamalobj
    Construct an ElGamal key from a 3- or 4-tuple of numbers.
    """

    obj=ElGamalobj()
    if len(tuple) not in [3,4]:
        raise ValueError('argument for construct() wrong length')
    for i in range(len(tuple)):
        field = obj.keydata[i]
        setattr(obj, field, tuple[i])
    return obj

class ElGamalobj(pubkey):
    keydata=['p', 'g', 'y', 'x']

    def _encrypt(self, M, K):
        a=pow(self.g, K, self.p)
        b=( M*pow(self.y, K, self.p) ) % self.p
        return ( a,b )

    def _decrypt(self, M):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        ax=pow(M[0], self.x, self.p)
        plaintext=(M[1] * inverse(ax, self.p ) ) % self.p
        return plaintext

    def _sign(self, M, K):
        if (not hasattr(self, 'x')):
            raise TypeError('Private key not available in this object')
        p1=self.p-1
        if (GCD(K, p1)!=1):
            raise ValueError('Bad K value: GCD(K,p-1)!=1')
        a=pow(self.g, K, self.p)
        t=(M-self.x*a) % p1
        while t<0: t=t+p1
        b=(t*inverse(K, p1)) % p1
        return (a, b)

    def _verify(self, M, sig):
        if sig[0]<1 or sig[0]>self.p-1:
            return 0
        v1=pow(self.y, sig[0], self.p)
        v1=(v1*pow(sig[0], sig[1], self.p)) % self.p
        v2=pow(self.g, M, self.p)
        if v1==v2:
            return 1
        return 0

    def size(self):
        "Return the maximum number of bits that can be handled by this key."
        return number.size(self.p) - 1

    def has_private(self):
        """Return a Boolean denoting whether the object contains
        private components."""
        if hasattr(self, 'x'):
            return 1
        else:
            return 0

    def publickey(self):
        """Return a new key object containing only the public information."""
        return construct((self.p, self.g, self.y))


object=ElGamalobj