This file is indexed.

/usr/share/wayland/wayland.xml is in libwayland-dev-lts-trusty 1.4.0-1ubuntu1~precise2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
<?xml version="1.0" encoding="UTF-8"?>
<protocol name="wayland">

  <copyright>
    Copyright © 2008-2011 Kristian Høgsberg
    Copyright © 2010-2011 Intel Corporation
    Copyright © 2012-2013 Collabora, Ltd.

    Permission to use, copy, modify, distribute, and sell this
    software and its documentation for any purpose is hereby granted
    without fee, provided that the above copyright notice appear in
    all copies and that both that copyright notice and this permission
    notice appear in supporting documentation, and that the name of
    the copyright holders not be used in advertising or publicity
    pertaining to distribution of the software without specific,
    written prior permission.  The copyright holders make no
    representations about the suitability of this software for any
    purpose.  It is provided "as is" without express or implied
    warranty.

    THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS
    SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
    FITNESS, IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
    SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
    WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
    AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
    ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
    THIS SOFTWARE.
  </copyright>

  <interface name="wl_display" version="1">
    <description summary="core global object">
      The core global object.  This is a special singleton object.  It
      is used for internal Wayland protocol features.
    </description>

    <request name="sync">
      <description summary="asynchronous roundtrip">
	The sync request asks the server to emit the 'done' event
	on the returned wl_callback object.  Since requests are
	handled in-order and events are delivered in-order, this can
	be used as a barrier to ensure all previous requests and the
	resulting events have been handled.

	The object returned by this request will be destroyed by the
	compositor after the callback is fired and as such the client must not
	attempt to use it after that point.
      </description>
      <arg name="callback" type="new_id" interface="wl_callback"/>
    </request>

    <request name="get_registry">
      <description summary="get global registry object">
	This request creates a registry object that allows the client
	to list and bind the global objects available from the
	compositor.
      </description>
      <arg name="callback" type="new_id" interface="wl_registry"/>
    </request>

    <event name="error">
      <description summary="fatal error event">
	The error event is sent out when a fatal (non-recoverable)
	error has occurred.  The object_id argument is the object
	where the error occurred, most often in response to a request
	to that object.  The code identifies the error and is defined
	by the object interface.  As such, each interface defines its
	own set of error codes.  The message is an brief description
	of the error, for (debugging) convenience.
      </description>
      <arg name="object_id" type="object"/>
      <arg name="code" type="uint"/>
      <arg name="message" type="string"/>
    </event>

    <enum name="error">
      <description summary="global error values">
	These errors are global and can be emitted in response to any
	server request.
      </description>
      <entry name="invalid_object" value="0"
	     summary="server couldn't find object"/>
      <entry name="invalid_method" value="1"
	     summary="method doesn't exist on the specified interface"/>
      <entry name="no_memory" value="2"
	     summary="server is out of memory"/>
    </enum>

    <event name="delete_id">
      <description summary="acknowledge object ID deletion">
	This event is used internally by the object ID management
	logic.  When a client deletes an object, the server will send
	this event to acknowledge that it has seen the delete request.
	When the client receive this event, it will know that it can
	safely reuse the object ID.
      </description>
      <arg name="id" type="uint" />
    </event>
  </interface>

  <interface name="wl_registry" version="1">
    <description summary="global registry object">
      The global registry object.  The server has a number of global
      objects that are available to all clients.  These objects
      typically represent an actual object in the server (for example,
      an input device) or they are singleton objects that provide
      extension functionality.

      When a client creates a registry object, the registry object
      will emit a global event for each global currently in the
      registry.  Globals come and go as a result of device or
      monitor hotplugs, reconfiguration or other events, and the
      registry will send out global and global_remove events to
      keep the client up to date with the changes.  To mark the end
      of the initial burst of events, the client can use the
      wl_display.sync request immediately after calling
      wl_display.get_registry.

      A client can bind to a global object by using the bind
      request.  This creates a client-side handle that lets the object
      emit events to the client and lets the client invoke requests on
      the object.
    </description>

    <request name="bind">
      <description summary="bind an object to the display">
	Binds a new, client-created object to the server using the
        specified name as the identifier.
      </description>
      <arg name="name" type="uint" summary="unique name for the object"/>
      <arg name="id" type="new_id"/>
    </request>

    <event name="global">
      <description summary="announce global object">
	Notify the client of global objects.

        The event notifies the client that a global object with
        the given name is now available, and it implements the
        given version of the given interface.
      </description>
      <arg name="name" type="uint"/>
      <arg name="interface" type="string"/>
      <arg name="version" type="uint"/>
    </event>

    <event name="global_remove">
      <description summary="announce removal of global object">
	Notify the client of removed global objects.

        This event notifies the client that the global identified
        by name is no longer available.  If the client bound to
        the global using the bind request, the client should now
        destroy that object.

	The object remains valid and requests to the object will be
	ignored until the client destroys it, to avoid races between
	the global going away and a client sending a request to it.
      </description>
      <arg name="name" type="uint"/>
    </event>
  </interface>

  <interface name="wl_callback" version="1">
    <description summary="callback object">
      Clients can handle the 'done' event to get notified when
      the related request is done.
    </description>
    <event name="done">
      <description summary="done event">
       Notify the client when the related request is done.
      </description>
      <arg name="serial" type="uint" summary="serial of the event"/>
    </event>
  </interface>

  <interface name="wl_compositor" version="3">
    <description summary="the compositor singleton">
      A compositor.  This object is a singleton global.  The
      compositor is in charge of combining the contents of multiple
      surfaces into one displayable output.
    </description>

    <request name="create_surface">
      <description summary="create new surface">
	Ask the compositor to create a new surface.
      </description>
      <arg name="id" type="new_id" interface="wl_surface"/>
    </request>

    <request name="create_region">
      <description summary="create new region">
	Ask the compositor to create a new region.
      </description>
      <arg name="id" type="new_id" interface="wl_region"/>
    </request>
  </interface>

  <interface name="wl_shm_pool" version="1">
    <description summary="a shared memory pool">
      The wl_shm_pool object encapsulates a piece of memory shared
      between the compositor and client.  Through the wl_shm_pool
      object, the client can allocate shared memory wl_buffer objects.
      All objects created through the same pool share the same
      underlying mapped memory. Reusing the mapped memory avoids the
      setup/teardown overhead and is useful when interactively resizing
      a surface or for many small buffers.
    </description>

    <request name="create_buffer">
      <description summary="create a buffer from the pool">
	Create a wl_buffer object from the pool.

	The buffer is created offset bytes into the pool and has
	width and height as specified.  The stride arguments specifies
	the number of bytes from beginning of one row to the beginning
	of the next.  The format is the pixel format of the buffer and
	must be one of those advertised through the wl_shm.format event.

	A buffer will keep a reference to the pool it was created from
	so it is valid to destroy the pool immediately after creating
	a buffer from it.
      </description>

      <arg name="id" type="new_id" interface="wl_buffer"/>
      <arg name="offset" type="int"/>
      <arg name="width" type="int"/>
      <arg name="height" type="int"/>
      <arg name="stride" type="int"/>
      <arg name="format" type="uint"/>
    </request>

    <request name="destroy" type="destructor">
      <description summary="destroy the pool">
	Destroy the shared memory pool.

	The mmapped memory will be released when all
	buffers that have been created from this pool
	are gone.
      </description>
    </request>

    <request name="resize">
      <description summary="change the size of the pool mapping">
	This request will cause the server to remap the backing memory
	for the pool from the file descriptor passed when the pool was
	created, but using the new size.
      </description>

      <arg name="size" type="int"/>
    </request>
  </interface>

  <interface name="wl_shm" version="1">
    <description summary="shared memory support">
      A global singleton object that provides support for shared
      memory.

      Clients can create wl_shm_pool objects using the create_pool
      request.

      At connection setup time, the wl_shm object emits one or more
      format events to inform clients about the valid pixel formats
      that can be used for buffers.
    </description>

    <enum name="error">
      <description summary="wl_shm error values">
	These errors can be emitted in response to wl_shm requests.
      </description>
      <entry name="invalid_format" value="0" summary="buffer format is not known"/>
      <entry name="invalid_stride" value="1" summary="invalid size or stride during pool or buffer creation"/>
      <entry name="invalid_fd" value="2" summary="mmapping the file descriptor failed"/>
    </enum>

    <enum name="format">
      <description summary="pixel formats">
       This describes the memory layout of an individual pixel.

       All renderers should support argb8888 and xrgb8888 but any other
       formats are optional and may not be supported by the particular
       renderer in use.
      </description>
      <entry name="argb8888" value="0" summary="32-bit ARGB format"/>
      <entry name="xrgb8888" value="1" summary="32-bit RGB format"/>
      <!-- The drm format codes match the #defines in drm_fourcc.h.
           The formats actually supported by the compositor will be
           reported by the format event. -->
      <entry name="c8" value="0x20203843"/>
      <entry name="rgb332" value="0x38424752"/>
      <entry name="bgr233" value="0x38524742"/>
      <entry name="xrgb4444" value="0x32315258"/>
      <entry name="xbgr4444" value="0x32314258"/>
      <entry name="rgbx4444" value="0x32315852"/>
      <entry name="bgrx4444" value="0x32315842"/>
      <entry name="argb4444" value="0x32315241"/>
      <entry name="abgr4444" value="0x32314241"/>
      <entry name="rgba4444" value="0x32314152"/>
      <entry name="bgra4444" value="0x32314142"/>
      <entry name="xrgb1555" value="0x35315258"/>
      <entry name="xbgr1555" value="0x35314258"/>
      <entry name="rgbx5551" value="0x35315852"/>
      <entry name="bgrx5551" value="0x35315842"/>
      <entry name="argb1555" value="0x35315241"/>
      <entry name="abgr1555" value="0x35314241"/>
      <entry name="rgba5551" value="0x35314152"/>
      <entry name="bgra5551" value="0x35314142"/>
      <entry name="rgb565" value="0x36314752"/>
      <entry name="bgr565" value="0x36314742"/>
      <entry name="rgb888" value="0x34324752"/>
      <entry name="bgr888" value="0x34324742"/>
      <entry name="xbgr8888" value="0x34324258"/>
      <entry name="rgbx8888" value="0x34325852"/>
      <entry name="bgrx8888" value="0x34325842"/>
      <entry name="abgr8888" value="0x34324241"/>
      <entry name="rgba8888" value="0x34324152"/>
      <entry name="bgra8888" value="0x34324142"/>
      <entry name="xrgb2101010" value="0x30335258"/>
      <entry name="xbgr2101010" value="0x30334258"/>
      <entry name="rgbx1010102" value="0x30335852"/>
      <entry name="bgrx1010102" value="0x30335842"/>
      <entry name="argb2101010" value="0x30335241"/>
      <entry name="abgr2101010" value="0x30334241"/>
      <entry name="rgba1010102" value="0x30334152"/>
      <entry name="bgra1010102" value="0x30334142"/>
      <entry name="yuyv" value="0x56595559"/>
      <entry name="yvyu" value="0x55595659"/>
      <entry name="uyvy" value="0x59565955"/>
      <entry name="vyuy" value="0x59555956"/>
      <entry name="ayuv" value="0x56555941"/>
      <entry name="nv12" value="0x3231564e"/>
      <entry name="nv21" value="0x3132564e"/>
      <entry name="nv16" value="0x3631564e"/>
      <entry name="nv61" value="0x3136564e"/>
      <entry name="yuv410" value="0x39565559"/>
      <entry name="yvu410" value="0x39555659"/>
      <entry name="yuv411" value="0x31315559"/>
      <entry name="yvu411" value="0x31315659"/>
      <entry name="yuv420" value="0x32315559"/>
      <entry name="yvu420" value="0x32315659"/>
      <entry name="yuv422" value="0x36315559"/>
      <entry name="yvu422" value="0x36315659"/>
      <entry name="yuv444" value="0x34325559"/>
      <entry name="yvu444" value="0x34325659"/>
    </enum>

    <request name="create_pool">
      <description summary="create a shm pool">
	Create a new wl_shm_pool object.

	The pool can be used to create shared memory based buffer
	objects.  The server will mmap size bytes of the passed file
        descriptor, to use as backing memory for the pool.
      </description>

      <arg name="id" type="new_id" interface="wl_shm_pool"/>
      <arg name="fd" type="fd"/>
      <arg name="size" type="int"/>
    </request>

    <event name="format">
      <description summary="pixel format description">
	Informs the client about a valid pixel format that
	can be used for buffers. Known formats include
	argb8888 and xrgb8888.
      </description>
      <arg name="format" type="uint"/>
    </event>
  </interface>

  <interface name="wl_buffer" version="1">
    <description summary="content for a wl_surface">
      A buffer provides the content for a wl_surface. Buffers are
      created through factory interfaces such as wl_drm, wl_shm or
      similar. It has a width and a height and can be attached to a
      wl_surface, but the mechanism by which a client provides and
      updates the contents is defined by the buffer factory interface.
    </description>

    <request name="destroy" type="destructor">
      <description summary="destroy a buffer">
	Destroy a buffer. If and how you need to release the backing
	storage is defined by the buffer factory interface.

	For possible side-effects to a surface, see wl_surface.attach.
      </description>
    </request>

    <event name="release">
      <description summary="compositor releases buffer">
	Sent when this wl_buffer is no longer used by the compositor.
	The client is now free to re-use or destroy this buffer and its
	backing storage.

	If a client receives a release event before the frame callback
	requested in the same wl_surface.commit that attaches this
	wl_buffer to a surface, then the client is immediately free to
	re-use the buffer and its backing storage, and does not need a
	second buffer for the next surface content update. Typically
	this is possible, when the compositor maintains a copy of the
	wl_surface contents, e.g. as a GL texture. This is an important
	optimization for GL(ES) compositors with wl_shm clients.
      </description>
    </event>
  </interface>


  <interface name="wl_data_offer" version="1">
    <description summary="offer to transfer data">
      A wl_data_offer represents a piece of data offered for transfer
      by another client (the source client).  It is used by the
      copy-and-paste and drag-and-drop mechanisms.  The offer
      describes the different mime types that the data can be
      converted to and provides the mechanism for transferring the
      data directly from the source client.
    </description>

    <request name="accept">
      <description summary="accept one of the offered mime types">
	Indicate that the client can accept the given mime type, or
	NULL for not accepted.

	Used for feedback during drag-and-drop.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="mime_type" type="string" allow-null="true"/>
    </request>

    <request name="receive">
      <description summary="request that the data is transferred">
	To transfer the offered data, the client issues this request
	and indicates the mime type it wants to receive.  The transfer
	happens through the passed file descriptor (typically created
	with the pipe system call).  The source client writes the data
	in the mime type representation requested and then closes the
	file descriptor.

	The receiving client reads from the read end of the pipe until
	EOF and the closes its end, at which point the transfer is
	complete.
      </description>
      <arg name="mime_type" type="string"/>
      <arg name="fd" type="fd"/>
    </request>

    <request name="destroy" type="destructor">
      <description summary="destroy data offer">
	Destroy the data offer.
      </description>
    </request>

    <event name="offer">
      <description summary="advertise offered mime type">
	Sent immediately after creating the wl_data_offer object.  One
	event per offered mime type.
      </description>

      <arg name="mime_type" type="string"/>
    </event>
  </interface>

  <interface name="wl_data_source" version="1">
    <description summary="offer to transfer data">
      The wl_data_source object is the source side of a wl_data_offer.
      It is created by the source client in a data transfer and
      provides a way to describe the offered data and a way to respond
      to requests to transfer the data.
    </description>

    <request name="offer">
      <description summary="add an offered mime type">
	This request adds a mime type to the set of mime types
	advertised to targets.  Can be called several times to offer
	multiple types.
      </description>
      <arg name="mime_type" type="string"/>
    </request>

    <request name="destroy" type="destructor">
      <description summary="destroy the data source">
	Destroy the data source.
      </description>
    </request>

    <event name="target">
      <description summary="a target accepts an offered mime type">
	Sent when a target accepts pointer_focus or motion events.  If
	a target does not accept any of the offered types, type is NULL.

	Used for feedback during drag-and-drop.
      </description>

      <arg name="mime_type" type="string" allow-null="true"/>
    </event>

    <event name="send">
      <description summary="send the data">
	Request for data from the client.  Send the data as the
	specified mime type over the passed file descriptor, then
	close it.
      </description>

      <arg name="mime_type" type="string"/>
      <arg name="fd" type="fd"/>
    </event>

    <event name="cancelled">
      <description summary="selection was cancelled">
	This data source has been replaced by another data source.
	The client should clean up and destroy this data source.
      </description>
    </event>

  </interface>

  <interface name="wl_data_device" version="1">
    <description summary="data transfer device">
      There is one wl_data_device per seat which can be obtained
      from the global wl_data_device_manager singleton.

      A wl_data_device provides access to inter-client data transfer
      mechanisms such as copy-and-paste and drag-and-drop.
    </description>
    <request name="start_drag">
      <description summary="start drag-and-drop operation">
	This request asks the compositor to start a drag-and-drop
	operation on behalf of the client.

	The source argument is the data source that provides the data
	for the eventual data transfer. If source is NULL, enter, leave
	and motion events are sent only to the client that initiated the
	drag and the client is expected to handle the data passing
	internally.

	The origin surface is the surface where the drag originates and
	the client must have an active implicit grab that matches the
	serial.

	The icon surface is an optional (can be NULL) surface that
	provides an icon to be moved around with the cursor.  Initially,
	the top-left corner of the icon surface is placed at the cursor
	hotspot, but subsequent wl_surface.attach request can move the
	relative position. Attach requests must be confirmed with
	wl_surface.commit as usual.

	The current and pending input regions of the icon wl_surface are
	cleared, and wl_surface.set_input_region is ignored until the
	wl_surface is no longer used as the icon surface. When the use
	as an icon ends, the the current and pending input regions
	become undefined, and the wl_surface is unmapped.
      </description>
      <arg name="source" type="object" interface="wl_data_source" allow-null="true"/>
      <arg name="origin" type="object" interface="wl_surface"/>
      <arg name="icon" type="object" interface="wl_surface" allow-null="true"/>
      <arg name="serial" type="uint" summary="serial of the implicit grab on the origin"/>
    </request>

    <request name="set_selection">
      <description summary="copy data to the selection">
	This request asks the compositor to set the selection
	to the data from the source on behalf of the client.

	To unset the selection, set the source to NULL.
      </description>
      <arg name="source" type="object" interface="wl_data_source" allow-null="true"/>
      <arg name="serial" type="uint" summary="serial of the event that triggered this request"/>
    </request>

    <event name="data_offer">
      <description summary="introduce a new wl_data_offer">
	The data_offer event introduces a new wl_data_offer object,
	which will subsequently be used in either the
	data_device.enter event (for drag-and-drop) or the
	data_device.selection event (for selections).  Immediately
	following the data_device_data_offer event, the new data_offer
	object will send out data_offer.offer events to describe the
	mime types it offers.
      </description>

      <arg name="id" type="new_id" interface="wl_data_offer"/>
    </event>

    <event name="enter">
      <description summary="initiate drag-and-drop session">
	This event is sent when an active drag-and-drop pointer enters
	a surface owned by the client.  The position of the pointer at
	enter time is provided by the x and y arguments, in surface
	local coordinates.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="surface" type="object" interface="wl_surface"/>
      <arg name="x" type="fixed"/>
      <arg name="y" type="fixed"/>
      <arg name="id" type="object" interface="wl_data_offer" allow-null="true"/>
    </event>

    <event name="leave">
      <description summary="end drag-and-drop session">
	This event is sent when the drag-and-drop pointer leaves the
	surface and the session ends.  The client must destroy the
	wl_data_offer introduced at enter time at this point.
      </description>
    </event>

    <event name="motion">
      <description summary="drag-and-drop session motion">
	This event is sent when the drag-and-drop pointer moves within
	the currently focused surface. The new position of the pointer
	is provided by the x and y arguments, in surface local
	coordinates.
      </description>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="x" type="fixed"/>
      <arg name="y" type="fixed"/>
    </event>

    <event name="drop">
      <description summary="end drag-and-drag session successfully">
	The event is sent when a drag-and-drop operation is ended
	because the implicit grab is removed.
      </description>
    </event>

    <event name="selection">
      <description summary="advertise new selection">
	The selection event is sent out to notify the client of a new
	wl_data_offer for the selection for this device.  The
	data_device.data_offer and the data_offer.offer events are
	sent out immediately before this event to introduce the data
	offer object.  The selection event is sent to a client
	immediately before receiving keyboard focus and when a new
	selection is set while the client has keyboard focus.  The
	data_offer is valid until a new data_offer or NULL is received
	or until the client loses keyboard focus.
      </description>
      <arg name="id" type="object" interface="wl_data_offer" allow-null="true"/>
    </event>
  </interface>

  <interface name="wl_data_device_manager" version="1">
    <description summary="data transfer interface">
      The wl_data_device_manager is a singleton global object that
      provides access to inter-client data transfer mechanisms such as
      copy-and-paste and drag-and-drop.  These mechanisms are tied to
      a wl_seat and this interface lets a client get a wl_data_device
      corresponding to a wl_seat.
    </description>

    <request name="create_data_source">
      <description summary="create a new data source">
        Create a new data source.
      </description>
      <arg name="id" type="new_id" interface="wl_data_source"/>
    </request>

    <request name="get_data_device">
      <description summary="create a new data device">
        Create a new data device for a given seat.
      </description>
      <arg name="id" type="new_id" interface="wl_data_device"/>
      <arg name="seat" type="object" interface="wl_seat"/>
    </request>
  </interface>

  <interface name="wl_shell" version="1">
    <description summary="create desktop-style surfaces">
      This interface is implemented by servers that provide
      desktop-style user interfaces.

      It allows clients to associate a wl_shell_surface with
      a basic surface.
    </description>

    <request name="get_shell_surface">
      <description summary="create a shell surface from a surface">
	Create a shell surface for an existing surface.

	Only one shell surface can be associated with a given surface.
      </description>
      <arg name="id" type="new_id" interface="wl_shell_surface"/>
      <arg name="surface" type="object" interface="wl_surface"/>
    </request>
  </interface>

  <interface name="wl_shell_surface" version="1">

    <description summary="desktop-style metadata interface">
      An interface that may be implemented by a wl_surface, for
      implementations that provide a desktop-style user interface.

      It provides requests to treat surfaces like toplevel, fullscreen
      or popup windows, move, resize or maximize them, associate
      metadata like title and class, etc.

      On the server side the object is automatically destroyed when
      the related wl_surface is destroyed.  On client side,
      wl_shell_surface_destroy() must be called before destroying
      the wl_surface object.
    </description>

    <request name="pong">
      <description summary="respond to a ping event">
	A client must respond to a ping event with a pong request or
	the client may be deemed unresponsive.
      </description>
      <arg name="serial" type="uint" summary="serial of the ping event"/>
    </request>

    <request name="move">
      <description summary="start an interactive move">
	Start a pointer-driven move of the surface.

	This request must be used in response to a button press event.
	The server may ignore move requests depending on the state of
	the surface (e.g. fullscreen or maximized).
      </description>
      <arg name="seat" type="object" interface="wl_seat" summary="the wl_seat whose pointer is used"/>
      <arg name="serial" type="uint" summary="serial of the implicit grab on the pointer"/>
    </request>

    <enum name="resize">
      <description summary="edge values for resizing">
	These values are used to indicate which edge of a surface
	is being dragged in a resize operation. The server may
	use this information to adapt its behavior, e.g. choose
	an appropriate cursor image.
      </description>
      <entry name="none" value="0"/>
      <entry name="top" value="1"/>
      <entry name="bottom" value="2"/>
      <entry name="left" value="4"/>
      <entry name="top_left" value="5"/>
      <entry name="bottom_left" value="6"/>
      <entry name="right" value="8"/>
      <entry name="top_right" value="9"/>
      <entry name="bottom_right" value="10"/>
    </enum>

    <request name="resize">
      <description summary="start an interactive resize">
	Start a pointer-driven resizing of the surface.

	This request must be used in response to a button press event.
	The server may ignore resize requests depending on the state of
	the surface (e.g. fullscreen or maximized).
      </description>
      <arg name="seat" type="object" interface="wl_seat" summary="the wl_seat whose pointer is used"/>
      <arg name="serial" type="uint" summary="serial of the implicit grab on the pointer"/>
      <arg name="edges" type="uint" summary="which edge or corner is being dragged"/>
    </request>

    <request name="set_toplevel">
      <description summary="make the surface a toplevel surface">
	Map the surface as a toplevel surface.

	A toplevel surface is not fullscreen, maximized or transient.
      </description>
    </request>

    <enum name="transient">
      <description summary="details of transient behaviour">
	These flags specify details of the expected behaviour
	of transient surfaces. Used in the set_transient request.
      </description>
      <entry name="inactive" value="0x1" summary="do not set keyboard focus"/>
    </enum>

    <request name="set_transient">
      <description summary="make the surface a transient surface">
	Map the surface relative to an existing surface.

	The x and y arguments specify the locations of the upper left
	corner of the surface relative to the upper left corner of the
	parent surface, in surface local coordinates.

	The flags argument controls details of the transient behaviour.
      </description>

      <arg name="parent" type="object" interface="wl_surface"/>
      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
      <arg name="flags" type="uint"/>
    </request>

    <enum name="fullscreen_method">
      <description summary="different method to set the surface fullscreen">
	Hints to indicate to the compositor how to deal with a conflict
	between the dimensions of the surface and the dimensions of the
	output. The compositor is free to ignore this parameter.
      </description>
      <entry name="default" value="0" summary="no preference, apply default policy"/>
      <entry name="scale" value="1" summary="scale, preserve the surface's aspect ratio and center on output"/>
      <entry name="driver" value="2" summary="switch output mode to the smallest mode that can fit the surface, add black borders to compensate size mismatch"/>
      <entry name="fill" value="3" summary="no upscaling, center on output and add black borders to compensate size mismatch"/>
    </enum>

    <request name="set_fullscreen">
      <description summary="make the surface a fullscreen surface">
	Map the surface as a fullscreen surface.

	If an output parameter is given then the surface will be made
	fullscreen on that output. If the client does not specify the
	output then the compositor will apply its policy - usually
	choosing the output on which the surface has the biggest surface
	area.

	The client may specify a method to resolve a size conflict
	between the output size and the surface size - this is provided
	through the method parameter.

	The framerate parameter is used only when the method is set
	to "driver", to indicate the preferred framerate. A value of 0
	indicates that the app does not care about framerate.  The
	framerate is specified in mHz, that is framerate of 60000 is 60Hz.

	A method of "scale" or "driver" implies a scaling operation of
	the surface, either via a direct scaling operation or a change of
	the output mode. This will override any kind of output scaling, so
	that mapping a surface with a buffer size equal to the mode can
	fill the screen independent of buffer_scale.

	A method of "fill" means we don't scale up the buffer, however
	any output scale is applied. This means that you may run into
	an edge case where the application maps a buffer with the same
	size of the output mode but buffer_scale 1 (thus making a
	surface larger than the output). In this case it is allowed to
	downscale the results to fit the screen.

	The compositor must reply to this request with a configure event
	with the dimensions for the output on which the surface will
	be made fullscreen.
      </description>
      <arg name="method" type="uint"/>
      <arg name="framerate" type="uint"/>
      <arg name="output" type="object" interface="wl_output" allow-null="true"/>
    </request>

    <request name="set_popup">
      <description summary="make the surface a popup surface">
	Map the surface as a popup.

	A popup surface is a transient surface with an added pointer
	grab.

	An existing implicit grab will be changed to owner-events mode,
	and the popup grab will continue after the implicit grab ends
	(i.e. releasing the mouse button does not cause the popup to
	be unmapped).

	The popup grab continues until the window is destroyed or a
	mouse button is pressed in any other clients window. A click
	in any of the clients surfaces is reported as normal, however,
	clicks in other clients surfaces will be discarded and trigger
	the callback.

	The x and y arguments specify the locations of the upper left
	corner of the surface relative to the upper left corner of the
	parent surface, in surface local coordinates.
      </description>

      <arg name="seat" type="object" interface="wl_seat" summary="the wl_seat whose pointer is used"/>
      <arg name="serial" type="uint" summary="serial of the implicit grab on the pointer"/>
      <arg name="parent" type="object" interface="wl_surface"/>
      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
      <arg name="flags" type="uint"/>
    </request>

    <request name="set_maximized">
      <description summary="make the surface a maximized surface">
	Map the surface as a maximized surface.

	If an output parameter is given then the surface will be
	maximized on that output. If the client does not specify the
	output then the compositor will apply its policy - usually
	choosing the output on which the surface has the biggest surface
	area.

	The compositor will reply with a configure event telling
	the expected new surface size. The operation is completed
	on the next buffer attach to this surface.

	A maximized surface typically fills the entire output it is
	bound to, except for desktop element such as panels. This is
	the main difference between a maximized shell surface and a
	fullscreen shell surface.

	The details depend on the compositor implementation.
      </description>
      <arg name="output" type="object" interface="wl_output" allow-null="true"/>
    </request>

    <request name="set_title">
      <description summary="set surface title">
	Set a short title for the surface.

	This string may be used to identify the surface in a task bar,
	window list, or other user interface elements provided by the
	compositor.

	The string must be encoded in UTF-8.
      </description>
      <arg name="title" type="string"/>
    </request>

    <request name="set_class">
      <description summary="set surface class">
	Set a class for the surface.

	The surface class identifies the general class of applications
	to which the surface belongs. A common convention is to use the
	file name (or the full path if it is a non-standard location) of
	the application's .desktop file as the class.
      </description>
      <arg name="class_" type="string"/>
    </request>

    <event name="ping">
      <description summary="ping client">
	Ping a client to check if it is receiving events and sending
	requests. A client is expected to reply with a pong request.
      </description>
      <arg name="serial" type="uint"/>
    </event>

    <event name="configure">
      <description summary="suggest resize">
	The configure event asks the client to resize its surface.

	The size is a hint, in the sense that the client is free to
	ignore it if it doesn't resize, pick a smaller size (to
	satisfy aspect ratio or resize in steps of NxM pixels).

	The edges parameter provides a hint about how the surface
	was resized. The client may use this information to decide
	how to adjust its content to the new size (e.g. a scrolling
	area might adjust its content position to leave the viewable
	content unmoved).

	The client is free to dismiss all but the last configure
	event it received.

	The width and height arguments specify the size of the window
	in surface local coordinates.
      </description>

      <arg name="edges" type="uint"/>
      <arg name="width" type="int"/>
      <arg name="height" type="int"/>
    </event>

    <event name="popup_done">
      <description summary="popup interaction is done">
	The popup_done event is sent out when a popup grab is broken,
	that is, when the user clicks a surface that doesn't belong
	to the client owning the popup surface.
      </description>
    </event>
  </interface>

  <interface name="wl_surface" version="3">
    <description summary="an onscreen surface">
      A surface is a rectangular area that is displayed on the screen.
      It has a location, size and pixel contents.

      The size of a surface (and relative positions on it) is described
      in surface local coordinates, which may differ from the buffer
      local coordinates of the pixel content, in case a buffer_transform
      or a buffer_scale is used.

      Surfaces are also used for some special purposes, e.g. as
      cursor images for pointers, drag icons, etc.
    </description>

    <request name="destroy" type="destructor">
      <description summary="delete surface">
	Deletes the surface and invalidates its object ID.
      </description>
    </request>

    <request name="attach">
      <description summary="set the surface contents">
	Set a buffer as the content of this surface.

	The new size of the surface is calculated based on the buffer
	size transformed by the inverse buffer_transform and the
	inverse buffer_scale. This means that the supplied buffer
	must be an integer multiple of the buffer_scale.

	The x and y arguments specify the location of the new pending
	buffer's upper left corner, relative to the current buffer's upper
	left corner, in surface local coordinates. In other words, the
	x and y, combined with the new surface size define in which
	directions the surface's size changes.

	Surface contents are double-buffered state, see wl_surface.commit.

	The initial surface contents are void; there is no content.
	wl_surface.attach assigns the given wl_buffer as the pending
	wl_buffer. wl_surface.commit makes the pending wl_buffer the new
	surface contents, and the size of the surface becomes the size
	calculated from the wl_buffer, as described above. After commit,
	there is no pending buffer until the next attach.

	Committing a pending wl_buffer allows the compositor to read the
	pixels in the wl_buffer. The compositor may access the pixels at
	any time after the wl_surface.commit request. When the compositor
	will not access the pixels anymore, it will send the
	wl_buffer.release event. Only after receiving wl_buffer.release,
	the client may re-use the wl_buffer. A wl_buffer that has been
	attached and then replaced by another attach instead of committed
	will not receive a release event, and is not used by the
	compositor.

	Destroying the wl_buffer after wl_buffer.release does not change
	the surface contents. However, if the client destroys the
	wl_buffer before receiving the wl_buffer.release event, the surface
	contents become undefined immediately.

	If wl_surface.attach is sent with a NULL wl_buffer, the
	following wl_surface.commit will remove the surface content.
      </description>

      <arg name="buffer" type="object" interface="wl_buffer" allow-null="true"/>
      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
    </request>

    <request name="damage">
      <description summary="mark part of the surface damaged">
	This request is used to describe the regions where the pending
	buffer is different from the current surface contents, and where
	the surface therefore needs to be repainted. The pending buffer
	must be set by wl_surface.attach before sending damage. The
	compositor ignores the parts of the damage that fall outside of
	the surface.

	Damage is double-buffered state, see wl_surface.commit.

	The damage rectangle is specified in surface local coordinates.

	The initial value for pending damage is empty: no damage.
	wl_surface.damage adds pending damage: the new pending damage
	is the union of old pending damage and the given rectangle.

	wl_surface.commit assigns pending damage as the current damage,
	and clears pending damage. The server will clear the current
	damage as it repaints the surface.
      </description>

      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
      <arg name="width" type="int"/>
      <arg name="height" type="int"/>
    </request>

    <request name="frame">
      <description summary="request repaint feedback">
	Request notification when the next frame is displayed. Useful
	for throttling redrawing operations, and driving animations.
	The frame request will take effect on the next wl_surface.commit.
	The notification will only be posted for one frame unless
	requested again.

	A server should avoid signalling the frame callbacks if the
	surface is not visible in any way, e.g. the surface is off-screen,
	or completely obscured by other opaque surfaces.

	A client can request a frame callback even without an attach,
	damage, or any other state changes. wl_surface.commit triggers a
	display update, so the callback event will arrive after the next
	output refresh where the surface is visible.

	The object returned by this request will be destroyed by the
	compositor after the callback is fired and as such the client must not
	attempt to use it after that point.
      </description>

      <arg name="callback" type="new_id" interface="wl_callback"/>
    </request>

    <request name="set_opaque_region">
      <description summary="set opaque region">
	This request sets the region of the surface that contains
	opaque content.

	The opaque region is an optimization hint for the compositor
	that lets it optimize out redrawing of content behind opaque
	regions.  Setting an opaque region is not required for correct
	behaviour, but marking transparent content as opaque will result
	in repaint artifacts.

	The opaque region is specified in surface local coordinates.

	The compositor ignores the parts of the opaque region that fall
	outside of the surface.

	Opaque region is double-buffered state, see wl_surface.commit.

	wl_surface.set_opaque_region changes the pending opaque region.
	wl_surface.commit copies the pending region to the current region.
	Otherwise, the pending and current regions are never changed.

	The initial value for opaque region is empty. Setting the pending
	opaque region has copy semantics, and the wl_region object can be
	destroyed immediately. A NULL wl_region causes the pending opaque
	region to be set to empty.
      </description>

      <arg name="region" type="object" interface="wl_region" allow-null="true"/>
    </request>

    <request name="set_input_region">
      <description summary="set input region">
	This request sets the region of the surface that can receive
	pointer and touch events.

	Input events happening outside of this region will try the next
	surface in the server surface stack. The compositor ignores the
	parts of the input region that fall outside of the surface.

	The input region is specified in surface local coordinates.

	Input region is double-buffered state, see wl_surface.commit.

	wl_surface.set_input_region changes the pending input region.
	wl_surface.commit copies the pending region to the current region.
	Otherwise the pending and current regions are never changed,
	except cursor and icon surfaces are special cases, see
	wl_pointer.set_cursor and wl_data_device.start_drag.

	The initial value for input region is infinite. That means the
	whole surface will accept input. Setting the pending input region
	has copy semantics, and the wl_region object can be destroyed
	immediately. A NULL wl_region causes the input region to be set
	to infinite.
      </description>

      <arg name="region" type="object" interface="wl_region" allow-null="true"/>
    </request>

    <request name="commit">
      <description summary="commit pending surface state">
	Surface state (input, opaque, and damage regions, attached buffers,
	etc.) is double-buffered. Protocol requests modify the pending
	state, as opposed to current state in use by the compositor. Commit
	request atomically applies all pending state, replacing the current
	state. After commit, the new pending state is as documented for each
	related request.

	On commit, a pending wl_buffer is applied first, all other state
	second. This means that all coordinates in double-buffered state are
	relative to the new wl_buffer coming into use, except for
	wl_surface.attach itself. If there is no pending wl_buffer, the
	coordinates are relative to the current surface contents.

	All requests that need a commit to become effective are documented
	to affect double-buffered state.

	Other interfaces may add further double-buffered surface state.
      </description>
    </request>

    <event name="enter">
      <description summary="surface enters an output">
	This is emitted whenever a surface's creation, movement, or resizing
	results in some part of it being within the scanout region of an
	output.

	Note that a surface may be overlapping with zero or more outputs.
      </description>
      <arg name="output" type="object" interface="wl_output"/>
    </event>

    <event name="leave">
      <description summary="surface leaves an output">
	This is emitted whenever a surface's creation, movement, or resizing
	results in it no longer having any part of it within the scanout region
	of an output.
      </description>
      <arg name="output" type="object" interface="wl_output"/>
    </event>

    <!-- Version 2 additions -->

    <request name="set_buffer_transform" since="2">
      <description summary="sets the buffer transformation">
	This request sets an optional transformation on how the compositor
	interprets the contents of the buffer attached to the surface. The
	accepted values for the transform parameter are the values for
	wl_output.transform.

	Buffer transform is double-buffered state, see wl_surface.commit.

	A newly created surface has its buffer transformation set to normal.

	The purpose of this request is to allow clients to render content
	according to the output transform, thus permiting the compositor to
	use certain optimizations even if the display is rotated. Using
	hardware overlays and scanning out a client buffer for fullscreen
	surfaces are examples of such optimizations. Those optimizations are
	highly dependent on the compositor implementation, so the use of this
	request should be considered on a case-by-case basis.

	Note that if the transform value includes 90 or 270 degree rotation,
	the width of the buffer will become the surface height and the height
	of the buffer will become the surface width.
      </description>
      <arg name="transform" type="int"/>
    </request>

    <!-- Version 3 additions -->

    <request name="set_buffer_scale" since="3">
      <description summary="sets the buffer scaling factor">
	This request sets an optional scaling factor on how the compositor
	interprets the contents of the buffer attached to the window.

	Buffer scale is double-buffered state, see wl_surface.commit.

	A newly created surface has its buffer scale set to 1.

	The purpose of this request is to allow clients to supply higher
	resolution buffer data for use on high resolution outputs. Its
	intended that you pick the same	buffer scale as the scale of the
	output that the surface is displayed on.This means the compositor
	can avoid scaling when rendering the surface on that output.

	Note that if the scale is larger than 1, then you have to attach
	a buffer that is larger (by a factor of scale in each dimension)
	than the desired surface size.
      </description>
      <arg name="scale" type="int"/>
    </request>
   </interface>

  <interface name="wl_seat" version="3">
    <description summary="group of input devices">
      A seat is a group of keyboards, pointer and touch devices. This
      object is published as a global during start up, or when such a
      device is hot plugged.  A seat typically has a pointer and
      maintains a keyboard focus and a pointer focus.
    </description>

    <enum name="capability">
      <description summary="seat capability bitmask">
        This is a bitmask of capabilities this seat has; if a member is
        set, then it is present on the seat.
      </description>
      <entry name="pointer" value="1" summary="The seat has pointer devices"/>
      <entry name="keyboard" value="2" summary="The seat has one or more keyboards"/>
      <entry name="touch" value="4" summary="The seat has touch devices"/>
    </enum>

    <event name="capabilities">
      <description summary="seat capabilities changed">
        This is emitted whenever a seat gains or loses the pointer,
	keyboard or touch capabilities.  The argument is a capability
	enum containing the complete set of capabilities this seat has.
      </description>
      <arg name="capabilities" type="uint"/>
    </event>

    <request name="get_pointer">
      <description summary="return pointer object">
        The ID provided will be initialized to the wl_pointer interface
	for this seat.

        This request only takes effect if the seat has the pointer
        capability.
      </description>
      <arg name="id" type="new_id" interface="wl_pointer"/>
    </request>

    <request name="get_keyboard">
      <description summary="return keyboard object">
        The ID provided will be initialized to the wl_keyboard interface
	for this seat.

        This request only takes effect if the seat has the keyboard
        capability.
      </description>
      <arg name="id" type="new_id" interface="wl_keyboard"/>
    </request>

    <request name="get_touch">
      <description summary="return touch object">
        The ID provided will be initialized to the wl_touch interface
	for this seat.

        This request only takes effect if the seat has the touch
        capability.
      </description>
      <arg name="id" type="new_id" interface="wl_touch"/>
    </request>

    <!-- Version 2 of additions -->

    <event name="name" since="2">
      <description summary="unique identifier for this seat">
	In a multiseat configuration this can be used by the client to help
	identify which physical devices the seat represents. Based on
	the seat configuration used by the compositor.
      </description>
      <arg name="name" type="string"/>
    </event>

  </interface>

  <interface name="wl_pointer" version="3">
    <description summary="pointer input device">
      The wl_pointer interface represents one or more input devices,
      such as mice, which control the pointer location and pointer_focus
      of a seat.

      The wl_pointer interface generates motion, enter and leave
      events for the surfaces that the pointer is located over,
      and button and axis events for button presses, button releases
      and scrolling.
    </description>

    <request name="set_cursor">
      <description summary="set the pointer surface">
	Set the pointer surface, i.e., the surface that contains the
	pointer image (cursor). This request only takes effect if the pointer
	focus for this device is one of the requesting client's surfaces
	or the surface parameter is the current pointer surface. If
	there was a previous surface set with this request it is
	replaced. If surface is NULL, the pointer image is hidden.

	The parameters hotspot_x and hotspot_y define the position of
	the pointer surface relative to the pointer location. Its
	top-left corner is always at (x, y) - (hotspot_x, hotspot_y),
	where (x, y) are the coordinates of the pointer location, in surface
	local coordinates.

	On surface.attach requests to the pointer surface, hotspot_x
	and hotspot_y are decremented by the x and y parameters
	passed to the request. Attach must be confirmed by
	wl_surface.commit as usual.

	The hotspot can also be updated by passing the currently set
	pointer surface to this request with new values for hotspot_x
	and hotspot_y.

	The current and pending input regions of the wl_surface are
	cleared, and wl_surface.set_input_region is ignored until the
	wl_surface is no longer used as the cursor. When the use as a
	cursor ends, the current and pending input regions become
	undefined, and the wl_surface is unmapped.
      </description>

      <arg name="serial" type="uint" summary="serial of the enter event"/>
      <arg name="surface" type="object" interface="wl_surface" allow-null="true"/>
      <arg name="hotspot_x" type="int" summary="x coordinate in surface-relative coordinates"/>
      <arg name="hotspot_y" type="int" summary="y coordinate in surface-relative coordinates"/>
    </request>

    <request name="release" type="destructor" since="3">
      <description summary="release the pointer object"/>
    </request>

    <event name="enter">
      <description summary="enter event">
	Notification that this seat's pointer is focused on a certain
	surface.

	When an seat's focus enters a surface, the pointer image
	is undefined and a client should respond to this event by setting
	an appropriate pointer image with the set_cursor request.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="surface" type="object" interface="wl_surface"/>
      <arg name="surface_x" type="fixed" summary="x coordinate in surface-relative coordinates"/>
      <arg name="surface_y" type="fixed" summary="y coordinate in surface-relative coordinates"/>
    </event>

    <event name="leave">
      <description summary="leave event">
	Notification that this seat's pointer is no longer focused on
	a certain surface.

	The leave notification is sent before the enter notification
	for the new focus.
      </description>
      <arg name="serial" type="uint"/>
      <arg name="surface" type="object" interface="wl_surface"/>
    </event>

    <event name="motion">
      <description summary="pointer motion event">
	Notification of pointer location change. The arguments
	surface_x and surface_y are the location relative to the
	focused surface.
      </description>

      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="surface_x" type="fixed" summary="x coordinate in surface-relative coordinates"/>
      <arg name="surface_y" type="fixed" summary="y coordinate in surface-relative coordinates"/>
    </event>

    <enum name="button_state">
      <description summary="physical button state">
        Describes the physical state of a button which provoked the button
	event.
      </description>
      <entry name="released" value="0" summary="The button is not pressed"/>
      <entry name="pressed" value="1" summary="The button is pressed"/>
    </enum>

    <event name="button">
      <description summary="pointer button event">
	Mouse button click and release notifications.

	The location of the click is given by the last motion or
	enter event.
        The time argument is a timestamp with millisecond
        granularity, with an undefined base.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="button" type="uint"/>
      <arg name="state" type="uint"/>
    </event>

    <enum name="axis">
      <description summary="axis types">
	Describes the axis types of scroll events.
      </description>
      <entry name="vertical_scroll" value="0"/>
      <entry name="horizontal_scroll" value="1"/>
    </enum>

    <event name="axis">
      <description summary="axis event">
	Scroll and other axis notifications.

	For scroll events (vertical and horizontal scroll axes), the
	value parameter is the length of a vector along the specified
	axis in a coordinate space identical to those of motion events,
	representing a relative movement along the specified axis.

	For devices that support movements non-parallel to axes multiple
	axis events will be emitted.

	When applicable, for example for touch pads, the server can
	choose to emit scroll events where the motion vector is
	equivalent to a motion event vector.

	When applicable, clients can transform its view relative to the
	scroll distance.
      </description>

      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="axis" type="uint"/>
      <arg name="value" type="fixed"/>
    </event>
  </interface>

  <interface name="wl_keyboard" version="3">
    <description summary="keyboard input device">
      The wl_keyboard interface represents one or more keyboards
      associated with a seat.
    </description>

    <request name="release" type="destructor" since="3">
      <description summary="release the keyboard object"/>
    </request>

    <enum name="keymap_format">
      <description summary="keyboard mapping format">
	This specifies the format of the keymap provided to the
	client with the wl_keyboard.keymap event.
      </description>
      <entry name="no_keymap" value="0"
	     summary="no keymap; client must understand how to interpret the raw keycode"/>
      <entry name="xkb_v1" value="1" summary="libxkbcommon compatible"/>
    </enum>

    <event name="keymap">
      <description summary="keyboard mapping">
	This event provides a file descriptor to the client which can be
	memory-mapped to provide a keyboard mapping description.
      </description>
      <arg name="format" type="uint"/>
      <arg name="fd" type="fd"/>
      <arg name="size" type="uint"/>
    </event>

    <event name="enter">
      <description summary="enter event">
	Notification that this seat's keyboard focus is on a certain
	surface.
      </description>
      <arg name="serial" type="uint"/>
      <arg name="surface" type="object" interface="wl_surface"/>
      <arg name="keys" type="array" summary="the currently pressed keys"/>
    </event>

    <event name="leave">
      <description summary="leave event">
	Notification that this seat's keyboard focus is no longer on
	a certain surface.

	The leave notification is sent before the enter notification
	for the new focus.
      </description>
      <arg name="serial" type="uint"/>
      <arg name="surface" type="object" interface="wl_surface"/>
    </event>

    <enum name="key_state">
      <description summary="physical key state">
	Describes the physical state of a key which provoked the key event.
      </description>
      <entry name="released" value="0" summary="key is not pressed"/>
      <entry name="pressed" value="1" summary="key is pressed"/>
    </enum>

    <event name="key">
      <description summary="key event">
	A key was pressed or released.
        The time argument is a timestamp with millisecond
        granularity, with an undefined base.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="key" type="uint"/>
      <arg name="state" type="uint"/>
    </event>

    <event name="modifiers">
      <description summary="modifier and group state">
	Notifies clients that the modifier and/or group state has
	changed, and it should update its local state.
      </description>

      <arg name="serial" type="uint"/>
      <arg name="mods_depressed" type="uint"/>
      <arg name="mods_latched" type="uint"/>
      <arg name="mods_locked" type="uint"/>
      <arg name="group" type="uint"/>
    </event>
  </interface>

  <interface name="wl_touch" version="3">
    <description summary="touchscreen input device">
      The wl_touch interface represents a touchscreen
      associated with a seat.

      Touch interactions can consist of one or more contacts.
      For each contact, a series of events is generated, starting
      with a down event, followed by zero or more motion events,
      and ending with an up event. Events relating to the same
      contact point can be identified by the ID of the sequence.
    </description>

    <request name="release" type="destructor" since="3">
      <description summary="release the touch object"/>
    </request>

    <event name="down">
      <description summary="touch down event and beginning of a touch sequence">
	A new touch point has appeared on the surface. This touch point is
	assigned a unique @id. Future events from this touchpoint reference
	this ID. The ID ceases to be valid after a touch up event and may be
	re-used in the future.
      </description>
      <arg name="serial" type="uint"/>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="surface" type="object" interface="wl_surface"/>
      <arg name="id" type="int" summary="the unique ID of this touch point"/>
      <arg name="x" type="fixed" summary="x coordinate in surface-relative coordinates"/>
      <arg name="y" type="fixed" summary="y coordinate in surface-relative coordinates"/>
    </event>

    <event name="up">
      <description summary="end of a touch event sequence">
	The touch point has disappeared. No further events will be sent for
	this touchpoint and the touch point's ID is released and may be
	re-used in a future touch down event.
      </description>
      <arg name="serial" type="uint"/>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="id" type="int" summary="the unique ID of this touch point"/>
    </event>

    <event name="motion">
      <description summary="update of touch point coordinates">
	A touchpoint has changed coordinates.
      </description>
      <arg name="time" type="uint" summary="timestamp with millisecond granularity"/>
      <arg name="id" type="int" summary="the unique ID of this touch point"/>
      <arg name="x" type="fixed" summary="x coordinate in surface-relative coordinates"/>
      <arg name="y" type="fixed" summary="y coordinate in surface-relative coordinates"/>
    </event>

    <event name="frame">
      <description summary="end of touch frame event">
	Indicates the end of a contact point list.
      </description>
    </event>

    <event name="cancel">
      <description summary="touch session cancelled">
	Sent if the compositor decides the touch stream is a global
	gesture. No further events are sent to the clients from that
	particular gesture. Touch cancellation applies to all touch points
	currently active on this client's surface. The client is
	responsible for finalizing the touch points, future touch points on
	this surface may re-use the touch point ID.
      </description>
    </event>
  </interface>

  <interface name="wl_output" version="2">
    <description summary="compositor output region">
      An output describes part of the compositor geometry.  The
      compositor works in the 'compositor coordinate system' and an
      output corresponds to rectangular area in that space that is
      actually visible.  This typically corresponds to a monitor that
      displays part of the compositor space.  This object is published
      as global during start up, or when a monitor is hotplugged.
    </description>

    <enum name="subpixel">
      <description summary="subpixel geometry information">
	This enumeration describes how the physical
	pixels on an output are layed out.
      </description>
      <entry name="unknown" value="0"/>
      <entry name="none" value="1"/>
      <entry name="horizontal_rgb" value="2"/>
      <entry name="horizontal_bgr" value="3"/>
      <entry name="vertical_rgb" value="4"/>
      <entry name="vertical_bgr" value="5"/>
    </enum>

    <enum name="transform">
      <description summary="transform from framebuffer to output">
	This describes the transform that a compositor will apply to a
	surface to compensate for the rotation or mirroring of an
	output device.

	The flipped values correspond to an initial flip around a
	vertical axis followed by rotation.

	The purpose is mainly to allow clients render accordingly and
	tell the compositor, so that for fullscreen surfaces, the
	compositor will still be able to scan out directly from client
	surfaces.
      </description>

      <entry name="normal" value="0"/>
      <entry name="90" value="1"/>
      <entry name="180" value="2"/>
      <entry name="270" value="3"/>
      <entry name="flipped" value="4"/>
      <entry name="flipped_90" value="5"/>
      <entry name="flipped_180" value="6"/>
      <entry name="flipped_270" value="7"/>
    </enum>

    <event name="geometry">
      <description summary="properties of the output">
	The geometry event describes geometric properties of the output.
	The event is sent when binding to the output object and whenever
	any of the properties change.
      </description>
      <arg name="x" type="int"
	   summary="x position within the global compositor space"/>
      <arg name="y" type="int"
	   summary="y position within the global compositor space"/>
      <arg name="physical_width" type="int"
	   summary="width in millimeters of the output"/>
      <arg name="physical_height" type="int"
	   summary="height in millimeters of the output"/>
      <arg name="subpixel" type="int"
	   summary="subpixel orientation of the output"/>
      <arg name="make" type="string"
	   summary="textual description of the manufacturer"/>
      <arg name="model" type="string"
	   summary="textual description of the model"/>
      <arg name="transform" type="int"
	   summary="transform that maps framebuffer to output"/>
    </event>

    <enum name="mode">
      <description summary="mode information">
	These flags describe properties of an output mode.
	They are used in the flags bitfield of the mode event.
      </description>
      <entry name="current" value="0x1"
	     summary="indicates this is the current mode"/>
      <entry name="preferred" value="0x2"
	     summary="indicates this is the preferred mode"/>
    </enum>

    <event name="mode">
      <description summary="advertise available modes for the output">
	The mode event describes an available mode for the output.

	The event is sent when binding to the output object and there
	will always be one mode, the current mode.  The event is sent
	again if an output changes mode, for the mode that is now
	current.  In other words, the current mode is always the last
	mode that was received with the current flag set.

	The size of a mode is given in physical hardware units of
        the output device. This is not necessarily the same as
        the output size in the global compositor space. For instance,
        the output may be scaled, as described in wl_output.scale,
        or transformed , as described in wl_output.transform.
      </description>
      <arg name="flags" type="uint" summary="bitfield of mode flags"/>
      <arg name="width" type="int" summary="width of the mode in hardware units"/>
      <arg name="height" type="int" summary="height of the mode in hardware units"/>
      <arg name="refresh" type="int" summary="vertical refresh rate in mHz"/>
    </event>

    <event name="done" since="2">
      <description summary="sent all information about output">
        This event is sent after all other properties has been
        sent after binding to the output object and after any
        other property changes done after that. This allows
        changes to the output properties to be seen as
        atomic, even if they happen via multiple events.
      </description>
    </event>

    <event name="scale" since="2">
      <description summary="output scaling properties">
	This event contains scaling geometry information
        that is not in the geometry event. It may be sent after
        binding the output object or if the output scale changes
        later. If it is not sent, the client should assume a
	scale of 1.

	A scale larger than 1 means that the compositor will
	automatically scale surface buffers by this amount
	when rendering. This is used for very high resolution
	displays where applications rendering at the native
	resolution would be too small to be legible.

	It is intended that scaling aware clients track the
	current output of a surface, and if it is on a scaled
	output it should use wl_surface.set_buffer_scale with
	the scale of the output. That way the compositor can
	avoid scaling the surface, and the client can supply
	a higher detail image.
      </description>
      <arg name="factor" type="int" summary="scaling factor of output"/>
    </event>
  </interface>

  <interface name="wl_region" version="1">
    <description summary="region interface">
      A region object describes an area.

      Region objects are used to describe the opaque and input
      regions of a surface.
    </description>

    <request name="destroy" type="destructor">
      <description summary="destroy region">
	Destroy the region.  This will invalidate the object ID.
      </description>
    </request>

    <request name="add">
      <description summary="add rectangle to region">
	Add the specified rectangle to the region.
      </description>

      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
      <arg name="width" type="int"/>
      <arg name="height" type="int"/>
    </request>

    <request name="subtract">
      <description summary="subtract rectangle from region">
	Subtract the specified rectangle from the region.
      </description>

      <arg name="x" type="int"/>
      <arg name="y" type="int"/>
      <arg name="width" type="int"/>
      <arg name="height" type="int"/>
    </request>

  </interface>

  <interface name="wl_subcompositor" version="1">
    <description summary="sub-surface compositing">
      The global interface exposing sub-surface compositing capabilities.
      A wl_surface, that has sub-surfaces associated, is called the
      parent surface. Sub-surfaces can be arbitrarily nested and create
      a tree of sub-surfaces.

      The root surface in a tree of sub-surfaces is the main
      surface. The main surface cannot be a sub-surface, because
      sub-surfaces must always have a parent.

      A main surface with its sub-surfaces forms a (compound) window.
      For window management purposes, this set of wl_surface objects is
      to be considered as a single window, and it should also behave as
      such.

      The aim of sub-surfaces is to offload some of the compositing work
      within a window from clients to the compositor. A prime example is
      a video player with decorations and video in separate wl_surface
      objects. This should allow the compositor to pass YUV video buffer
      processing to dedicated overlay hardware when possible.
    </description>

    <request name="destroy" type="destructor">
      <description summary="unbind from the subcompositor interface">
	Informs the server that the client will not be using this
	protocol object anymore. This does not affect any other
	objects, wl_subsurface objects included.
      </description>
    </request>

    <enum name="error">
      <entry name="bad_surface" value="0"
             summary="the to-be sub-surface is invalid"/>
    </enum>

    <request name="get_subsurface">
      <description summary="give a surface the role sub-surface">
	Create a sub-surface interface for the given surface, and
	associate it with the given parent surface. This turns a
	plain wl_surface into a sub-surface.

	The to-be sub-surface must not already have a dedicated
	purpose, like any shell surface type, cursor image, drag icon,
	or sub-surface. Otherwise a protocol error is raised.
      </description>

      <arg name="id" type="new_id" interface="wl_subsurface"
           summary="the new subsurface object id"/>
      <arg name="surface" type="object" interface="wl_surface"
           summary="the surface to be turned into a sub-surface"/>
      <arg name="parent" type="object" interface="wl_surface"
           summary="the parent surface"/>
    </request>
  </interface>

  <interface name="wl_subsurface" version="1">
    <description summary="sub-surface interface to a wl_surface">
      An additional interface to a wl_surface object, which has been
      made a sub-surface. A sub-surface has one parent surface. A
      sub-surface's size and position are not limited to that of the parent.
      Particularly, a sub-surface is not automatically clipped to its
      parent's area.

      A sub-surface becomes mapped, when a non-NULL wl_buffer is applied
      and the parent surface is mapped. The order of which one happens
      first is irrelevant. A sub-surface is hidden if the parent becomes
      hidden, or if a NULL wl_buffer is applied. These rules apply
      recursively through the tree of surfaces.

      The behaviour of wl_surface.commit request on a sub-surface
      depends on the sub-surface's mode. The possible modes are
      synchronized and desynchronized, see methods
      wl_subsurface.set_sync and wl_subsurface.set_desync. Synchronized
      mode caches the wl_surface state to be applied when the parent's
      state gets applied, and desynchronized mode applies the pending
      wl_surface state directly. A sub-surface is initially in the
      synchronized mode.

      Sub-surfaces have also other kind of state, which is managed by
      wl_subsurface requests, as opposed to wl_surface requests. This
      state includes the sub-surface position relative to the parent
      surface (wl_subsurface.set_position), and the stacking order of
      the parent and its sub-surfaces (wl_subsurface.place_above and
      .place_below). This state is applied when the parent surface's
      wl_surface state is applied, regardless of the sub-surface's mode.
      As the exception, set_sync and set_desync are effective immediately.

      The main surface can be thought to be always in desynchronized mode,
      since it does not have a parent in the sub-surfaces sense.

      Even if a sub-surface is in desynchronized mode, it will behave as
      in synchronized mode, if its parent surface behaves as in
      synchronized mode. This rule is applied recursively throughout the
      tree of surfaces. This means, that one can set a sub-surface into
      synchronized mode, and then assume that all its child and grand-child
      sub-surfaces are synchronized, too, without explicitly setting them.

      If the wl_surface associated with the wl_subsurface is destroyed, the
      wl_subsurface object becomes inert. Note, that destroying either object
      takes effect immediately. If you need to synchronize the removal
      of a sub-surface to the parent surface update, unmap the sub-surface
      first by attaching a NULL wl_buffer, update parent, and then destroy
      the sub-surface.

      If the parent wl_surface object is destroyed, the sub-surface is
      unmapped.
    </description>

    <request name="destroy" type="destructor">
      <description summary="remove sub-surface interface">
	The sub-surface interface is removed from the wl_surface object
	that was turned into a sub-surface with
	wl_subcompositor.get_subsurface request. The wl_surface's association
	to the parent is deleted, and the wl_surface loses its role as
	a sub-surface. The wl_surface is unmapped.
      </description>
    </request>

    <enum name="error">
      <entry name="bad_surface" value="0"
             summary="wl_surface is not a sibling or the parent"/>
    </enum>

    <request name="set_position">
      <description summary="reposition the sub-surface">
	This schedules a sub-surface position change.
	The sub-surface will be moved so, that its origin (top-left
	corner pixel) will be at the location x, y of the parent surface
	coordinate system. The coordinates are not restricted to the parent
	surface area. Negative values are allowed.

	The next wl_surface.commit on the parent surface will reset
	the sub-surface's position to the scheduled coordinates.

	If more than one set_position request is invoked by the client before
	the commit of the parent surface, the position of a new request always
	replaces the scheduled position from any previous request.

	The initial position is 0, 0.
      </description>

      <arg name="x" type="int" summary="coordinate in the parent surface"/>
      <arg name="y" type="int" summary="coordinate in the parent surface"/>
    </request>

    <request name="place_above">
      <description summary="restack the sub-surface">
	This sub-surface is taken from the stack, and put back just
	above the reference surface, changing the z-order of the sub-surfaces.
	The reference surface must be one of the sibling surfaces, or the
	parent surface. Using any other surface, including this sub-surface,
	will cause a protocol error.

	The z-order is double-buffered. Requests are handled in order and
	applied immediately to a pending state, then committed to the active
	state on the next commit of the parent surface.
	See wl_surface.commit and wl_subcompositor.get_subsurface.

	A new sub-surface is initially added as the top-most in the stack
	of its siblings and parent.
      </description>

      <arg name="sibling" type="object" interface="wl_surface"
           summary="the reference surface"/>
    </request>

    <request name="place_below">
      <description summary="restack the sub-surface">
	The sub-surface is placed just below of the reference surface.
	See wl_subsurface.place_above.
      </description>

      <arg name="sibling" type="object" interface="wl_surface"
           summary="the reference surface"/>
    </request>

    <request name="set_sync">
      <description summary="set sub-surface to synchronized mode">
	Change the commit behaviour of the sub-surface to synchronized
	mode, also described as the parent dependant mode.

	In synchronized mode, wl_surface.commit on a sub-surface will
	accumulate the committed state in a cache, but the state will
	not be applied and hence will not change the compositor output.
	The cached state is applied to the sub-surface immediately after
	the parent surface's state is applied. This ensures atomic
	updates of the parent and all its synchronized sub-surfaces.
	Applying the cached state will invalidate the cache, so further
	parent surface commits do not (re-)apply old state.

	See wl_subsurface for the recursive effect of this mode.
      </description>
    </request>

    <request name="set_desync">
      <description summary="set sub-surface to desynchronized mode">
	Change the commit behaviour of the sub-surface to desynchronized
	mode, also described as independent or freely running mode.

	In desynchronized mode, wl_surface.commit on a sub-surface will
	apply the pending state directly, without caching, as happens
	normally with a wl_surface. Calling wl_surface.commit on the
	parent surface has no effect on the sub-surface's wl_surface
	state. This mode allows a sub-surface to be updated on its own.

	If cached state exists when wl_surface.commit is called in
	desynchronized mode, the pending state is added to the cached
	state, and applied as whole. This invalidates the cache.

	Note: even if a sub-surface is set to desynchronized, a parent
	sub-surface may override it to behave as synchronized. For details,
	see wl_subsurface.

	If a surface's parent surface behaves as desynchronized, then
	the cached state is applied on set_desync.
      </description>
    </request>

  </interface>

</protocol>