/usr/include/libreoffice/rtl/math.hxx is in libreoffice-dev 1:3.5.7-0ubuntu13.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*************************************************************************
*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* Copyright 2000, 2010 Oracle and/or its affiliates.
*
* OpenOffice.org - a multi-platform office productivity suite
*
* This file is part of OpenOffice.org.
*
* OpenOffice.org is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License version 3
* only, as published by the Free Software Foundation.
*
* OpenOffice.org is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License version 3 for more details
* (a copy is included in the LICENSE file that accompanied this code).
*
* You should have received a copy of the GNU Lesser General Public License
* version 3 along with OpenOffice.org. If not, see
* <http://www.openoffice.org/license.html>
* for a copy of the LGPLv3 License.
*
************************************************************************/
#if !defined INCLUDED_RTL_MATH_HXX
#define INCLUDED_RTL_MATH_HXX
#include "rtl/math.h"
#include "rtl/string.hxx"
#include "rtl/ustring.hxx"
#include "rtl/ustrbuf.hxx"
#include "sal/mathconf.h"
#include "sal/types.h"
#include <math.h>
namespace rtl {
namespace math {
/** A wrapper around rtl_math_doubleToString.
*/
inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Char cDecSeparator,
sal_Int32 const * pGroups,
sal_Char cGroupSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl::OString aResult;
rtl_math_doubleToString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator,
bEraseTrailingDecZeros);
return aResult;
}
/** A wrapper around rtl_math_doubleToString, with no grouping.
*/
inline rtl::OString doubleToString(double fValue, rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Char cDecSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl::OString aResult;
rtl_math_doubleToString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
cDecSeparator, 0, 0, bEraseTrailingDecZeros);
return aResult;
}
/** A wrapper around rtl_math_doubleToUString.
*/
inline rtl::OUString doubleToUString(double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
sal_Int32 const * pGroups,
sal_Unicode cGroupSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl::OUString aResult;
rtl_math_doubleToUString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
cDecSeparator, pGroups, cGroupSeparator,
bEraseTrailingDecZeros);
return aResult;
}
/** A wrapper around rtl_math_doubleToUString, with no grouping.
*/
inline rtl::OUString doubleToUString(double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl::OUString aResult;
rtl_math_doubleToUString(&aResult.pData, 0, 0, fValue, eFormat, nDecPlaces,
cDecSeparator, 0, 0, bEraseTrailingDecZeros);
return aResult;
}
/** A wrapper around rtl_math_doubleToUString that appends to an
rtl::OUStringBuffer.
*/
inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
sal_Int32 const * pGroups,
sal_Unicode cGroupSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl_uString ** pData;
sal_Int32 * pCapacity;
rBuffer.accessInternals( &pData, &pCapacity );
rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
eFormat, nDecPlaces, cDecSeparator, pGroups,
cGroupSeparator, bEraseTrailingDecZeros);
}
/** A wrapper around rtl_math_doubleToUString that appends to an
rtl::OUStringBuffer, with no grouping.
*/
inline void doubleToUStringBuffer( rtl::OUStringBuffer& rBuffer, double fValue,
rtl_math_StringFormat eFormat,
sal_Int32 nDecPlaces,
sal_Unicode cDecSeparator,
bool bEraseTrailingDecZeros = false)
{
rtl_uString ** pData;
sal_Int32 * pCapacity;
rBuffer.accessInternals( &pData, &pCapacity );
rtl_math_doubleToUString( pData, pCapacity, rBuffer.getLength(), fValue,
eFormat, nDecPlaces, cDecSeparator, 0, 0,
bEraseTrailingDecZeros);
}
/** A wrapper around rtl_math_stringToDouble.
*/
inline double stringToDouble(rtl::OString const & rString,
sal_Char cDecSeparator, sal_Char cGroupSeparator,
rtl_math_ConversionStatus * pStatus = 0,
sal_Int32 * pParsedEnd = 0)
{
sal_Char const * pBegin = rString.getStr();
sal_Char const * pEnd;
double fResult = rtl_math_stringToDouble(pBegin,
pBegin + rString.getLength(),
cDecSeparator, cGroupSeparator,
pStatus, &pEnd);
if (pParsedEnd != 0)
*pParsedEnd = (sal_Int32)(pEnd - pBegin);
return fResult;
}
/** A wrapper around rtl_math_uStringToDouble.
*/
inline double stringToDouble(rtl::OUString const & rString,
sal_Unicode cDecSeparator,
sal_Unicode cGroupSeparator,
rtl_math_ConversionStatus * pStatus = 0,
sal_Int32 * pParsedEnd = 0)
{
sal_Unicode const * pBegin = rString.getStr();
sal_Unicode const * pEnd;
double fResult = rtl_math_uStringToDouble(pBegin,
pBegin + rString.getLength(),
cDecSeparator, cGroupSeparator,
pStatus, &pEnd);
if (pParsedEnd != 0)
*pParsedEnd = (sal_Int32)(pEnd - pBegin);
return fResult;
}
/** A wrapper around rtl_math_round.
*/
inline double round(
double fValue, int nDecPlaces = 0,
rtl_math_RoundingMode eMode = rtl_math_RoundingMode_Corrected)
{
return rtl_math_round(fValue, nDecPlaces, eMode);
}
/** A wrapper around rtl_math_pow10Exp.
*/
inline double pow10Exp(double fValue, int nExp)
{
return rtl_math_pow10Exp(fValue, nExp);
}
/** A wrapper around rtl_math_approxValue.
*/
inline double approxValue(double fValue)
{
return rtl_math_approxValue(fValue);
}
/** A wrapper around rtl_math_expm1.
*/
inline double expm1(double fValue)
{
return rtl_math_expm1(fValue);
}
/** A wrapper around rtl_math_log1p.
*/
inline double log1p(double fValue)
{
return rtl_math_log1p(fValue);
}
/** A wrapper around rtl_math_atanh.
*/
inline double atanh(double fValue)
{
return rtl_math_atanh(fValue);
}
/** A wrapper around rtl_math_erf.
*/
inline double erf(double fValue)
{
return rtl_math_erf(fValue);
}
/** A wrapper around rtl_math_erfc.
*/
inline double erfc(double fValue)
{
return rtl_math_erfc(fValue);
}
/** A wrapper around rtl_math_asinh.
*/
inline double asinh(double fValue)
{
return rtl_math_asinh(fValue);
}
/** A wrapper around rtl_math_acosh.
*/
inline double acosh(double fValue)
{
return rtl_math_acosh(fValue);
}
/** Test equality of two values with an accuracy of the magnitude of the
given values scaled by 2^-48 (4 bits roundoff stripped).
@ATTENTION
approxEqual( value!=0.0, 0.0 ) _never_ yields true.
*/
inline bool approxEqual(double a, double b)
{
if ( a == b )
return true;
double x = a - b;
return (x < 0.0 ? -x : x)
< ((a < 0.0 ? -a : a) * (1.0 / (16777216.0 * 16777216.0)));
}
/** Add two values.
If signs differ and the absolute values are equal according to approxEqual()
the method returns 0.0 instead of calculating the sum.
If you wanted to sum up multiple values it would be convenient not to call
approxAdd() for each value but instead remember the first value not equal to
0.0, add all other values using normal + operator, and with the result and
the remembered value call approxAdd().
*/
inline double approxAdd(double a, double b)
{
if ( ((a < 0.0 && b > 0.0) || (b < 0.0 && a > 0.0))
&& approxEqual( a, -b ) )
return 0.0;
return a + b;
}
/** Substract two values (a-b).
If signs are identical and the values are equal according to approxEqual()
the method returns 0.0 instead of calculating the substraction.
*/
inline double approxSub(double a, double b)
{
if ( ((a < 0.0 && b < 0.0) || (a > 0.0 && b > 0.0)) && approxEqual( a, b ) )
return 0.0;
return a - b;
}
/** floor() method taking approxValue() into account.
Use for expected integer values being calculated by double functions.
*/
inline double approxFloor(double a)
{
return floor( approxValue( a ));
}
/** ceil() method taking approxValue() into account.
Use for expected integer values being calculated by double functions.
*/
inline double approxCeil(double a)
{
return ceil( approxValue( a ));
}
/** Tests whether a value is neither INF nor NAN.
*/
inline bool isFinite(double d)
{
return SAL_MATH_FINITE(d) != 0;
}
/** If a value represents +INF or -INF.
The sign bit may be queried with isSignBitSet().
If isFinite(d)==false and isInf(d)==false then NAN.
*/
inline bool isInf(double d)
{
// exponent==0x7ff fraction==0
return (SAL_MATH_FINITE(d) == 0) &&
(reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi == 0)
&& (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
== 0);
}
/** Test on any QNAN or SNAN.
*/
inline bool isNan(double d)
{
// exponent==0x7ff fraction!=0
return (SAL_MATH_FINITE(d) == 0) && (
(reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_hi != 0)
|| (reinterpret_cast< sal_math_Double * >(&d)->inf_parts.fraction_lo
!= 0) );
}
/** If the sign bit is set.
*/
inline bool isSignBitSet(double d)
{
return reinterpret_cast< sal_math_Double * >(&d)->inf_parts.sign != 0;
}
/** Set to +INF if bNegative==false or -INF if bNegative==true.
*/
inline void setInf(double * pd, bool bNegative)
{
union
{
double sd;
sal_math_Double md;
};
md.w32_parts.msw = bNegative ? 0xFFF00000 : 0x7FF00000;
md.w32_parts.lsw = 0;
*pd = sd;
}
/** Set a QNAN.
*/
inline void setNan(double * pd)
{
union
{
double sd;
sal_math_Double md;
};
md.w32_parts.msw = 0x7FFFFFFF;
md.w32_parts.lsw = 0xFFFFFFFF;
*pd = sd;
}
/** If a value is a valid argument for sin(), cos(), tan().
IEEE 754 specifies that absolute values up to 2^64 (=1.844e19) for the
radian must be supported by trigonometric functions. Unfortunately, at
least on x86 architectures, the FPU doesn't generate an error pattern for
values >2^64 but produces erroneous results instead and sets only the
"invalid operation" (IM) flag in the status word :-( Thus the application
has to handle it itself.
*/
inline bool isValidArcArg(double d)
{
return fabs(d)
<= (static_cast< double >(static_cast< unsigned long >(0x80000000))
* static_cast< double >(static_cast< unsigned long >(0x80000000))
* 2);
}
/** Safe sin(), returns NAN if not valid.
*/
inline double sin(double d)
{
if ( isValidArcArg( d ) )
return ::sin( d );
setNan( &d );
return d;
}
/** Safe cos(), returns NAN if not valid.
*/
inline double cos(double d)
{
if ( isValidArcArg( d ) )
return ::cos( d );
setNan( &d );
return d;
}
/** Safe tan(), returns NAN if not valid.
*/
inline double tan(double d)
{
if ( isValidArcArg( d ) )
return ::tan( d );
setNan( &d );
return d;
}
}
}
#endif // INCLUDED_RTL_MATH_HXX
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|