This file is indexed.

/usr/lib/swi-prolog/library/yall.pl is in swi-prolog-nox 7.6.4+dfsg-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/*  Part of SWI-Prolog

    Author:        Paulo Moura
    E-mail:        J.Wielemaker@vu.nl
    WWW:           http://www.swi-prolog.org
    Copyright (c)  2015, Paulo Moura, Kyndi Inc., VU University Amsterdam
    All rights reserved.

    Redistribution and use in source and binary forms, with or without
    modification, are permitted provided that the following conditions
    are met:

    1. Redistributions of source code must retain the above copyright
       notice, this list of conditions and the following disclaimer.

    2. Redistributions in binary form must reproduce the above copyright
       notice, this list of conditions and the following disclaimer in
       the documentation and/or other materials provided with the
       distribution.

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
    BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
    LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
    CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
    ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    POSSIBILITY OF SUCH DAMAGE.
*/

:- module(yall,
          [ (>>)/2, (>>)/3, (>>)/4, (>>)/5, (>>)/6, (>>)/7, (>>)/8, (>>)/9,
            (/)/2, (/)/3, (/)/4, (/)/5, (/)/6, (/)/7, (/)/8, (/)/9,

            lambda_calls/2,                     % +LambdaExt, -Goal
            lambda_calls/3,                     % +Lambda, +Args, -Goal
            is_lambda/1                         % @Term
          ]).
:- use_module(library(error)).
:- use_module(library(lists)).

:- meta_predicate
    '>>'(?, 0),
    '>>'(?, :, ?),
    '>>'(?, :, ?, ?),
    '>>'(?, :, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?, ?),
    '>>'(?, :, ?, ?, ?, ?, ?, ?, ?).

:- meta_predicate
    '/'(?, 0),
    '/'(?, 1, ?),
    '/'(?, 2, ?, ?),
    '/'(?, 3, ?, ?, ?),
    '/'(?, 4, ?, ?, ?, ?),
    '/'(?, 5, ?, ?, ?, ?, ?),
    '/'(?, 6, ?, ?, ?, ?, ?, ?),
    '/'(?, 7, ?, ?, ?, ?, ?, ?, ?).

/** <module> Lambda expressions

Prolog realizes _high-order_ programming  with   meta-calling.  The core
predicate of this is call/1, which simply   calls its argument. This can
be used to define higher-order predicates  such as ignore/1 or forall/2.
The call/N construct calls a _closure_  with N-1 _additional arguments_.
This is used to define  higher-order   predicates  such as the maplist/N
family or foldl/N.

The problem with higher order predicates  based   on  call/N is that the
additional arguments are always  added  to   the  end  of  the closure's
argument list. This often requires defining trivial helper predicates to
get the argument order right. For example, if   you want to add a common
postfix    to    a    list    of    atoms     you    need    to    apply
atom_concat(In,Postfix,Out),   but    maplist(x(PostFix),ListIn,ListOut)
calls x(PostFix,In,Out). This is where  this   library  comes  in, which
allows us to write

  ==
  ?- maplist([In,Out]>>atom_concat(In,'_p',Out), [a,b], ListOut).
  ListOut = [a_p, b_p].
  ==

The `{...}` specifies which variables are   _shared_  between the lambda
and the context. This allows us  to   write  the code below. Without the
`{PostFix}` a free variable would be passed to atom_concat/3.

  ==
  add_postfix(PostFix, ListIn, ListOut) :-
      maplist({PostFix}/[In,Out]>>atom_concat(In,PostFix,Out),
              ListIn, ListOut).
  ==

This introduces the second application area   of lambda expressions: the
ability to stop binding variables in   the context. This features shines
when combined with bagof/3 or setof/3 where you normally have to specify
the the variables in whose binding you   are  _not_ interested using the
`Var^Goal` construct (marking `Var` as  existential quantified). Lambdas
allow doing the  reverse:  specify  the   variables  in  which  you  are
interested.

Lambda expressions use the syntax below

  ==
  {...}/[...]>>Goal.
  ==

The `{...}` optional  part is used for lambda-free  variables. The order
of variables doesn't matter hence the `{...}` set notation.

The  `[...]`  optional  part  lists lambda  parameters.  Here  order  of
variables matters hence the list notation.

As `/` and `>>` are standard infix operators, no new operators are added
by this  library.  An  advantage of  this syntax is  that we  can simply
unify a lambda expression with Free/Parameters>>Lambda to access each of
its  components. Spaces  in  the  lambda expression  are  not a  problem
although the goal  may need to be written between  ()'s.  Goals that are
qualified by a module prefix also need to be wrapped inside parentheses.

Combined  with  library(apply_macros),  library(yall)    allows  writing
one-liners for many list operations that   have  the same performance as
hand written code.

The module name, _yall_, stands for Yet Another Lambda Library.

This  module  implements  Logtalk's   lambda  expressions  syntax.   The
development of this module was sponsored by Kyndi, Inc.

@tbd    Extend optimization support
@author Paulo Moura and Jan Wielemaker
*/

%!  >>(+Parameters, +Lambda).
%!  >>(+Parameters, +Lambda, ?A1).
%!  >>(+Parameters, +Lambda, ?A1, ?A2).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6).
%!  >>(+Parameters, +Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7).
%
%   Calls a copy of Lambda. This  is similar to call(Lambda,A1,...),
%   but arguments are reordered according to the list Parameters:
%
%     - The first length(Parameters) arguments from A1, ... are
%       unified with (a copy of) Parameters, which _may_ share
%       them with variables in Lambda.
%     - Possible excess arguments are passed by position.
%
%   @arg    Parameters is either a plain list of parameters or a term
%           `{Free}/List`. `Free` represents variables that are
%           shared between the context and the Lambda term.  This
%           is needed for compiling Lambda expressions.

'>>'(Parms, Lambda) :-
    unify_lambda_parameters(Parms, [],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1) :-
    unify_lambda_parameters(Parms, [A1],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2) :-
    unify_lambda_parameters(Parms, [A1,A2],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3) :-
    unify_lambda_parameters(Parms, [A1,A2,A3],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5, A6) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5,A6],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

'>>'(Parms, Lambda, A1, A2, A3, A4, A5, A6, A7) :-
    unify_lambda_parameters(Parms, [A1,A2,A3,A4,A5,A6,A7],
                            ExtraArgs, Lambda, LambdaCopy),
    Goal =.. [call, LambdaCopy| ExtraArgs],
    call(Goal).

%!  /(+Free, :Lambda).
%!  /(+Free, :Lambda, ?A1).
%!  /(+Free, :Lambda, ?A1, ?A2).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6).
%!  /(+Free, :Lambda, ?A1, ?A2, ?A3, ?A4, ?A5, ?A6, ?A7).
%
%   Shorthand for `Free/[]>>Lambda`.  This is the same as applying
%   call/N on Lambda, except that only variables appearing in Free
%   are bound by the call.  For example
%
%     ==
%     p(1,a).
%     p(2,b).
%
%     ?- {X}/p(X,Y).
%     X = 1;
%     X = 2.
%     ==
%
%   This can in particularly be combined with bagof/3 and setof/3 to
%   _select_ particular variables to be  concerned rather than using
%   existential quantification (^/2)  to   _exclude_  variables. For
%   example, the two calls below are equivalent.
%
%     ==
%     setof(X, Y^p(X,Y), Xs)
%     setof(X, {X}/p(X,_), Xs)
%     ==


'/'(Free, Lambda) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy).

'/'(Free, Lambda, A1) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1).

'/'(Free, Lambda, A1, A2) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2).

'/'(Free, Lambda, A1, A2, A3) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3).

'/'(Free, Lambda, A1, A2, A3, A4) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4).

'/'(Free, Lambda, A1, A2, A3, A4, A5) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5).

'/'(Free, Lambda, A1, A2, A3, A4, A5, A6) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5, A6).

'/'(Free, Lambda, A1, A2, A3, A4, A5, A6, A7) :-
    lambda_free(Free),
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    call(LambdaCopy, A1, A2, A3, A4, A5, A6, A7).


%!  unify_lambda_parameters(+ParmsAndFree, +Args, -CallArgs,
%!                          +Lambda, -LambdaCopy) is det.
%
%   @arg ParmsAndFree is the first argumen of `>>`, either a list
%        of parameters or a term `{Free}/Params`.
%   @arg Args is a list of input parameters, args 3.. from `>>`
%   @arg CallArgs are the calling arguments for the Lambda
%        expression.  I.e., we call call(LambdaCopy, CallArgs).

unify_lambda_parameters(Parms, _Args, _ExtraArgs, _Lambda, _LambdaCopy) :-
    var(Parms),
    !,
    instantiation_error(Parms).
unify_lambda_parameters(Free/Parms, Args, ExtraArgs, Lambda, LambdaCopy) :-
    !,
    lambda_free(Free),
    must_be(list, Parms),
    copy_term_nat(Free/Parms>>Lambda, Free/ParmsCopy>>LambdaCopy),
    unify_lambda_parameters_(ParmsCopy, Args, ExtraArgs,
                             Free/Parms>>Lambda).
unify_lambda_parameters(Parms, Args, ExtraArgs, Lambda, LambdaCopy) :-
    must_be(list, Parms),
    copy_term_nat(Parms>>Lambda, ParmsCopy>>LambdaCopy),
    unify_lambda_parameters_(ParmsCopy, Args, ExtraArgs,
                             Parms>>Lambda).

unify_lambda_parameters_([], ExtraArgs, ExtraArgs, _) :- !.
unify_lambda_parameters_([Parm|Parms], [Arg|Args], ExtraArgs, Culprit) :-
    !,
    Parm = Arg,
    unify_lambda_parameters_(Parms, Args, ExtraArgs, Culprit).
unify_lambda_parameters_(_,_,_,Culprit) :-
    domain_error(lambda_parameters, Culprit).

lambda_free(Free) :-
    var(Free),
    !,
    instantiation_error(Free).
lambda_free({_}) :- !.
lambda_free({}) :- !.
lambda_free(Free) :-
    type_error(lambda_free, Free).

%!  expand_lambda(+Goal, -Head) is semidet.
%
%   True if Goal is a   sufficiently  instantiated Lambda expression
%   that is compiled to the predicate   Head.  The predicate Head is
%   added    to    the    current    compilation    context    using
%   compile_aux_clauses/1.

expand_lambda(Goal, Head) :-
    Goal =.. ['>>', Parms, Lambda| ExtraArgs],
    is_callable(Lambda),
    nonvar(Parms),
    lambda_functor(Parms>>Lambda, Functor),
    (   Parms = Free/ExtraArgs
    ->  is_lambda_free(Free),
        free_to_list(Free, FreeList)
    ;   Parms = ExtraArgs,
        FreeList = []
    ),
    append(FreeList, ExtraArgs, Args),
    Head =.. [Functor|Args],
    compile_aux_clause_if_new(Head, Lambda).
expand_lambda(Goal, Head) :-
    Goal =.. ['/', Free, Closure|ExtraArgs],
    is_lambda_free(Free),
    is_callable(Closure),
    free_to_list(Free, FreeList),
    lambda_functor(Free/Closure, Functor),
    append(FreeList, ExtraArgs, Args),
    Head =.. [Functor|Args],
    Closure =.. [ClosureFunctor|ClosureArgs],
    append(ClosureArgs, ExtraArgs, LambdaArgs),
    Lambda =.. [ClosureFunctor|LambdaArgs],
    compile_aux_clause_if_new(Head, Lambda).

lambda_functor(Term, Functor) :-
    copy_term_nat(Term, Copy),
    variant_sha1(Copy, Functor0),
    atom_concat('__aux_yall_', Functor0, Functor).

free_to_list({}, []).
free_to_list({VarsConj}, Vars) :-
    conjunction_to_list(VarsConj, Vars).

conjunction_to_list(Term, [Term]) :-
    var(Term),
    !.
conjunction_to_list((Term, Conjunction), [Term|Terms]) :-
    !,
    conjunction_to_list(Conjunction, Terms).
conjunction_to_list(Term, [Term]).

compile_aux_clause_if_new(Head, Lambda) :-
    prolog_load_context(module, Context),
    (   predicate_property(Context:Head, defined)
    ->  true
    ;   compile_aux_clauses([(Head :- Lambda)])
    ).

lambda_like(Goal) :-
    compound(Goal),
    compound_name_arity(Goal, Name, Arity),
    lambda_functor(Name),
    Arity >= 2.

lambda_functor(>>).
lambda_functor(/).

:- dynamic system:goal_expansion/2.
:- multifile system:goal_expansion/2.

system:goal_expansion(Goal, Head) :-
    lambda_like(Goal),
    prolog_load_context(source, _),
    \+ current_prolog_flag(xref, true),
    expand_lambda(Goal, Head).

%!  is_lambda(@Term) is semidet.
%
%   True if Term is a valid Lambda expression.

is_lambda(Term) :-
    compound(Term),
    compound_name_arguments(Term, Name, Args),
    is_lambda(Name, Args).

is_lambda(>>, [Params,Lambda|_]) :-
    is_lamdba_params(Params),
    is_callable(Lambda).
is_lambda(/, [Free,Lambda|_]) :-
    is_lambda_free(Free),
    is_callable(Lambda).

is_lamdba_params(Var) :-
    var(Var), !, fail.
is_lamdba_params(Free/Params) :-
    !,
    is_lambda_free(Free),
    is_list(Params).

is_lambda_free(Free) :-
    nonvar(Free), !, (Free = {_} -> true ; Free == {}).

is_callable(Term) :-
    strip_module(Term, _, Goal),
    callable(Goal).


%!  lambda_calls(+LambdaExpression, -Goal) is det.
%!  lambda_calls(+LambdaExpression, +ExtraArgs, -Goal) is det.
%
%   Goal  is  the   goal   called   if    call/N   is   applied   to
%   LambdaExpression, where ExtraArgs are   the additional arguments
%   to call/N. ExtraArgs can be an  integer   or  a list of concrete
%   arguments. This predicate is used for cross-referencing and code
%   highlighting.

lambda_calls(LambdaExtended, Goal) :-
    compound(LambdaExtended),
    compound_name_arguments(LambdaExtended, Name, [A1,A2|Extra]),
    lambda_functor(Name),
    compound_name_arguments(Lambda, Name, [A1,A2]),
    lambda_calls(Lambda, Extra, Goal).

lambda_calls(Lambda, Extra, Goal) :-
    integer(Extra),
    !,
    length(ExtraVars, Extra),
    lambda_calls_(Lambda, ExtraVars, Goal).
lambda_calls(Lambda, Extra, Goal) :-
    must_be(list, Extra),
    lambda_calls_(Lambda, Extra, Goal).

lambda_calls_(Params>>Lambda, Args, Goal) :-
    unify_lambda_parameters(Params, Args, ExtraArgs, Lambda, LambdaCopy),
    extend(LambdaCopy, ExtraArgs, Goal).
lambda_calls_(Free/Lambda, ExtraArgs, Goal) :-
    copy_term_nat(Free+Lambda, Free+LambdaCopy),
    extend(LambdaCopy, ExtraArgs, Goal).

extend(Var, _, _) :-
    var(Var),
    !,
    instantiation_error(Var).
extend(Cyclic, _, _) :-
    cyclic_term(Cyclic),
    !,
    type_error(acyclic_term, Cyclic).
extend(M:Goal0, Extra, M:Goal) :-
    !,
    extend(Goal0, Extra, Goal).
extend(Goal0, Extra, Goal) :-
    atom(Goal0),
    !,
    Goal =.. [Goal0|Extra].
extend(Goal0, Extra, Goal) :-
    compound(Goal0),
    !,
    compound_name_arguments(Goal0, Name, Args0),
    append(Args0, Extra, Args),
    compound_name_arguments(Goal, Name, Args).


                 /*******************************
                 *     SYNTAX HIGHLIGHTING      *
                 *******************************/

:- multifile prolog_colour:goal_colours/2.

yall_colours(Lambda, built_in-[classify,body(Goal)|ArgSpecs]) :-
    catch(lambda_calls(Lambda, Goal), _, fail),
    Lambda =.. [>>,_,_|Args],
    classify_extra(Args, ArgSpecs).

classify_extra([], []).
classify_extra([_|T0], [classify|T]) :-
    classify_extra(T0, T).

prolog_colour:goal_colours(Goal, Spec) :-
    lambda_like(Goal),
    yall_colours(Goal, Spec).


                 /*******************************
                 *          XREF SUPPORT        *
                 *******************************/

:- multifile prolog:called_by/4.

prolog:called_by(Lambda, yall, _, [Goal]) :-
    lambda_like(Lambda),
    catch(lambda_calls(Lambda, Goal), _, fail).


                 /*******************************
                 *        SANDBOX SUPPORT       *
                 *******************************/

:- multifile
    sandbox:safe_meta_predicate/1,
    sandbox:safe_meta/2.

sandbox:safe_meta_predicate(yall:(/)/2).
sandbox:safe_meta_predicate(yall:(/)/3).
sandbox:safe_meta_predicate(yall:(/)/4).
sandbox:safe_meta_predicate(yall:(/)/5).
sandbox:safe_meta_predicate(yall:(/)/6).
sandbox:safe_meta_predicate(yall:(/)/7).

sandbox:safe_meta(yall:Lambda, [Goal]) :-
    compound(Lambda),
    compound_name_arity(Lambda, >>, Arity),
    Arity >= 2,
    lambda_calls(Lambda, Goal).