/usr/include/SuperCollider/common/clz.h is in supercollider-dev 1:3.8.0~repack-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 | /*
SuperCollider real time audio synthesis system
Copyright (c) 2002 James McCartney. All rights reserved.
http://www.audiosynth.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
count leading zeroes function and those that can be derived from it
*/
#ifndef _CLZ_
#define _CLZ_
#include "SC_Types.h"
#ifdef __MWERKS__
#define __PPC__ 1
#define __X86__ 0
// powerpc native count leading zeroes instruction:
#define CLZ(x) ((int)__cntlzw((unsigned int)x))
#elif defined(__GNUC__)
/* use gcc's builtins */
static __inline__ int32 CLZ(int32 arg)
{
if (arg)
return __builtin_clz(arg);
else
return 32;
}
#elif defined(_MSC_VER)
#include <intrin.h>
#pragma intrinsic(_BitScanReverse)
__forceinline static int32 CLZ( int32 arg )
{
unsigned long idx;
if (_BitScanReverse(&idx, (unsigned long)arg))
{
return (int32)(31-idx);
}
return 32;
}
#elif defined(__ppc__) || defined(__powerpc__) || defined(__PPC__)
static __inline__ int32 CLZ(int32 arg) {
__asm__ volatile("cntlzw %0, %1" : "=r" (arg) : "r" (arg));
return arg;
}
#elif defined(__i386__) || defined(__x86_64__)
static __inline__ int32 CLZ(int32 arg) {
if (arg) {
__asm__ volatile("bsrl %0, %0\nxorl $31, %0\n"
: "=r" (arg) : "0" (arg));
} else {
arg = 32;
}
return arg;
}
#elif defined(SC_IPHONE)
static __inline__ int32 CLZ(int32 arg)
{
return __builtin_clz(arg);
}
#else
# error "clz.h: Unsupported architecture"
#endif
// count trailing zeroes
inline int32 CTZ(int32 x)
{
return 32 - CLZ(~x & (x-1));
}
// count leading ones
inline int32 CLO(int32 x)
{
return CLZ(~x);
}
// count trailing ones
inline int32 CTO(int32 x)
{
return 32 - CLZ(x & (~x-1));
}
// number of bits required to represent x.
inline int32 NUMBITS(int32 x)
{
return 32 - CLZ(x);
}
// log2 of the next power of two greater than or equal to x.
inline int32 LOG2CEIL(int32 x)
{
return 32 - CLZ(x - 1);
}
// is x a power of two
inline bool ISPOWEROFTWO(int32 x)
{
return (x & (x-1)) == 0;
}
// next power of two greater than or equal to x
inline int32 NEXTPOWEROFTWO(int32 x)
{
return (int32)1L << LOG2CEIL(x);
}
// previous power of two less than or equal to x
inline int32 PREVIOUSPOWEROFTWO(int32 x)
{
if (ISPOWEROFTWO(x))
return x;
return (int32)1L << (LOG2CEIL(x) - 1);
}
// input a series of counting integers, outputs a series of gray codes .
inline int32 GRAYCODE(int32 x)
{
return x ^ (x>>1);
}
// find least significant bit
inline int32 LSBit(int32 x)
{
return x & -x;
}
// find least significant bit position
inline int32 LSBitPos(int32 x)
{
return CTZ(x & -x);
}
// find most significant bit position
inline int32 MSBitPos(int32 x)
{
return 31 - CLZ(x);
}
// find most significant bit
inline int32 MSBit(int32 x)
{
return (int32)1L << MSBitPos(x);
}
// count number of one bits
inline uint32 ONES(uint32 x)
{
uint32 t;
x = x - ((x >> 1) & 0x55555555);
t = ((x >> 2) & 0x33333333);
x = (x & 0x33333333) + t;
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
// count number of zero bits
inline uint32 ZEROES(uint32 x)
{
return ONES(~x);
}
// reverse bits in a word
inline uint32 BitReverse(uint32 x)
{
x = ((x & 0xAAAAAAAA) >> 1) | ((x & 0x55555555) << 1);
x = ((x & 0xCCCCCCCC) >> 2) | ((x & 0x33333333) << 2);
x = ((x & 0xF0F0F0F0) >> 4) | ((x & 0x0F0F0F0F) << 4);
x = ((x & 0xFF00FF00) >> 8) | ((x & 0x00FF00FF) << 8);
return (x >> 16) | (x << 16);
}
// barrel shifts
inline uint32 RotateRight (uint32 x, uint32 s)
{
s = s & 31;
return (x << (32-s)) | (x >> s);
}
inline uint32 RotateLeft (uint32 x, uint32 s)
{
s = s & 31;
return (x >> (32-s)) | (x << s);
}
#endif
|