/usr/share/srst2/srst2.py is in srst2 0.2.0-5.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 | #!/usr/bin/env python
# SRST2 - Short Read Sequence Typer (v2)
# Python Version 2.7.5
#
# Authors - Michael Inouye (minouye@unimelb.edu.au), Harriet Dashnow (h.dashnow@gmail.com),
# Kathryn Holt (kholt@unimelb.edu.au), Bernie Pope (bjpope@unimelb.edu.au)
#
# see LICENSE.txt for the license
#
# Dependencies:
# bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/index.shtml version 2.1.0 or greater
# SAMtools http://samtools.sourceforge.net Version: 0.1.18 or greater (note optimal results are obtained with 0.1.18 rather than later versions)
# SciPy http://www.scipy.org/install.html
#
# Git repository: https://github.com/katholt/srst2/
# README: https://github.com/katholt/srst2/blob/master/README.md
# Questions or feature requests: https://github.com/katholt/srst2/issues
# Paper: http://genomemedicine.com/content/6/11/90
from argparse import (ArgumentParser, FileType)
import logging
from subprocess import call, check_output, CalledProcessError, STDOUT
import os, sys, re, collections, operator
import subprocess
from scipy.stats import binom, linregress
from math import log
from itertools import groupby
from operator import itemgetter
from collections import OrderedDict
try:
from version import srst2_version
except:
srst2_version = "version unknown"
edge_a = edge_z = 2
def parse_args():
"Parse the input arguments, use '-h' for help."
parser = ArgumentParser(description='SRST2 - Short Read Sequence Typer (v2)')
# version number of srst2, print and then exit
parser.add_argument('--version', action='version', version='%(prog)s ' + srst2_version)
# Read inputs
parser.add_argument(
'--input_se', nargs='+',type=str, required=False,
help='Single end read file(s) for analysing (may be gzipped)')
parser.add_argument(
'--input_pe', nargs='+', type=str, required=False,
help='Paired end read files for analysing (may be gzipped)')
parser.add_argument('--merge_paired', action="store_true", required=False, help='Switch on if all the input read sets belong to a single sample, and you want to merge their data to get a single result')
parser.add_argument(
'--forward', type=str, required=False, default="_1",
help='Designator for forward reads (only used if NOT in MiSeq format sample_S1_L001_R1_001.fastq.gz; otherwise default is _1, i.e. expect forward reads as sample_1.fastq.gz)')
parser.add_argument(
'--reverse', type=str, required=False, default="_2",
help='Designator for reverse reads (only used if NOT in MiSeq format sample_S1_L001_R2_001.fastq.gz; otherwise default is _2, i.e. expect forward reads as sample_2.fastq.gz')
parser.add_argument('--read_type', type=str, choices=['q', 'qseq', 'f'], default='q',
help='Read file type (for bowtie2; default is q=fastq; other options: qseq=solexa, f=fasta).')
# MLST parameters
parser.add_argument('--mlst_db', type=str, required=False, nargs=1, help='Fasta file of MLST alleles (optional)')
parser.add_argument('--mlst_delimiter', type=str, required=False,
help='Character(s) separating gene name from allele number in MLST database (default "-", as in arcc-1)', default="-")
parser.add_argument('--mlst_definitions', type=str, required=False,
help='ST definitions for MLST scheme (required if mlst_db supplied and you want to calculate STs)')
parser.add_argument('--mlst_max_mismatch', type=str, required=False, default = "10",
help='Maximum number of mismatches per read for MLST allele calling (default 10)')
# Gene database parameters
parser.add_argument('--gene_db', type=str, required=False, nargs='+', help='Fasta file/s for gene databases (optional)')
parser.add_argument('--no_gene_details', action="store_false", required=False, help='Switch OFF verbose reporting of gene typing')
parser.add_argument('--gene_max_mismatch', type=str, required=False, default = "10",
help='Maximum number of mismatches per read for gene detection and allele calling (default 10)')
# Cutoffs for scoring/heuristics
parser.add_argument('--min_coverage', type=float, required=False, help='Minimum %%coverage cutoff for gene reporting (default 90)',default=90)
parser.add_argument('--max_divergence', type=float, required=False, help='Maximum %%divergence cutoff for gene reporting (default 10)',default=10)
parser.add_argument('--min_depth', type=float, required=False, help='Minimum mean depth to flag as dubious allele call (default 5)',default=5)
parser.add_argument('--min_edge_depth', type=float, required=False, help='Minimum edge depth to flag as dubious allele call (default 2)',default=2)
parser.add_argument('--prob_err', type=float, help='Probability of sequencing error (default 0.01)',default=0.01)
parser.add_argument('--truncation_score_tolerance', type=float, help='%% increase in score allowed to choose non-truncated allele',default=0.15)
# Mapping parameters for bowtie2
parser.add_argument('--stop_after', type=str, required=False, help='Stop mapping after this number of reads have been mapped (otherwise map all)')
parser.add_argument('--other', type=str, help='Other arguments to pass to bowtie2 (must be escaped, e.g. "\--no-mixed".', required=False)
# Filtering parameters for initial SAM file
parser.add_argument('--max_unaligned_overlap', type=int, default=10, help='Read discarded from alignment if either of its ends has unaligned '+\
'overlap with the reference that is longer than this value (default 10)')
# Samtools parameters
parser.add_argument('--mapq', type=int, default=1, help='Samtools -q parameter (default 1)')
parser.add_argument('--baseq', type=int, default=20, help='Samtools -Q parameter (default 20)')
parser.add_argument('--samtools_args', type=str, help='Other arguments to pass to samtools mpileup (must be escaped, e.g. "\-A").', required=False)
# Reporting options
parser.add_argument('--output', type=str, required=True, help='Prefix for srst2 output files')
parser.add_argument('--log', action="store_true", required=False, help='Switch ON logging to file (otherwise log to stdout)')
parser.add_argument('--save_scores', action="store_true", required=False, help='Switch ON verbose reporting of all scores')
parser.add_argument('--report_new_consensus', action="store_true", required=False, help='If a matching alleles is not found, report the consensus allele. Note, only SNP differences are considered, not indels.')
parser.add_argument('--report_all_consensus', action="store_true", required=False, help='Report the consensus allele for the most likely allele. Note, only SNP differences are considered, not indels.')
# Run options
parser.add_argument('--use_existing_bowtie2_sam', action="store_true", required=False,
help='Use existing SAM file generated by Bowtie2 if available, otherwise they will be generated') # to facilitate testing of filtering Bowtie2 output
parser.add_argument('--use_existing_pileup', action="store_true", required=False,
help='Use existing pileups if available, otherwise they will be generated') # to facilitate testing of rescoring from pileups
parser.add_argument('--use_existing_scores', action="store_true", required=False,
help='Use existing scores files if available, otherwise they will be generated') # to facilitate testing of reporting from scores
parser.add_argument('--keep_interim_alignment', action="store_true", required=False, default=False,
help='Keep interim files (sam & unsorted bam), otherwise they will be deleted after sorted bam is created') # to facilitate testing of sam processing
parser.add_argument('--threads', type=int, required=False, default=1,
help='Use multiple threads in Bowtie and Samtools')
# parser.add_argument('--keep_final_alignment', action="store_true", required=False, default=False,
# help='Keep interim files (sam & unsorted bam), otherwise they will be deleted after sorted bam is created') # to facilitate testing of sam processing
# Compile previous output files
parser.add_argument('--prev_output', nargs='+', type=str, required=False,
help='SRST2 results files to compile (any new results from this run will also be incorporated)')
return parser.parse_args()
# Exception to raise if the command we try to run fails for some reason
class CommandError(Exception):
pass
def run_command(command, **kwargs):
'Execute a shell command and check the exit status and any O/S exceptions'
command_str = ' '.join(command)
logging.info('Running: {}'.format(command_str))
try:
exit_status = call(command, **kwargs)
except OSError as e:
message = "Command '{}' failed due to O/S error: {}".format(command_str, str(e))
raise CommandError({"message": message})
if exit_status != 0:
message = "Command '{}' failed with non-zero exit status: {}".format(command_str, exit_status)
raise CommandError({"message": message})
def bowtie_index(fasta_files):
'Build a bowtie2 index from the given input fasta(s)'
check_bowtie_version()
for fasta in fasta_files:
built_index = fasta + '.1.bt2'
if os.path.exists(built_index):
logging.info('Index for {} is already built...'.format(fasta))
else:
logging.info('Building bowtie2 index for {}...'.format(fasta))
run_command([get_bowtie_execs()[1], fasta, fasta])
def get_clips_cigar(cigar):
## remove padding first if present;
## maybe padding is never present at the edges, but it is easier to just remove
cigar = re.sub(r'\d+P','',cigar.strip())
x = re.search(r'^(?P<length>\d+)(?P<type>[SH])',cigar)
if x:
left_clip = x.groupdict()
left_clip["length"] = int(left_clip["length"])
else:
left_clip = dict(length=0,type=None)
x = re.search(r'(?P<type>[SH])(?P<length>\d+)$',cigar)
if x:
right_clip = x.groupdict()
right_clip["length"] = int(right_clip["length"])
else:
right_clip = dict(length=0,type=None)
return (left_clip,right_clip)
def get_end_shift_cigar(cigar):
"""Return change in coordinate on the reference of the read end due to indels in CIGAR string"""
shift = 0
for edit_op in re.findall(r'(\d+)([ID])',cigar):
shift += int(edit_op[0])*(-1 if edit_op[1] == 'I' else 1)
return shift
def get_unaligned_read_end_lengths_sam(fields,ref_len):
"""From SAM file line, compute clipped read length within reference"""
left_res = 0
right_res = 0
if len(fields) >= 10:
## get (clipped) start position
ali_clipped_start = int(fields[3])
cigar = fields[5]
## get number and types of clipped bases on the left and right
left_clip, right_clip = get_clips_cigar(cigar)
left_res = min(ali_clipped_start,left_clip["length"])
seq_start = ali_clipped_start
if left_clip["type"] and left_clip["type"] == "S":
seq_start -= left_clip["length"]
## get (hard-clipped) end position as start + len(seq)
seq_hard_clipped_end = seq_start + len(fields[9]) + get_end_shift_cigar(cigar)
## seq end = hard end + right hard clip
seq_end = seq_hard_clipped_end
if right_clip["type"] and right_clip["type"] == "H":
seq_end += right_clip["length"]
## aligned end = hard end - right soft clip
ali_clipped_end = seq_hard_clipped_end
if right_clip["type"] and right_clip["type"] == "S":
ali_clipped_end -= right_clip["length"]
## right result = min(ref_len,right read end) - right aligned end
right_res = min(ref_len,seq_end) - ali_clipped_end
return (left_res,right_res)
def get_ref_length_sam(line,ref_lens):
"""Get reference length from @ LN tag and insert into dict"""
if line.startswith('@SQ\t'):
ref_search = re.search(r'\tSN:(\S+)\b',line)
if ref_search:
ref_name = ref_search.group(1)
assert ref_name, "Empty reference name in {}".format(line)
len_search = re.search(r'\tLN:(\d+)\b',line)
assert len_search,"Could not find length tag in {}".format(line)
ref_len = int(len_search.group(1))
if ref_name in ref_lens:
logging.warning("Reference name is found second time in line {}".format(line))
ref_lens[ref_name] = ref_len
def modify_bowtie_sam(raw_bowtie_sam,max_mismatch,max_unaligned_overlap):
# fix sam flags for comprehensive pileup and filter out spurious alignments
ref_lens = {}
with open(raw_bowtie_sam) as sam, open(raw_bowtie_sam + '.mod', 'w') as sam_mod:
for line in sam:
if not line.startswith('@'):
fields = line.split('\t')
left_unali,right_unali = get_unaligned_read_end_lengths_sam(fields,ref_lens[fields[2].strip()])
if left_unali > max_unaligned_overlap or right_unali > max_unaligned_overlap:
#logging.debug("Excluding read from SAM file due to too long unaligned end overlapping the reference: {}".format(line))
continue
flag = int(fields[1])
flag = (flag - 256) if (flag & 256) else flag
m = re.search("NM:i:(\d+)\s",line)
if m != None:
num_mismatch = m.group(1)
if int(num_mismatch) <= int(max_mismatch):
sam_mod.write('\t'.join([fields[0], str(flag)] + fields[2:]))
else:
logging.info('Excluding read from SAM file due to missing NM (num mismatches) field: ' + fields[0])
num_mismatch = 0
else:
get_ref_length_sam(line,ref_lens)
sam_mod.write(line)
return(raw_bowtie_sam,raw_bowtie_sam + '.mod')
def parse_fai(fai_file,db_type,delimiter):
'Get sequence lengths for reference alleles - important for scoring'
'Get gene names also, required if no MLST definitions provided'
size = {}
gene_clusters = [] # for gene DBs, this is cluster ID
allele_symbols = []
gene_cluster_symbols = {} # key = cluster ID, value = gene symbol (for gene DBs)
unique_allele_symbols = True
unique_gene_symbols = True
delimiter_check = [] # list of names that may violate the MLST delimiter supplied
with open(fai_file) as fai:
for line in fai:
fields = line.split('\t')
name = fields[0] # full allele name
size[name] = int(fields[1]) # store length
if db_type!="mlst":
allele_info = name.split()[0].split("__")
if len(allele_info) > 2:
gene_cluster = allele_info[0] # ID number for the cluster
cluster_symbol = allele_info[1] # gene name for the cluster
name = allele_info[2] # specific allele name
if gene_cluster in gene_cluster_symbols:
if gene_cluster_symbols[gene_cluster] != cluster_symbol:
unique_gene_symbols = False # already seen this cluster symbol
logging.info( "Non-unique:" + gene_cluster + ", " + cluster_symbol)
else:
gene_cluster_symbols[gene_cluster] = cluster_symbol
else:
# treat as unclustered database, use whole header
gene_cluster = cluster_symbol = name.split()[0] # no spaces allowed
gene_cluster_symbols[gene_cluster] = cluster_symbol
else:
gene_cluster = name.split(delimiter)[0] # accept gene clusters raw for mlst
# check if the delimiter makes sense
parts = name.split(delimiter)
if len(parts) != 2:
delimiter_check.append(name)
else:
try:
x = int(parts[1])
except:
delimiter_check.append(name)
# check if we have seen this allele name before
if name in allele_symbols:
unique_allele_symbols = False # already seen this allele name
allele_symbols.append(name)
# record gene (cluster):
if gene_cluster not in gene_clusters:
gene_clusters.append(gene_cluster)
if len(delimiter_check) > 0:
print "Warning! MLST delimiter is " + delimiter + " but these genes may violate the pattern and cause problems:"
print ",".join(delimiter_check)
return size, gene_clusters, unique_gene_symbols, unique_allele_symbols, gene_cluster_symbols
def read_pileup_data(pileup_file, size, prob_err, consensus_file = ""):
with open(pileup_file) as pileup:
prob_success = 1 - prob_err # Set by user, default is prob_err = 0.01
hash_alignment = {}
hash_max_depth = {}
hash_edge_depth = {}
avg_depth_allele = {}
next_to_del_depth_allele = {}
coverage_allele = {}
mismatch_allele = {}
indel_allele = {}
missing_allele = {}
size_allele = {}
# Split all lines in the pileup by whitespace
pileup_split = ( x.split() for x in pileup )
# Group the split lines based on the first field (allele)
for allele, lines in groupby(pileup_split, itemgetter(0)):
# Reset variables for new allele
allele_line = 1 # Keep track of line for this allele
exp_nuc_num = 0 # Expected position in ref allele
max_depth = 1
allele_size = size[allele]
total_depth = 0
depth_a = depth_z = 0
position_depths = [0] * allele_size # store depths in case required for penalties; then we don't need to track total_missing_bases
hash_alignment[allele] = []
total_missing_bases = 0
total_mismatch = 0
ins_poscount = 0
del_poscount = 0
next_to_del_depth = 99999
consensus_seq = ""
for fields in lines:
# Parse this line and store details required for scoring
nuc_num = int(fields[1]) # Actual position in ref allele
exp_nuc_num += 1
allele_line += 1
nuc = fields[2]
nuc_depth = int(fields[3])
position_depths[nuc_num-1] = nuc_depth
if len(fields) <= 5:
aligned_bases = ''
else:
aligned_bases = fields[4]
# Missing bases (pileup skips basepairs)
if nuc_num > exp_nuc_num:
total_missing_bases += abs(exp_nuc_num - nuc_num)
exp_nuc_num = nuc_num
if nuc_depth == 0:
total_missing_bases += 1
# Calculate depths for this position
if nuc_num <= edge_a:
depth_a += nuc_depth
if abs(nuc_num - allele_size) < edge_z:
depth_z += nuc_depth
if nuc_depth > max_depth:
hash_max_depth[allele] = nuc_depth
max_depth = nuc_depth
total_depth = total_depth + nuc_depth
# Parse aligned bases list for this position in the pileup
num_match = 0
ins_readcount = 0
del_readcount = 0
nuc_counts = {}
i = 0
while i < len(aligned_bases):
if aligned_bases[i] == "^":
# Signifies start of a read, next char is mapping quality (skip it)
i += 2
continue
if aligned_bases[i] == "+":
i += int(aligned_bases[i+1]) + 2 # skip to next read
ins_readcount += 1
continue
if aligned_bases[i] == "-":
i += int(aligned_bases[i+1]) + 2 # skip to next read
continue
if aligned_bases[i] == "*":
i += 1 # skip to next read
del_readcount += 1
continue
if aligned_bases[i] == "." or aligned_bases[i] == ",":
num_match += 1
i += 1
continue
elif aligned_bases[i].upper() in "ATCG":
this_nuc = aligned_bases[i].upper()
if this_nuc not in nuc_counts:
nuc_counts[this_nuc] = 0
nuc_counts[this_nuc] += 1
i += 1
# Save the most common nucleotide at this position
consensus_nuc = nuc # by default use reference nucleotide
max_freq = num_match # Number of bases matching the reference
for nucleotide in nuc_counts:
if nuc_counts[nucleotide] > max_freq:
consensus_nuc = nucleotide
max_freq = nuc_counts[nucleotide]
consensus_seq += (consensus_nuc)
# Calculate details of this position for scoring and reporting
# mismatches and indels
num_mismatch = nuc_depth - num_match
if num_mismatch > num_match:
total_mismatch += 1 # record as mismatch (could be a snp or deletion)
if del_readcount > num_match:
del_poscount += 1
if ins_readcount > nuc_depth / 2:
ins_poscount += 1
# Hash for later processing
hash_alignment[allele].append((num_match, num_mismatch, prob_success)) # snp or deletion
if ins_readcount > 0:
hash_alignment[allele].append((nuc_depth - ins_readcount, ins_readcount, prob_success)) # penalize for any insertion calls at this position
# Determine the consensus sequence if required
if consensus_file != "":
if consensus_file.split(".")[-2] == "new_consensus_alleles":
consensus_type = "variant"
elif consensus_file.split(".")[-2] == "all_consensus_alleles":
consensus_type = "consensus"
with open(consensus_file, "a") as consensus_outfile:
consensus_outfile.write(">{0}.{1} {2}\n".format(allele, consensus_type, pileup_file.split(".")[1].split("__")[1]))
outstring = consensus_seq + "\n"
consensus_outfile.write(outstring)
# Finished reading pileup for this allele
# Check for missing bases at the end of the allele
if nuc_num < allele_size:
total_missing_bases += abs(allele_size - nuc_num)
# determine penalty based on coverage of last 2 bases
penalty = float(position_depths[nuc_num-1] + position_depths[nuc_num-2])/2
m = min(position_depths[nuc_num-1],position_depths[nuc_num-2])
hash_alignment[allele].append((0, penalty, prob_success))
if next_to_del_depth > m:
next_to_del_depth = m # keep track of lowest near-del depth for reporting
# Calculate allele summary stats and save
avg_depth = round(total_depth / float(allele_line),3)
avg_a = depth_a / float(edge_a) # Avg depth at 5' end, num basepairs determined by edge_a
avg_z = depth_z / float(edge_z) # 3'
hash_max_depth[allele] = max_depth
hash_edge_depth[allele] = (avg_a, avg_z)
min_penalty = max(5, int(avg_depth))
coverage_allele[allele] = 100*(allele_size - total_missing_bases - del_poscount)/float(allele_size) # includes in-read deletions
mismatch_allele[allele] = total_mismatch - del_poscount # snps only
indel_allele[allele] = del_poscount + ins_poscount # insertions or deletions
missing_allele[allele] = total_missing_bases # truncated bases
size_allele[allele] = allele_size
# Penalize truncations or large deletions (i.e. positions not covered in pileup)
j = 0
while j < (len(position_depths)-2):
# note end-of-seq truncations are dealt with above)
if position_depths[j]==0 and position_depths[j+1]!=0:
penalty = float(position_depths[j+1]+position_depths[j+2])/2 # mean of next 2 bases
hash_alignment[allele].append((0, penalty, prob_success))
m = min(position_depths[nuc_num-1],position_depths[nuc_num-2])
if next_to_del_depth > m:
next_to_del_depth = m # keep track of lowest near-del depth for reporting
j += 1
# Store depth info for reporting
avg_depth_allele[allele] = avg_depth
if next_to_del_depth == 99999:
next_to_del_depth = "NA"
next_to_del_depth_allele[allele] = next_to_del_depth
return hash_alignment, hash_max_depth, hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele, size_allele, next_to_del_depth_allele
def score_alleles(args, mapping_files_pre, hash_alignment, hash_max_depth, hash_edge_depth,
avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele,
size_allele, next_to_del_depth_allele, run_type,unique_gene_symbols, unique_allele_symbols):
# sort into hash for each gene locus
depth_by_gene = group_allele_dict_by_gene(dict( (allele,val) for (allele,val) in avg_depth_allele.items() \
if (run_type == "mlst") or (coverage_allele[allele] > args.min_coverage) ),
run_type,args,
unique_gene_symbols,unique_allele_symbols)
stat_depth_by_gene = dict(
(gene,max(alleles.values())) for (gene,alleles) in depth_by_gene.items()
)
allele_to_gene = dict_of_dicts_inverted_ind(depth_by_gene)
if args.save_scores:
scores_output = file(mapping_files_pre + '.scores', 'w')
scores_output.write("Allele\tScore\tAvg_depth\tEdge1_depth\tEdge2_depth\tPercent_coverage\tSize\tMismatches\tIndels\tTruncated_bases\tDepthNeighbouringTruncation\tmaxMAF\tLeastConfident_Rate\tLeastConfident_Mismatches\tLeastConfident_Depth\tLeastConfident_Pvalue\n")
scores = {} # key = allele, value = score
mix_rates = {} # key = allele, value = highest minor allele frequency, 0 -> 0.5
for allele in hash_alignment:
#stat_depth_allele = avg_depth_allele[allele]
if (run_type == "mlst") or (coverage_allele[allele] > args.min_coverage):
gene = allele_to_gene[allele]
pvals = []
min_pval = 1.0
min_pval_data = (999,999) # (mismatch, depth) for position with lowest p-value
mix_rate = 0 # highest minor allele frequency 0 -> 0.5
for nuc_info in hash_alignment[allele]:
if nuc_info is not None:
match, mismatch, prob_success = nuc_info
max_depth = hash_max_depth[allele]
if match > 0 or mismatch > 0:
# One-tailed test - prob to get that many or fewer matches
p_value = binom.cdf(match,match+mismatch,prob_success)
# Weight pvalue by (depth/max_depth)
weight = (match + mismatch) / float(max_depth)
p_value *= weight
if p_value < min_pval:
min_pval = p_value
min_pval_data = (mismatch,match + mismatch)
if p_value > 0:
p_value = -log(p_value, 10)
else:
p_value = 1000
pvals.append(p_value)
mismatch_prop = float(match)/float(match+mismatch)
if min(mismatch_prop, 1-mismatch_prop) > mix_rate:
mix_rate = min(mismatch_prop, 1-mismatch_prop)
# Fit linear model to observed Pval distribution vs expected Pval distribution (QQ plot)
pvals.sort(reverse=True)
len_obs_pvals = len(pvals)
exp_pvals = range(1, len_obs_pvals + 1)
exp_pvals2 = [-log(float(ep) / (len_obs_pvals + 1), 10) for ep in exp_pvals]
# Slope is score
slope, _intercept, _r_value, _p_value, _std_err = linregress(exp_pvals2, pvals)
# Store all scores for later processing
scores[allele] = slope
mix_rates[allele] = mix_rate
# print scores for each allele, if requested
if args.save_scores:
if allele in hash_edge_depth:
start_depth, end_depth = hash_edge_depth[allele]
edge_depth_str = str(start_depth) + '\t' + str(end_depth)
else:
edge_depth_str = "NA\tNA"
this_depth = avg_depth_allele.get(allele, "NA")
this_coverage = coverage_allele.get(allele, "NA")
this_mismatch = mismatch_allele.get(allele, "NA")
this_indel = indel_allele.get(allele, "NA")
this_missing = missing_allele.get(allele, "NA")
this_size = size_allele.get(allele, "NA")
this_next_to_del_depth = next_to_del_depth_allele.get(allele, "NA")
scores_output.write('\t'.join([allele, str(slope), str(this_depth), edge_depth_str,
str(this_coverage), str(this_size), str(this_mismatch), str(this_indel), str(this_missing), str(this_next_to_del_depth), str(mix_rate), str(float(min_pval_data[0])/min_pval_data[1]),str(min_pval_data[0]),str(min_pval_data[1]),str(min_pval)]) + '\n')
if args.save_scores:
scores_output.close()
return(scores,mix_rates)
# Check that an acceptable version of a command is installed
# Exits the program if it can't be found.
# - command_list is the command to run to determine the version.
# - version_identifier is the unique string we look for in the stdout of the program.
# - command_name is the name of the command to show in error messages.
# - required_version is the version number to show in error messages.
def check_command_version(command_list, version_identifier, command_name, required_version):
try:
command_stdout = check_output(command_list, stderr=STDOUT)
except OSError as e:
logging.error("Failed command: {}".format(' '.join(command_list)))
logging.error(str(e))
logging.error("Could not determine the version of {}.".format(command_name))
logging.error("Do you have {} installed in your PATH?".format(command_name))
exit(-1)
except CalledProcessError as e:
# some programs such as samtools return a non-zero exit status
# when you ask for the version (sigh). We ignore it here.
command_stdout = e.output
if version_identifier not in command_stdout:
logging.error("Incorrect version of {} installed.".format(command_name))
logging.error("{} version {} is required by SRST2.".format(command_name, required_version))
exit(-1)
# allow multiple specific versions that have been specifically tested
def check_bowtie_version():
return check_command_versions([get_bowtie_execs()[0], '--version'], 'version ', 'bowtie',
['2.1.0','2.2.3','2.2.4','2.2.5','2.2.6','2.2.7','2.2.8','2.2.9'])
def check_samtools_version():
return check_command_versions([get_samtools_exec()], 'Version: ', 'samtools',
['0.1.18','0.1.19','1.0','1.1','1.2','1.3','(0.1.18 is '
'recommended)'])
def check_command_versions(command_list, version_prefix, command_name, required_versions):
try:
command_stdout = check_output(command_list, stderr=STDOUT)
except OSError as e:
logging.error("Failed command: {}".format(' '.join(command_list)))
logging.error(str(e))
logging.error("Could not determine the version of {}.".format(command_name))
logging.error("Do you have {} installed in your PATH?".format(command_name))
exit(-1)
except CalledProcessError as e:
# some programs such as samtools return a non-zero exit status
# when you ask for the version (sigh). We ignore it here.
command_stdout = e.output
for v in required_versions:
if version_prefix + v in command_stdout:
return v
logging.error("Incorrect version of {} installed.".format(command_name))
logging.error("{} versions compatible with SRST2 are ".format(command_name) + ", ".join(required_versions))
exit(-1)
def get_bowtie_execs():
'Return the "best" bowtie2 executables'
exec_from_environment = os.environ.get('SRST2_BOWTIE2')
if exec_from_environment and os.path.isfile(exec_from_environment):
bowtie2_exec = exec_from_environment
else:
bowtie2_exec = None
exec_from_environment = os.environ.get('SRST2_BOWTIE2_BUILD')
if exec_from_environment and os.path.isfile(exec_from_environment):
bowtie2_build_exec = exec_from_environment
elif bowtie2_exec and os.path.isfile(bowtie2_exec+'-build'):
bowtie2_build_exec = bowtie2_exec+'-build'
else:
bowtie2_build_exec = 'bowtie2-build'
if bowtie2_exec is None:
bowtie2_exec = 'bowtie2'
return (bowtie2_exec, bowtie2_build_exec)
def run_bowtie(mapping_files_pre,sample_name,fastqs,args,db_name,db_full_path):
logging.info("Starting mapping with bowtie2")
check_bowtie_version()
check_samtools_version()
command = [get_bowtie_execs()[0]]
if len(fastqs)==1:
# single end
command += ['-U', fastqs[0]]
elif len(fastqs)==2:
# paired end
command += ['-1', fastqs[0], '-2', fastqs[1]]
sam = mapping_files_pre + ".sam"
logging.info('Output prefix set to: ' + mapping_files_pre)
command += ['-S', sam,
'-' + args.read_type, # add a dash to the front of the option
'--very-sensitive-local',
'--no-unal',
'-a', # Search for and report all alignments
'-x', db_full_path # The index to be aligned to
]
if args.threads > 1:
command += ['--threads', str(args.threads)]
if args.stop_after:
try:
command += ['-u',str(int(args.stop_after))]
except ValueError:
print "WARNING. You asked to stop after mapping '" + args.stop_after + "' reads. I don't understand this, and will map all reads. Please speficy an integer with --stop_after or leave this as default to map 1 million reads."
if args.other:
x = args.other
x = x.replace('\\','')
command += x.split()
if args.use_existing_bowtie2_sam and os.path.exists(sam):
logging.info(' Using existing Bowtie2 SAM in ' + sam)
else:
logging.info('Aligning reads to index {} using bowtie2...'.format(db_full_path))
run_command(command)
return(sam)
def get_samtools_exec():
'Return the "best" samtools executable'
exec_from_environment = os.environ.get('SRST2_SAMTOOLS')
if exec_from_environment and os.path.isfile(exec_from_environment):
return exec_from_environment
else:
return 'samtools'
def get_pileup(args, mapping_files_pre, raw_bowtie_sam, bowtie_sam_mod, fasta, pileup_file):
# Analyse output with SAMtools
samtools_exec = get_samtools_exec()
samtools_v1 = check_samtools_version().split('.')[0] == '1' # Usage changed in version 1.0
logging.info('Processing Bowtie2 output with SAMtools...')
logging.info('Generate and sort BAM file...')
out_file_bam = mapping_files_pre + ".unsorted.bam"
view_command = [samtools_exec, 'view']
if args.threads > 1 and samtools_v1:
view_command += ['-@', str(args.threads)]
view_command += ['-b', '-o', out_file_bam, '-q', str(args.mapq), '-S', bowtie_sam_mod]
run_command(view_command)
out_file_bam_sorted = mapping_files_pre + ".sorted"
sort_command = [samtools_exec, 'sort']
if samtools_v1:
if args.threads > 1:
sort_command += ['-@', str(args.threads)]
temp = mapping_files_pre + ".sort_temp"
sort_command += ['-o', out_file_bam_sorted + '.bam', '-O', 'bam', '-T', temp, out_file_bam]
else: # samtools 0.x
sort_command += [out_file_bam, out_file_bam_sorted]
run_command(sort_command)
# Delete interim files (sam, modified sam, unsorted bam) unless otherwise specified.
# Note users may also want to delete final sorted bam and pileup on completion to save space.
if not args.keep_interim_alignment:
logging.info('Deleting sam and bam files that are not longer needed...')
del_filenames = [raw_bowtie_sam, bowtie_sam_mod, out_file_bam]
for f in del_filenames:
logging.info('Deleting ' + f)
os.remove(f)
logging.info('Generate pileup...')
with open(pileup_file, 'w') as sam_pileup:
mpileup_command = [samtools_exec, 'mpileup', '-L', '1000', '-f', fasta,
'-Q', str(args.baseq), '-q', str(args.mapq), '-B', out_file_bam_sorted + '.bam']
if args.samtools_args:
x = args.samtools_args
x = x.replace('\\','')
mpileup_command += x.split()
run_command(mpileup_command, stdout=sam_pileup)
def calculate_ST(allele_scores, ST_db, gene_names, sample_name, mlst_delimiter, avg_depth_allele, mix_rates):
allele_numbers = [] # clean allele calls for determing ST. order is taken from gene names, as in ST definitions file
alleles_with_flags = [] # flagged alleles for printing (* if mismatches, ? if depth issues)
mismatch_flags = [] # allele/diffs
uncertainty_flags = [] #allele/uncertainty
# st_flags = [] # (* if mismatches, ? if depth issues)
depths = [] # depths for each typed locus
mafs = [] # minor allele freqencies for each typed locus
# get allele numbers & info
for gene in gene_names:
if gene in allele_scores:
(allele,diffs,depth_problem,divergence) = allele_scores[gene]
allele_number = allele.split(mlst_delimiter)[-1]
depths.append(avg_depth_allele[allele])
mix_rate = mix_rates[allele]
mafs.append(mix_rate)
else:
allele_number = "-"
diffs = ""
depth_problem = ""
mix_rate = ""
allele_numbers.append(allele_number)
allele_with_flags = allele_number
if diffs != "":
if diffs != "trun":
allele_with_flags+="*" # trun indicates only that a truncated form had lower score, which isn't a mismatch
mismatch_flags.append(allele+"/"+diffs)
if depth_problem != "":
allele_with_flags+="?"
uncertainty_flags.append(allele+"/"+depth_problem)
alleles_with_flags.append(allele_with_flags)
# calculate ST (no flags)
if ST_db:
allele_string = " ".join(allele_numbers) # for determining ST
try:
clean_st = ST_db[allele_string]
except KeyError:
print "This combination of alleles was not found in the sequence type database:",
print sample_name,
for gene in allele_scores:
(allele,diffs,depth_problems,divergence) = allele_scores[gene]
print allele,
print
clean_st = "NF"
else:
clean_st = "ND"
# add flags for reporting
st = clean_st
if len(mismatch_flags) > 0:
for m in mismatch_flags:
if m.split("/")[1] != "trun":
st = clean_st + "*" # trun indicates only that a truncated form had lower score, which isn't a mismatch
else:
mismatch_flags = ['0'] # record no mismatches
if len(uncertainty_flags) > 0:
st += "?"
else:
uncertainty_flags = ['-']
# mean depth across loci
if len(depths) > 0:
mean_depth = float(sum(depths))/len(depths)
else:
mean_depth = 0
# maximum maf across locus
if len(mafs) > 0:
max_maf = max(mafs)
else:
max_maf = 0
return (st,clean_st,alleles_with_flags,mismatch_flags,uncertainty_flags,mean_depth,max_maf)
def parse_ST_database(ST_filename,gene_names_from_fai):
# Read ST definitions
ST_db = {} # key = allele string, value = ST
gene_names = []
num_gene_cols_expected = len(gene_names_from_fai)
print "Attempting to read " + str(num_gene_cols_expected) + " loci from ST database " + ST_filename
with open(ST_filename) as f:
count = 0
for line in f:
count += 1
line_split = line.rstrip().split("\t")
if count == 1: # Header
gene_names = line_split[1:min(num_gene_cols_expected+1,len(line_split))]
for g in gene_names_from_fai:
if g not in gene_names:
print "Warning: gene " + g + " in database file isn't among the columns in the ST definitions: " + ",".join(gene_names)
print " Any sequences with this gene identifer from the database will not be included in typing."
if len(line_split) == num_gene_cols_expected+1:
gene_names.pop() # we read too many columns
num_gene_cols_expected -= 1
for g in gene_names:
if g not in gene_names_from_fai:
print "Warning: gene " + g + " in ST definitions file isn't among those in the database " + ",".join(gene_names_from_fai)
print " This will result in all STs being called as unknown (but allele calls will be accurate for other loci)."
else:
ST = line_split[0]
if ST not in ST_db.values():
ST_string = " ".join(line_split[1:num_gene_cols_expected+1])
ST_db[ST_string] = ST
else:
print "Warning: this ST is not unique in the ST definitions file: " + ST
print "Read ST database " + ST_filename + " successfully"
return (ST_db, gene_names)
def get_allele_name_from_db(allele,run_type,args,unique_allele_symbols=False,unique_cluster_symbols=False):
if run_type != "mlst":
# header format: >[cluster]___[gene]___[allele]___[uniqueID] [info]
allele_parts = allele.split()
allele_detail = allele_parts.pop(0)
allele_info = allele_detail.split("__")
if len(allele_info)>3:
cluster_id = allele_info[0] # ID number for the cluster
gene_name = allele_info[1] # gene name/symbol for the cluster
allele_name = allele_info[2] # specific allele name
seqid = allele_info[3] # unique identifier for this seq
else:
cluster_id = gene_name = allele_name = seqid = allele
if not unique_allele_symbols:
allele_name += "_" + seqid
else:
gene_name = allele.split(args.mlst_delimiter)
allele_name = gene_name[1]
gene_name = gene_name[0]
seqid = None
cluster_id = None
return gene_name, allele_name, cluster_id, seqid
def create_allele_pileup(allele_name, all_pileup_file):
output_components = all_pileup_file.split("/")
if len(output_components) > 1:
all_pileup_file_name = os.path.basename(all_pileup_file)
all_pileup_file_dir = os.path.dirname(all_pileup_file)
outpileup = all_pileup_file_dir + '/' + allele_name + "." + all_pileup_file_name
else:
outpileup = allele_name + "." + all_pileup_file
with open(outpileup, 'w') as allele_pileup:
with open(all_pileup_file) as all_pileup:
for line in all_pileup:
if line.split()[0] == allele_name:
allele_pileup.write(line)
return outpileup
def group_allele_dict_by_gene(by_allele,run_type,args,unique_cluster_symbols=False, unique_allele_symbols=False):
# sort into hash for each gene locus
by_gene = collections.defaultdict(dict) # key1 = gene, key2 = allele, value = original value
if run_type=="mlst":
component_ind = 0 # gene_name
else:
component_ind = 2 # cluster_id
for allele in by_allele:
gene_name = get_allele_name_from_db(allele,run_type,args,unique_allele_symbols,unique_cluster_symbols)[component_ind]
by_gene[gene_name][allele] = by_allele[allele]
return dict(by_gene)
def dict_of_dicts_inverted_ind(dd):
res = dict()
for (key,val) in dd.items():
res.update(dict((key2,key) for key2 in val))
return res
def parse_scores(run_type,args,scores, hash_edge_depth,
avg_depth_allele, coverage_allele, mismatch_allele, indel_allele,
missing_allele, size_allele, next_to_del_depth_allele,
unique_cluster_symbols,unique_allele_symbols, pileup_file):
# sort into hash for each gene locus
scores_by_gene = group_allele_dict_by_gene(dict( (allele,val) for (allele,val) in scores.items() \
if coverage_allele[allele] > args.min_coverage ),
run_type,args,
unique_cluster_symbols,unique_allele_symbols)
# determine best allele for each gene locus/cluster
results = {} # key = gene, value = (allele,diffs,depth)
for gene in scores_by_gene:
gene_hash = scores_by_gene[gene]
scores_sorted = sorted(gene_hash.iteritems(),key=operator.itemgetter(1)) # sort by score
(top_allele,top_score) = scores_sorted[0]
# check if depth is adequate for confident call
adequate_depth = False
depth_problem = ""
if hash_edge_depth[top_allele][0] > args.min_edge_depth and hash_edge_depth[top_allele][1] > args.min_edge_depth:
if next_to_del_depth_allele[top_allele] != "NA":
if float(next_to_del_depth_allele[top_allele]) > args.min_edge_depth:
if avg_depth_allele[top_allele] > args.min_depth:
adequate_depth = True
else:
depth_problem="depth"+str(avg_depth_allele[top_allele])
else:
depth_problem = "del"+str(next_to_del_depth_allele[top_allele])
elif avg_depth_allele[top_allele] > args.min_depth:
adequate_depth = True
else:
depth_problem="depth"+str(avg_depth_allele[top_allele])
else:
depth_problem = "edge"+str(min(hash_edge_depth[top_allele][0],hash_edge_depth[top_allele][1]))
# check if there are confident differences against this allele
differences = ""
if mismatch_allele[top_allele] > 0:
differences += str(mismatch_allele[top_allele])+"snp"
if indel_allele[top_allele] > 0:
differences += str(indel_allele[top_allele])+"indel"
if missing_allele[top_allele] > 0:
differences += str(missing_allele[top_allele])+"holes"
divergence = float(mismatch_allele[top_allele]) / float( size_allele[top_allele] - missing_allele[top_allele] )
# check for truncated
if differences != "" or not adequate_depth:
# if there are SNPs or not enough depth to trust the result, no need to screen next best match
results[gene] = (top_allele, differences, depth_problem, divergence)
else:
# looks good but this could be a truncated version of the real allele; check for longer versions
truncation_override = False
if len(scores_sorted) > 1:
(next_best_allele,next_best_score) = scores_sorted[1]
if size_allele[next_best_allele] > size_allele[top_allele]:
# next best is longer, top allele could be a truncation?
if (mismatch_allele[next_best_allele] + indel_allele[next_best_allele] + missing_allele[next_best_allele]) == 0:
# next best also has no mismatches
if (next_best_score - top_score)/top_score < args.truncation_score_tolerance:
# next best has score within 10% of this one
truncation_override = True
if truncation_override:
results[gene] = (next_best_allele, "trun", "", divergence) # no diffs but report this call is based on truncation test
final_allele_reported = next_best_allele
else:
results[gene] = (top_allele, "", "",divergence) # no caveats to report
# Check if there are any potential new alleles
if depth_problem == "" and divergence > 0:
new_allele = True
# Get the consensus for this new allele and write it to file
if args.report_new_consensus or args.report_all_consensus:
new_alleles_filename = args.output + ".new_consensus_alleles.fasta"
allele_pileup_file = create_allele_pileup(results[gene][0], pileup_file)
read_pileup_data(allele_pileup_file, size_allele, args.prob_err, consensus_file = new_alleles_filename)
if args.report_all_consensus:
new_alleles_filename = args.output + ".all_consensus_alleles.fasta"
allele_pileup_file = create_allele_pileup(results[gene][0], pileup_file)
read_pileup_data(allele_pileup_file, size_allele, args.prob_err, consensus_file = new_alleles_filename)
return results # (allele, diffs, depth_problem, divergence)
def get_readFile_components(full_file_path):
(file_path,file_name) = os.path.split(full_file_path)
m1 = re.match("(.*).gz",file_name)
ext = ""
if m1 != None:
# gzipped
ext = ".gz"
file_name = m1.groups()[0]
(file_name_before_ext,ext2) = os.path.splitext(file_name)
full_ext = ext2+ext
return(file_path,file_name_before_ext,full_ext)
def read_file_sets(args):
fileSets = {} # key = id, value = list of files for that sample
num_single_readsets = 0
num_paired_readsets = 0
if args.input_se:
# single end
for fastq in args.input_se:
(file_path,file_name_before_ext,full_ext) = get_readFile_components(fastq)
m=re.match("(.*)(_S.*)(_L.*)(_R.*)(_.*)", file_name_before_ext)
if m==None:
fileSets[file_name_before_ext] = [fastq]
else:
fileSets[m.groups()[0]] = [fastq] # Illumina names
num_single_readsets += 1
elif args.input_pe:
# paired end
forward_reads = {} # key = sample, value = full path to file
reverse_reads = {} # key = sample, value = full path to file
num_paired_readsets = 0
num_single_readsets = 0
for fastq in args.input_pe:
(file_path,file_name_before_ext,full_ext) = get_readFile_components(fastq)
# try to match to MiSeq format:
m=re.match("(.*)(_S.*)(_L.*)(_R.*)(_.*)", file_name_before_ext)
if m==None:
# not default Illumina file naming format, expect simple/ENA format
m=re.match("(.*)("+args.forward+")$",file_name_before_ext)
if m!=None:
# store as forward read
(baseName,read) = m.groups()
forward_reads[baseName] = fastq
else:
m=re.match("(.*)("+args.reverse+")$",file_name_before_ext)
if m!=None:
# store as reverse read
(baseName,read) = m.groups()
reverse_reads[baseName] = fastq
else:
logging.info("Could not determine forward/reverse read status for input file " + fastq)
else:
# matches default Illumina file naming format, e.g. m.groups() = ('samplename', '_S1', '_L001', '_R1', '_001')
baseName, read = m.groups()[0], m.groups()[3]
if read == "_R1":
forward_reads[baseName] = fastq
elif read == "_R2":
reverse_reads[baseName] = fastq
else:
logging.info( "Could not determine forward/reverse read status for input file " + fastq )
logging.info( " this file appears to match the MiSeq file naming convention (samplename_S1_L001_[R1]_001), but we were expecting [R1] or [R2] to designate read as forward or reverse?" )
fileSets[file_name_before_ext] = fastq
num_single_readsets += 1
# store in pairs
for sample in forward_reads:
if sample in reverse_reads:
fileSets[sample] = [forward_reads[sample],reverse_reads[sample]] # store pair
num_paired_readsets += 1
else:
fileSets[sample] = [forward_reads[sample]] # no reverse found
num_single_readsets += 1
logging.info('Warning, could not find pair for read:' + forward_reads[sample])
for sample in reverse_reads:
if sample not in fileSets:
fileSets[sample] = reverse_reads[sample] # no forward found
num_single_readsets += 1
logging.info('Warning, could not find pair for read:' + reverse_reads[sample])
if num_paired_readsets > 0:
logging.info('Total paired readsets found:' + str(num_paired_readsets))
if num_single_readsets > 0:
logging.info('Total single reads found:' + str(num_single_readsets))
return fileSets
def read_results_from_file(infile):
if os.stat(infile).st_size == 0:
logging.info("WARNING: Results file provided is empty: " + infile)
return False, False, False
results_info = infile.split("__")
if len(results_info) > 1:
if re.search("compiledResults",infile)!=None:
dbtype = "compiled"
dbname = results_info[0] # output identifier
else:
dbtype = results_info[1] # mlst or genes
dbname = results_info[2] # database
logging.info("Processing " + dbtype + " results from file " + infile)
if dbtype == "genes":
results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
with open(infile) as f:
header = []
for line in f:
line_split = line.rstrip().split("\t")
if len(header) == 0:
header = line_split
else:
sample = line_split[0]
for i in range(1,len(line_split)):
gene = header[i] # cluster_id
results[sample][gene] = line_split[i]
elif dbtype == "mlst":
results = {} # key = sample, value = MLST string
with open(infile) as f:
header = 0
for line in f:
if header > 0:
results[line.split("\t")[0]] = line.rstrip()
if "maxMAF" not in header:
results[line.split("\t")[0]] += "\tNC" # empty column for maxMAF
else:
header = line.rstrip()
results[line.split("\t")[0]] = line.rstrip() # store header line too (index "Sample")
if "maxMAF" not in header:
results[line.split("\t")[0]] += "\tmaxMAF" # add column for maxMAF
elif dbtype == "compiled":
results = collections.defaultdict(dict) # key1 = sample, key2 = gene, value = allele
with open(infile) as f:
header = []
mlst_cols = 0 # INDEX of the last mlst column
n_cols = 0
for line in f:
line_split = line.rstrip().split("\t")
if len(header) == 0:
header = line_split
n_cols = len(header)
if n_cols > 1:
if header[1] == "ST":
# there is mlst data reported
mlst_cols = 2 # first locus column
while header[mlst_cols] != "depth":
mlst_cols += 1
results["Sample"]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
results["Sample"]["mlst"] += "\tmaxMAF" # add to mlst header even if not encountered in this file, as it may be in others
if header[mlst_cols+1] == "maxMAF":
mlst_cols += 1 # record maxMAF column within MLST data, if present
else:
# no mlst data reported
dbtype = "genes"
logging.info("No MLST data in compiled results file " + infile)
else:
# no mlst data reported
dbtype = "genes"
logging.info("No MLST data in compiled results file " + infile)
else:
sample = line_split[0]
if mlst_cols > 0:
results[sample]["mlst"] = "\t".join(line_split[0:(mlst_cols+1)])
if "maxMAF" not in header:
results[sample]["mlst"] += "\t" # add to mlst section even if not encountered in this file, as it may be in others
if n_cols > mlst_cols:
# read genes component
for i in range(mlst_cols+1,n_cols):
# note i=1 if mlst_cols==0, ie we are reading all
gene = header[i]
if len(line_split) > i:
results[sample][gene] = line_split[i]
else:
results[sample][gene] = "-"
else:
results = False
dbtype = False
dbname = False
logging.info("Couldn't decide what to do with file results file provided: " + infile)
else:
results = False
dbtype = False
dbname = False
logging.info("Couldn't decide what to do with file results file provided: " + infile)
return results, dbtype, dbname
def read_scores_file(scores_file):
hash_edge_depth = {}
avg_depth_allele = {}
coverage_allele = {}
mismatch_allele = {}
indel_allele = {}
missing_allele = {}
size_allele = {}
next_to_del_depth_allele = {}
mix_rates = {}
scores = {}
f = file(scores_file,"r")
for line in f:
line_split = line.rstrip().split("\t")
allele = line_split[0]
if allele != "Allele": # skip header row
scores[allele] = float(line_split[1])
mix_rates[allele] = float(line_split[11])
avg_depth_allele[allele] = float(line_split[2])
hash_edge_depth[allele] = (float(line_split[3]),float(line_split[4]))
coverage_allele[allele] = float(line_split[5])
size_allele[allele] = int(line_split[6])
mismatch_allele[allele] = int(line_split[7])
indel_allele[allele] = int(line_split[8])
missing_allele[allele] = int(line_split[9])
next_to_del_depth = line_split[10]
next_to_del_depth_allele[allele] = line_split[10]
return hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, \
missing_allele, size_allele, next_to_del_depth_allele, scores, mix_rates
def run_srst2(args, fileSets, dbs, run_type):
db_reports = [] # list of db-specific output files to return
db_results_list = [] # list of results hashes, one per db
for fasta in dbs:
db_reports, db_results_list = process_fasta_db(args, fileSets, run_type, db_reports,
db_results_list, fasta)
return db_reports, db_results_list
def samtools_index(fasta_file):
check_samtools_version()
fai_file = fasta_file + '.fai'
if not os.path.exists(fai_file):
run_command([get_samtools_exec(), 'faidx', fasta_file])
return fai_file
def process_fasta_db(args, fileSets, run_type, db_reports, db_results_list, fasta):
logging.info('Processing database ' + fasta)
db_path, db_name = os.path.split(fasta) # database
(db_name,db_ext) = os.path.splitext(db_name)
db_results = "__".join([args.output,run_type,db_name,"results.txt"])
db_report = file(db_results,"w")
db_reports.append(db_results)
# Get sequence lengths and gene names
# lengths are needed for MLST heuristic to distinguish alleles from their truncated forms
# gene names read from here are needed for non-MLST dbs
fai_file = samtools_index(fasta)
size, gene_names, unique_gene_symbols, unique_allele_symbols, cluster_symbols = \
parse_fai(fai_file,run_type,args.mlst_delimiter)
# Prepare for MLST reporting
ST_db = False
if run_type == "mlst":
results = {} # key = sample, value = ST string for printing
if args.mlst_definitions:
# store MLST profiles, replace gene names (we want the order as they appear in this file)
ST_db, gene_names = parse_ST_database(args.mlst_definitions,gene_names)
db_report.write("\t".join(["Sample","ST"]+gene_names+["mismatches","uncertainty","depth","maxMAF"]) + "\n")
results["Sample"] = "\t".join(["Sample","ST"]+gene_names+["mismatches","uncertainty","depth","maxMAF"])
else:
# store final results for later tabulation
results = collections.defaultdict(dict) #key1 = sample, key2 = gene, value = allele
gene_list = [] # start with empty gene list; will add genes from each genedb test
# determine maximum mismatches per read to use for pileup
if run_type == "mlst":
max_mismatch = args.mlst_max_mismatch
else:
max_mismatch = args.gene_max_mismatch
# Align and score each read set against this DB
for sample_name in fileSets:
logging.info('Processing sample ' + sample_name)
fastq_inputs = fileSets[sample_name] # reads
try:
# try mapping and scoring this fileset against the current database
# update the gene_list list and results dict with data from this strain
# __mlst__ will be printed during this routine if this is a mlst run
# __fullgenes__ will be printed during this routine if requested and this is a gene_db run
gene_list, results = \
map_fileSet_to_db(args, sample_name, fastq_inputs, db_name, fasta,size,gene_names,
unique_gene_symbols, unique_allele_symbols, run_type,ST_db,
results,gene_list, db_report, cluster_symbols, max_mismatch)
# if we get an error from one of the commands we called
# log the error message, record as failed, and continue onto the next fasta db
except CommandError as e:
logging.error(e.message)
# record results as unknown, so we know that we did attempt to analyse this readset
if run_type == "mlst":
st_result_string = "\t".join( [sample_name,"failed"] + ["-"] * (len(gene_names) + 4)) # record missing results
db_report.write( st_result_string + "\n")
logging.info(" " + st_result_string)
results[sample_name] = st_result_string
else:
logging.info(" failed gene detection")
results[sample_name]["failed"] = True # so we know that we tried this strain
if run_type != "mlst":
# tabulate results across samples for this gene db (i.e. __genes__ file)
logging.info('Tabulating results for database {} ...'.format(fasta))
gene_list.sort()
db_report.write("\t".join(["Sample"]+gene_list)+"\n") # report header row
for sample_name in fileSets:
db_report.write(sample_name)
if sample_name in results:
# print results
if "failed" not in results[sample_name]:
for cluster_id in gene_list:
if cluster_id in results[sample_name]:
db_report.write("\t"+results[sample_name][cluster_id]) # print full allele name
else:
db_report.write("\t-") # no hits for this gene cluster
else:
# no data on this, as the sample failed mapping
for cluster_id in gene_list:
db_report.write("\t-f") #
results[sample_name][cluster_id] = "-f" # record as unknown as this strain failed
else:
# no data on this because genes were not found (but no mapping errors)
for cluster_id in gene_list:
db_report.write("\t-?") #
results[sample_name][cluster_id] = "-" # record as absent
db_report.write("\n")
# Finished with this database
logging.info('Finished processing for database {} ...'.format(fasta))
db_report.close()
db_results_list.append(results)
return db_reports, db_results_list
def map_fileSet_to_db(args, sample_name, fastq_inputs, db_name, fasta, size, gene_names,
unique_gene_symbols, unique_allele_symbols, run_type, ST_db, results,
gene_list, db_report, cluster_symbols, max_mismatch):
mapping_files_pre = args.output + '__' + sample_name + '.' + db_name
pileup_file = mapping_files_pre + '.pileup'
scores_file = mapping_files_pre + '.scores'
# Get or read scores
if args.use_existing_scores and os.path.exists(scores_file):
logging.info(' Using existing scores in ' + scores_file)
# read in scores and info from existing scores file
hash_edge_depth, avg_depth_allele, coverage_allele, \
mismatch_allele, indel_allele, missing_allele, size_allele, \
next_to_del_depth_allele, scores, mix_rates = read_scores_file(scores_file)
else:
# Get or read pileup
if args.use_existing_pileup and os.path.exists(pileup_file):
logging.info(' Using existing pileup in ' + pileup_file)
else:
# run bowtie against this db
bowtie_sam = run_bowtie(mapping_files_pre,sample_name,fastq_inputs,args,db_name,fasta)
# Modify Bowtie's SAM formatted output so that we get secondary
# alignments in downstream pileup
(raw_bowtie_sam,bowtie_sam_mod) = modify_bowtie_sam(bowtie_sam,max_mismatch,\
max_unaligned_overlap=args.max_unaligned_overlap)
# generate pileup from sam (via sorted bam)
get_pileup(args, mapping_files_pre, raw_bowtie_sam, bowtie_sam_mod, fasta, pileup_file)
# Get scores
# Process the pileup and extract info for scoring and reporting on each allele
logging.info(' Processing SAMtools pileup...')
hash_alignment, hash_max_depth, hash_edge_depth, avg_depth_allele, coverage_allele, \
mismatch_allele, indel_allele, missing_allele, size_allele, next_to_del_depth_allele= \
read_pileup_data(pileup_file, size, args.prob_err)
# Generate scores for all alleles (prints these and associated info if verbose)
# result = dict, with key=allele, value=score
logging.info(' Scoring alleles...')
scores, mix_rates = score_alleles(args, mapping_files_pre, hash_alignment, hash_max_depth, hash_edge_depth, \
avg_depth_allele, coverage_allele, mismatch_allele, indel_allele, missing_allele, \
size_allele, next_to_del_depth_allele, run_type,unique_gene_symbols, unique_allele_symbols)
# GET BEST SCORE for each gene/cluster
# result = dict, with key = gene, value = (allele,diffs,depth_problem)
# for MLST DBs, key = gene = locus, allele = gene-number
# for gene DBs, key = gene = cluster ID, allele = cluster__gene__allele__id
# for gene DBs, only those alleles passing the coverage cutoff are returned
allele_scores = parse_scores(run_type, args, scores, \
hash_edge_depth, avg_depth_allele, coverage_allele, mismatch_allele, \
indel_allele, missing_allele, size_allele, next_to_del_depth_allele,
unique_gene_symbols, unique_allele_symbols, pileup_file)
# REPORT/RECORD RESULTS
# Report MLST results to __mlst__ file
if run_type == "mlst" and len(allele_scores) > 0:
# Calculate ST and get info for reporting
(st,clean_st,alleles_with_flags,mismatch_flags,uncertainty_flags,mean_depth,max_maf) = \
calculate_ST(allele_scores, ST_db, gene_names, sample_name, args.mlst_delimiter, avg_depth_allele, mix_rates)
# Print to MLST report, log and save the result
st_result_string = "\t".join([sample_name,st]+alleles_with_flags+[";".join(mismatch_flags),";".join(uncertainty_flags),str(mean_depth),str(max_maf)])
db_report.write( st_result_string + "\n")
logging.info(" " + st_result_string)
results[sample_name] = st_result_string
# Make sure scores are printed if there was uncertainty in the call
scores_output_file = mapping_files_pre + '.scores'
if uncertainty_flags != ["-"] and not args.save_scores and not os.path.exists(scores_output_file):
# print full score set
logging.info("Printing all MLST scores to " + scores_output_file)
scores_output = file(scores_output_file, 'w')
scores_output.write("Allele\tScore\tAvg_depth\tEdge1_depth\tEdge2_depth\tPercent_coverage\tSize\tMismatches\tIndels\tTruncated_bases\tDepthNeighbouringTruncation\tMmaxMAF\n")
for allele in scores.keys():
score = scores[allele]
scores_output.write('\t'.join([allele, str(score), str(avg_depth_allele[allele]), \
str(hash_edge_depth[allele][0]), str(hash_edge_depth[allele][1]), \
str(coverage_allele[allele]), str(size_allele[allele]), str(mismatch_allele[allele]), \
str(indel_allele[allele]), str(missing_allele[allele]), str(next_to_del_depth_allele[allele]), str(round(mix_rates[allele],3))]) + '\n')
scores_output.close()
# Record gene results for later processing and optionally print detailed gene results to __fullgenes__ file
elif run_type == "genes" and len(allele_scores) > 0:
if args.no_gene_details:
full_results = "__".join([args.output,"fullgenes",db_name,"results.txt"])
logging.info("Printing verbose gene detection results to " + full_results)
if os.path.exists(full_results):
f = file(full_results,"a")
else:
f = file(full_results,"w") # create and write header
f.write("\t".join(["Sample","DB","gene","allele","coverage","depth","diffs","uncertainty","divergence","length", "maxMAF","clusterid","seqid","annotation"])+"\n")
for gene in allele_scores:
(allele,diffs,depth_problem,divergence) = allele_scores[gene] # gene = top scoring alleles for each cluster
gene_name, allele_name, cluster_id, seqid = \
get_allele_name_from_db(allele,run_type,args,unique_allele_symbols,unique_gene_symbols)
# store for gene result table only if divergence passes minimum threshold:
if divergence*100 <= float(args.max_divergence):
column_header = cluster_symbols[cluster_id]
results[sample_name][column_header] = allele_name
if diffs != "":
results[sample_name][column_header] += "*"
if depth_problem != "":
results[sample_name][column_header] += "?"
if column_header not in gene_list:
gene_list.append(column_header)
# write details to full genes report
if args.no_gene_details:
# get annotation info
header_string = subprocess.check_output(["grep",allele,fasta])
try:
header = header_string.read().rstrip().split()
header.pop(0) # remove allele name
if len(header) > 0:
annotation = " ".join(header) # put back the spaces
else:
annotation = ""
except:
annotation = ""
f.write("\t".join([sample_name,db_name,gene_name,allele_name,str(round(coverage_allele[allele],3)),str(avg_depth_allele[allele]),diffs,depth_problem,str(round(divergence*100,3)),str(size_allele[allele]),str(round(mix_rates[allele],3)),cluster_id,seqid,annotation])+"\n")
# log the gene detection result
logging.info(" " + str(len(allele_scores)) + " genes identified in " + sample_name)
# Finished with this read set
logging.info(' Finished processing for read set {} ...'.format(sample_name))
return gene_list, results
def compile_results(args,mlst_results,db_results,compiled_output_file):
o = file(compiled_output_file,"w")
# get list of all samples and genes present in these datasets
sample_list = [] # each entry is a sample present in at least one db
gene_list = []
mlst_cols = 0
mlst_header_string = ""
blank_mlst_section = ""
mlst_results_master = {} # compilation of all MLST results
db_results_master = collections.defaultdict(dict) # compilation of all gene results
st_counts = {} # key = ST, value = count
if len(mlst_results) > 0:
for mlst_result in mlst_results:
# check length of the mlst string
if "Sample" in mlst_result:
test_string = mlst_result["Sample"]
if mlst_cols == 0:
mlst_header_string = test_string
else:
test_string = mlst_result[mlst_result.keys()[0]] # no header line?
test_string_split = test_string.split("\t")
this_mlst_cols = len(test_string_split)
if (mlst_cols == 0) or (mlst_cols == this_mlst_cols):
mlst_cols = this_mlst_cols
blank_mlst_section = "\t?" * (mlst_cols-1) # blank MLST string in case some samples missing
# use this data
for sample in mlst_result:
mlst_results_master[sample] = mlst_result[sample]
if sample not in sample_list:
sample_list.append(sample)
elif mlst_cols != this_mlst_cols:
# don't process this data further
logging.info("Problem reconciling MLST data from two files, first MLST results encountered had " + str(mlst_cols) + " columns, this one has " + str(this_mlst_cols) + " columns?")
if args.mlst_db:
logging.info("Compiled report will contain only the MLST data from this run, not previous outputs")
else:
logging.info("Compiled report will contain only the data from the first MLST result set provided")
if len(db_results) > 0:
for results in db_results:
for sample in results:
if sample not in sample_list:
sample_list.append(sample)
for gene in results[sample]:
if gene != "failed":
db_results_master[sample][gene] = results[sample][gene]
if gene not in gene_list:
gene_list.append(gene)
if "Sample" in sample_list:
sample_list.remove("Sample")
sample_list.sort()
gene_list.sort()
# print header
header_elements = []
if len(mlst_results) > 0:
header_elements.append(mlst_header_string)
else:
header_elements.append("Sample")
if (gene_list) > 0:
header_elements += gene_list
o.write("\t".join(header_elements)+"\n")
# print results for all samples
for sample in sample_list:
sample_info = [] # first entry is mlst string OR sample name, rest are genes
# print mlst if provided, otherwise just print sample name
if len(mlst_results_master) > 0:
if sample in mlst_results_master:
st_data_split = mlst_results_master[sample].split("\t")
if len(st_data_split) > 1:
this_st = st_data_split[1]
sample_info.append(mlst_results_master[sample])
else:
sample_info.append(sample+blank_mlst_section)
this_st = "unknown" # something wrong with the string
else:
sample_info.append(sample+blank_mlst_section)
this_st = "unknown"
# record the MLST result
if this_st in st_counts:
st_counts[this_st] += 1
else:
st_counts[this_st] = 1
else:
sample_info.append(sample)
# get gene info if provided
if sample in db_results_master:
for gene in gene_list:
if gene in db_results_master[sample]:
sample_info.append(db_results_master[sample][gene])
else:
sample_info.append("-")
else:
for gene in gene_list:
sample_info.append("?") # record no gene data on this strain
o.write("\t".join(sample_info)+"\n")
o.close()
logging.info("Compiled data on " + str(len(sample_list)) + " samples printed to: " + compiled_output_file)
# log ST counts
if len(mlst_results_master) > 0:
logging.info("Detected " + str(len(st_counts.keys())) + " STs: ")
sts = st_counts.keys()
sts.sort()
for st in sts:
logging.info("ST" + st + "\t" + str(st_counts[st]))
return True
def main():
args = parse_args()
# Check output directory
output_components = args.output.split("/")
if len(output_components) > 1:
output_dir = "/".join(output_components[:-1])
if not os.path.exists(output_dir):
try:
os.makedirs(output_dir)
print "Created directory " + output_dir + " for output"
except:
print "Error. Specified output as " + args.output + " however the directory " + output_dir + " does not exist and our attempt to create one failed."
if args.log is True:
logfile = args.output + ".log"
else:
logfile = None
logging.basicConfig(
filename=logfile,
level=logging.DEBUG,
filemode='w',
format='%(asctime)s %(message)s',
datefmt='%m/%d/%Y %H:%M:%S')
logging.info('program started')
logging.info('command line: {0}'.format(' '.join(sys.argv)))
# Delete consensus file if it already exists (so can use append file in functions)
if args.report_new_consensus or args.report_all_consensus:
new_alleles_filename = args.output + ".consensus_alleles.fasta"
if os.path.exists(new_alleles_filename):
os.remove(new_alleles_filename)
# vars to store results
mlst_results_hashes = [] # dict (sample->MLST result string) for each MLST output files created/read
gene_result_hashes = [] # dict (sample->gene->result) for each gene typing output files created/read
# parse list of file sets to analyse
fileSets = read_file_sets(args) # get list of files to process
if args.merge_paired:
mate1 = [] # list of forward read files
mate2 = [] # list of reverse read files
for prefix in fileSets:
reads = fileSets[prefix] # forward, reverse as list
mate1.append(reads[0])
mate2.append(reads[1])
fileSets.clear() # remove all individual read sets
fileSets["combined"] = [",".join(mate1),",".join(mate2)] # all input reads belong to same strain, ie single file set
logging.info('Assuming all reads belong to single strain. A single combined result will be returned.')
# run MLST scoring
if fileSets and args.mlst_db:
if not args.mlst_definitions:
# print warning to screen to alert user, may want to stop and restart
print "Warning, MLST allele sequences were provided without ST definitions:"
print " allele sequences: " + str(args.mlst_db)
print " these will be mapped and scored, but STs can not be calculated"
# log
logging.info("Warning, MLST allele sequences were provided without ST definitions:")
logging.info(" allele sequences: " + str(args.mlst_db))
logging.info(" these will be mapped and scored, but STs can not be calculated")
bowtie_index(args.mlst_db) # index the MLST database
# score file sets against MLST database
mlst_report, mlst_results = run_srst2(args, fileSets, args.mlst_db, "mlst")
logging.info('MLST output printed to ' + mlst_report[0])
#mlst_reports_files += mlst_report
mlst_results_hashes += mlst_results
# run gene detection
if fileSets and args.gene_db:
bowtie_index(args.gene_db) # index the gene databases
db_reports, db_results = run_srst2(args,fileSets,args.gene_db,"genes")
for outfile in db_reports:
logging.info('Gene detection output printed to ' + outfile)
gene_result_hashes += db_results
# process prior results files
if args.prev_output:
unique_results_files = list(OrderedDict.fromkeys(args.prev_output))
for results_file in unique_results_files:
results, dbtype, dbname = read_results_from_file(results_file)
if dbtype == "mlst":
mlst_results_hashes.append(results)
elif dbtype == "genes":
gene_result_hashes.append(results)
elif dbtype == "compiled":
# store mlst in its own db
mlst_results = {}
for sample in results:
if "mlst" in results[sample]:
mlst_results[sample] = results[sample]["mlst"]
del results[sample]["mlst"]
mlst_results_hashes.append(mlst_results)
gene_result_hashes.append(results)
# compile results if multiple databases or datasets provided
if ( (len(gene_result_hashes) + len(mlst_results_hashes)) > 1 ):
compiled_output_file = args.output + "__compiledResults.txt"
compile_results(args,mlst_results_hashes,gene_result_hashes,compiled_output_file)
elif args.prev_output:
logging.info('One previous output file was provided, but there is no other data to compile with.')
logging.info('SRST2 has finished.')
if __name__ == '__main__':
main()
|