/usr/lib/slic3r-prusa3d/Slic3r/Geometry.pm is in slic3r-prusa 1.39.1+dfsg-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | package Slic3r::Geometry;
use strict;
use warnings;
require Exporter;
our @ISA = qw(Exporter);
# Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp
our @EXPORT_OK = qw(
PI epsilon
angle3points
collinear
dot
line_intersection
normalize
point_in_segment
polyline_lines
polygon_is_convex
polygon_segment_having_point
scale
unscale
scaled_epsilon
size_2D
X Y Z
convex_hull
chained_path_from
deg2rad
rad2deg
rad2deg_dir
);
use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
use constant X1 => 0;
use constant Y1 => 1;
use constant X2 => 2;
use constant Y2 => 3;
sub epsilon () { 1E-4 }
sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }
sub scale ($) { $_[0] / &Slic3r::SCALING_FACTOR }
sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }
# used by geometry.t, polygon_segment_having_point
sub point_in_segment {
my ($point, $line) = @_;
my ($x, $y) = @$point;
my $line_p = $line->pp;
my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
# check whether the point is in the segment bounding box
return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
&& $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
# if line is vertical, check whether point's X is the same as the line
if ($line_p->[A][X] == $line_p->[B][X]) {
return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
}
# calculate the Y in line at X of the point
my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
* ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
return abs($y3 - $y) < epsilon ? 1 : 0;
}
# used by geometry.t
sub polyline_lines {
my ($polyline) = @_;
my @points = @$polyline;
return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
}
# given a $polygon, return the (first) segment having $point
# used by geometry.t
sub polygon_segment_having_point {
my ($polygon, $point) = @_;
foreach my $line (@{ $polygon->lines }) {
return $line if point_in_segment($point, $line);
}
return undef;
}
# polygon must be simple (non complex) and ccw
sub polygon_is_convex {
my ($points) = @_;
for (my $i = 0; $i <= $#$points; $i++) {
my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
return 0 if $angle < PI;
}
return 1;
}
sub normalize {
my ($line) = @_;
my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
or return [0, 0, 0]; # to avoid illegal division by zero
return [ map $_ / $len, @$line ];
}
# 2D dot product
# used by 3DScene.pm
sub dot {
my ($u, $v) = @_;
return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
}
sub line_intersection {
my ($line1, $line2, $require_crossing) = @_;
$require_crossing ||= 0;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return (ref $intersection && $intersection->[1] == $require_crossing)
? $intersection->[0]
: undef;
}
sub collinear {
my ($line1, $line2, $require_overlapping) = @_;
my $intersection = _line_intersection(map @$_, @$line1, @$line2);
return 0 unless !ref($intersection)
&& ($intersection eq 'parallel collinear'
|| ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
if ($require_overlapping) {
my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
}
return 1;
}
sub _line_intersection {
my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;
my ($x, $y); # The as-yet-undetermined intersection point.
my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
my $dx10 = $x1 - $x0; # between the points P and Q.
my $dy32 = $y3 - $y2;
my $dx32 = $x3 - $x2;
my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
my $dx10z = abs( $dx10 ) < epsilon;
my $dy32z = abs( $dy32 ) < epsilon;
my $dx32z = abs( $dx32 ) < epsilon;
my $dyx10; # The slopes.
my $dyx32;
$dyx10 = $dy10 / $dx10 unless $dx10z;
$dyx32 = $dy32 / $dx32 unless $dx32z;
# Now we know all differences and the slopes;
# we can detect horizontal/vertical special cases.
# E.g., slope = 0 means a horizontal line.
unless ( defined $dyx10 or defined $dyx32 ) {
return "parallel vertical";
}
elsif ( $dy10z and not $dy32z ) { # First line horizontal.
$y = $y0;
$x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
}
elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
$y = $y2;
$x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
}
elsif ( $dx10z and not $dx32z ) { # First line vertical.
$x = $x0;
$y = $y2 + $dyx32 * ( $x - $x2 );
}
elsif ( not $dx10z and $dx32z ) { # Second line vertical.
$x = $x2;
$y = $y0 + $dyx10 * ( $x - $x0 );
}
elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
# The slopes are suspiciously close to each other.
# Either we have parallel collinear or just parallel lines.
# The bounding box checks have already weeded the cases
# "parallel horizontal" and "parallel vertical" away.
my $ya = $y0 - $dyx10 * $x0;
my $yb = $y2 - $dyx32 * $x2;
return "parallel collinear" if abs( $ya - $yb ) < epsilon;
return "parallel";
}
else {
# None of the special cases matched.
# We have a "honest" line intersection.
$x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
$y = $y0 + $dyx10 * ($x - $x0);
}
my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);
return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
}
# 2D
sub bounding_box {
my ($points) = @_;
my @x = map $_->x, @$points;
my @y = map $_->y, @$points; #,,
my @bb = (undef, undef, undef, undef);
for (0..$#x) {
$bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
$bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
$bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
$bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
}
return @bb[X1,Y1,X2,Y2];
}
sub size_2D {
my @bounding_box = bounding_box(@_);
return (
($bounding_box[X2] - $bounding_box[X1]),
($bounding_box[Y2] - $bounding_box[Y1]),
);
}
# bounding_box_intersect($d, @a, @b)
# Return true if the given bounding boxes @a and @b intersect
# in $d dimensions. Used by sub collinear.
sub bounding_box_intersect {
my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
my @aa = splice( @bb, 0, 2 * $d ); # The first box.
# (@bb is the second one.)
# Must intersect in all dimensions.
for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
my $i_max = $i_min + $d; # The index for the maximum.
return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
}
return 1;
}
# this assumes a CCW rotation from $p2 to $p3 around $p1
sub angle3points {
my ($p1, $p2, $p3) = @_;
# p1 is the center
my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
- atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
# we only want to return only positive angles
return $angle <= 0 ? $angle + 2*PI() : $angle;
}
1;
|