This file is indexed.

/usr/lib/slic3r-prusa3d/Slic3r/Geometry.pm is in slic3r-prusa 1.39.1+dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
package Slic3r::Geometry;
use strict;
use warnings;

require Exporter;
our @ISA = qw(Exporter);

# Exported by this module. The last section starting with convex_hull is exported by Geometry.xsp
our @EXPORT_OK = qw(
    PI epsilon 

    angle3points
    collinear
    dot
    line_intersection
    normalize
    point_in_segment
    polyline_lines
    polygon_is_convex
    polygon_segment_having_point
    scale
    unscale
    scaled_epsilon
    size_2D

    X Y Z
    convex_hull
    chained_path_from
    deg2rad
    rad2deg
    rad2deg_dir
);

use constant PI => 4 * atan2(1, 1);
use constant A => 0;
use constant B => 1;
use constant X1 => 0;
use constant Y1 => 1;
use constant X2 => 2;
use constant Y2 => 3;

sub epsilon () { 1E-4 }
sub scaled_epsilon () { epsilon / &Slic3r::SCALING_FACTOR }

sub scale   ($) { $_[0] / &Slic3r::SCALING_FACTOR }
sub unscale ($) { $_[0] * &Slic3r::SCALING_FACTOR }

# used by geometry.t, polygon_segment_having_point
sub point_in_segment {
    my ($point, $line) = @_;
    
    my ($x, $y) = @$point;
    my $line_p = $line->pp;
    my @line_x = sort { $a <=> $b } $line_p->[A][X], $line_p->[B][X];
    my @line_y = sort { $a <=> $b } $line_p->[A][Y], $line_p->[B][Y];
    
    # check whether the point is in the segment bounding box
    return 0 unless $x >= ($line_x[0] - epsilon) && $x <= ($line_x[1] + epsilon)
        && $y >= ($line_y[0] - epsilon) && $y <= ($line_y[1] + epsilon);
    
    # if line is vertical, check whether point's X is the same as the line
    if ($line_p->[A][X] == $line_p->[B][X]) {
        return abs($x - $line_p->[A][X]) < epsilon ? 1 : 0;
    }
    
    # calculate the Y in line at X of the point
    my $y3 = $line_p->[A][Y] + ($line_p->[B][Y] - $line_p->[A][Y])
        * ($x - $line_p->[A][X]) / ($line_p->[B][X] - $line_p->[A][X]);
    return abs($y3 - $y) < epsilon ? 1 : 0;
}

# used by geometry.t
sub polyline_lines {
    my ($polyline) = @_;
    my @points = @$polyline;
    return map Slic3r::Line->new(@points[$_, $_+1]), 0 .. $#points-1;
}

# given a $polygon, return the (first) segment having $point
# used by geometry.t
sub polygon_segment_having_point {
    my ($polygon, $point) = @_;
    
    foreach my $line (@{ $polygon->lines }) {
        return $line if point_in_segment($point, $line);
    }
    return undef;
}

# polygon must be simple (non complex) and ccw
sub polygon_is_convex {
    my ($points) = @_;
    for (my $i = 0; $i <= $#$points; $i++) {
        my $angle = angle3points($points->[$i-1], $points->[$i-2], $points->[$i]);
        return 0 if $angle < PI;
    }
    return 1;
}

sub normalize {
    my ($line) = @_;
    
    my $len = sqrt( ($line->[X]**2) + ($line->[Y]**2) + ($line->[Z]**2) )
        or return [0, 0, 0];  # to avoid illegal division by zero
    return [ map $_ / $len, @$line ];
}

# 2D dot product
# used by 3DScene.pm
sub dot {
    my ($u, $v) = @_;
    return $u->[X] * $v->[X] + $u->[Y] * $v->[Y];
}

sub line_intersection {
    my ($line1, $line2, $require_crossing) = @_;
    $require_crossing ||= 0;
    
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
    return (ref $intersection && $intersection->[1] == $require_crossing) 
        ? $intersection->[0] 
        : undef;
}

sub collinear {
    my ($line1, $line2, $require_overlapping) = @_;
    my $intersection = _line_intersection(map @$_, @$line1, @$line2);
    return 0 unless !ref($intersection) 
        && ($intersection eq 'parallel collinear'
            || ($intersection eq 'parallel vertical' && abs($line1->[A][X] - $line2->[A][X]) < epsilon));
    
    if ($require_overlapping) {
        my @box_a = bounding_box([ $line1->[0], $line1->[1] ]);
        my @box_b = bounding_box([ $line2->[0], $line2->[1] ]);
        return 0 unless bounding_box_intersect( 2, @box_a, @box_b );
    }
    
    return 1;
}

sub _line_intersection {
  my ( $x0, $y0, $x1, $y1, $x2, $y2, $x3, $y3 ) = @_;

  my ($x, $y);  # The as-yet-undetermined intersection point.

  my $dy10 = $y1 - $y0; # dyPQ, dxPQ are the coordinate differences
  my $dx10 = $x1 - $x0; # between the points P and Q.
  my $dy32 = $y3 - $y2;
  my $dx32 = $x3 - $x2;

  my $dy10z = abs( $dy10 ) < epsilon; # Is the difference $dy10 "zero"?
  my $dx10z = abs( $dx10 ) < epsilon;
  my $dy32z = abs( $dy32 ) < epsilon;
  my $dx32z = abs( $dx32 ) < epsilon;

  my $dyx10;                            # The slopes.
  my $dyx32;
  
  $dyx10 = $dy10 / $dx10 unless $dx10z;
  $dyx32 = $dy32 / $dx32 unless $dx32z;

  # Now we know all differences and the slopes;
  # we can detect horizontal/vertical special cases.
  # E.g., slope = 0 means a horizontal line.

  unless ( defined $dyx10 or defined $dyx32 ) {
    return "parallel vertical";
  }
  elsif ( $dy10z and not $dy32z ) { # First line horizontal.
    $y = $y0;
    $x = $x2 + ( $y - $y2 ) * $dx32 / $dy32;
  }
  elsif ( not $dy10z and $dy32z ) { # Second line horizontal.
    $y = $y2;
    $x = $x0 + ( $y - $y0 ) * $dx10 / $dy10;
  }
  elsif ( $dx10z and not $dx32z ) { # First line vertical.
    $x = $x0;
    $y = $y2 + $dyx32 * ( $x - $x2 );
  }
  elsif ( not $dx10z and $dx32z ) { # Second line vertical.
    $x = $x2;
    $y = $y0 + $dyx10 * ( $x - $x0 );
  }
  elsif ( abs( $dyx10 - $dyx32 ) < epsilon ) {
    # The slopes are suspiciously close to each other.
    # Either we have parallel collinear or just parallel lines.

    # The bounding box checks have already weeded the cases
    # "parallel horizontal" and "parallel vertical" away.

    my $ya = $y0 - $dyx10 * $x0;
    my $yb = $y2 - $dyx32 * $x2;
    
    return "parallel collinear" if abs( $ya - $yb ) < epsilon;
    return "parallel";
  }
  else {
    # None of the special cases matched.
    # We have a "honest" line intersection.

    $x = ($y2 - $y0 + $dyx10*$x0 - $dyx32*$x2)/($dyx10 - $dyx32);
    $y = $y0 + $dyx10 * ($x - $x0);
  }

  my $h10 = $dx10 ? ($x - $x0) / $dx10 : ($dy10 ? ($y - $y0) / $dy10 : 1);
  my $h32 = $dx32 ? ($x - $x2) / $dx32 : ($dy32 ? ($y - $y2) / $dy32 : 1);

  return [Slic3r::Point->new($x, $y), $h10 >= 0 && $h10 <= 1 && $h32 >= 0 && $h32 <= 1];
}

# 2D
sub bounding_box {
    my ($points) = @_;
    
    my @x = map $_->x, @$points;
    my @y = map $_->y, @$points;    #,,
    my @bb = (undef, undef, undef, undef);
    for (0..$#x) {
        $bb[X1] = $x[$_] if !defined $bb[X1] || $x[$_] < $bb[X1];
        $bb[X2] = $x[$_] if !defined $bb[X2] || $x[$_] > $bb[X2];
        $bb[Y1] = $y[$_] if !defined $bb[Y1] || $y[$_] < $bb[Y1];
        $bb[Y2] = $y[$_] if !defined $bb[Y2] || $y[$_] > $bb[Y2];
    }
    
    return @bb[X1,Y1,X2,Y2];
}

sub size_2D {
    my @bounding_box = bounding_box(@_);
    return (
        ($bounding_box[X2] - $bounding_box[X1]),
        ($bounding_box[Y2] - $bounding_box[Y1]),
    );
}

# bounding_box_intersect($d, @a, @b)
#   Return true if the given bounding boxes @a and @b intersect
#   in $d dimensions.  Used by sub collinear.
sub bounding_box_intersect {
    my ( $d, @bb ) = @_; # Number of dimensions and box coordinates.
    my @aa = splice( @bb, 0, 2 * $d ); # The first box.
    # (@bb is the second one.)
    
    # Must intersect in all dimensions.
    for ( my $i_min = 0; $i_min < $d; $i_min++ ) {
        my $i_max = $i_min + $d; # The index for the maximum.
        return 0 if ( $aa[ $i_max ] + epsilon ) < $bb[ $i_min ];
        return 0 if ( $bb[ $i_max ] + epsilon ) < $aa[ $i_min ];
    }
    
    return 1;
}

# this assumes a CCW rotation from $p2 to $p3 around $p1
sub angle3points {
    my ($p1, $p2, $p3) = @_;
    # p1 is the center
    
    my $angle = atan2($p2->[X] - $p1->[X], $p2->[Y] - $p1->[Y])
              - atan2($p3->[X] - $p1->[X], $p3->[Y] - $p1->[Y]);
    
    # we only want to return only positive angles
    return $angle <= 0 ? $angle + 2*PI() : $angle;
}

1;