This file is indexed.

/usr/share/slsh/local-packages/vector.sl is in slang-xfig 0.2.0~.117-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
% This routine implements some 3-vector operations.
% Copyright (c) 2004-2008 John E. Davis
% You may distribute this file under the terms the GNU General Public
% License.  See the file COPYING for more information.
%
% Version 0.2.0

#ifnexists sincos
private define sincos(x)
{
   return sin(x), cos(x);
}
#endif

private define help (f)
{
#ifexists _xfig_check_help
   () = _xfig_check_help (0, f; help);
#endif
   throw UsageError, "Illegal usage of $f"$;
}

%!%+
%\datatype{Vector_Type}
%\synopsis{vector data type}
%\description
%  The data type used by various vector functions
%  is defined as a structure with the fields
%#v+
%    x, y, z
%#v-
%  A vector can be initialized, e.g., by
%#v+
%    v = vector(x, y ,z);
%#v-
%  The following common operators can be used for vector arithmetics:
%     +/-  : addition/subtraction of scalars or vectors
%      *   : scaling of vectors or dot product of vectors
%      ^   : cross product of two vectors
%    !=/== : (in)equality of two vectors
%     sqr  : scalar product of a vector with itself
%     abs  : norm of a vector
%\seealso{vector}
%!%-
if (0 == is_defined ("Vector_Type")) typedef struct
{
   x,y,z
}
Vector_Type;

%%%%%%%%%%%%%%%%%%%%%%%%
define vector ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector}
%\synopsis{returns a vector object given by its cartesian or spherical coordinates}
%\usage{Vector_Type vector(Double_Type x, y, z)}
%\altusage{Vector_Type vector(Double_Type r, phi, theta; sph)}
%\qualifiers
%\qualifier{sph}{consider the given coordinates to be spherical (r, phi, theta)}
%\description
%  The components of the vector are returned within the \dtype{Vector_Type}
%  and are accessible like a structure with the fields x, y, and z.
%  If the \var{sph} qualifier is given, the cartesian coordinates are
%  calculated as
%#v+
%    [x, y, z] =
%        r * [cos(phi)*sin(theta), sin(phi)*sin(theta), cos(theta)]
%#v-
%\seealso{Vector_Type}
%!%-
{
   variable x, y, z;
   ifnot (_NARGS) return help(_function_name());
   (x,y,z) = ();

   variable v = @Vector_Type;

   if (__is_numeric (x) != 2)
     x = typecast (x, Double_Type);
   if (__is_numeric (y) != 2)
     y = typecast (y, Double_Type);
   if (__is_numeric (z) != 2)
     z = typecast (z, Double_Type);

   % spherical coordinates given
   if (qualifier_exists("sph"))
   {
     variable sinphi, cosphi, sintheta, costheta;
     (sinphi, cosphi) = sincos(y);
     (sintheta, costheta) = sincos(z);
     (x, y, z) = (x * cosphi * sintheta, x * sinphi * sintheta, x * costheta);
   }

   v.x = x;
   v.y = y;
   v.z = z;
   return v;
}

%%%%%%%%%%%%%%%%%%%%%%%%
define dotprod ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{dotprod}
%\synopsis{calculates the dot product of the given vectors}
%\usage{Double_Type dotprod(Vector_Type a, b)}
%\qualifiers
%  none
%\description
%  The dot product is calculated as
%#v+
%    a.x*b.x + a.y*b.y + a.z*b.z
%#v-
%\seealso{vector}
%!%-
{
   variable a, b;
   ifnot (_NARGS) return help(_function_name());
   (a,b) = ();
   return a.x*b.x + a.y*b.y + a.z*b.z;
}

%%%%%%%%%%%%%%%%%%%%%%%%
define crossprod ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{crossprod}
%\synopsis{calculates the cross product of the given vectors}
%\usage{Vector_Type crossprod(a, b)}
%\qualifiers
%  none
%\description
%  The returned vector is calculated as
%#v+
%    x = a.y*b.z - b.y*a.z
%    y = a.z*b.x - b.z*a.x
%    z = a.x*b.y - b.x*a.y
%#v-
%\seealso{vector}
%!%-
{
   ifnot (_NARGS) return help(_function_name());
   variable a, b; (a,b) = ();
   variable ax=a.x,ay=a.y,az=a.z,bx=b.x,by=b.y,bz=b.z;
   return vector (ay*bz-by*az, az*bx-bz*ax, ax*by-bx*ay);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_sqr ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_sqr}
%\synopsis{returns the scalar product of the given vector with itself}
%\usage{Double_Type vector_sqr(Vector_Type v)}
%\qualifiers
%  none
%\description
%  The scalar product of the given vector is returned using
%#v+
%    dotprod(v, v)
%#v-
%\seealso{dotprod, vector}
%!%-
{
    ifnot (_NARGS) return help(_function_name());
    variable v = ();
    return dotprod (v,v);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_norm ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_norm}
%\synopsis{returns the norm of the given vector}
%\usage{Double_Type vector_norm(Vector_Type v)}
%\qualifiers
%  none
%\description
%  The norm of the given vector is calculated as
%#v+
%    sqrt(v.x^2 + v.y^2 + v.z^2)
%#v-
%\seealso{vector_sqr, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable v = ();
   return hypot (v.x, v.y, v.z);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define normalize_vector ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{normalize_vector}
%\synopsis{normalizes the given vector}
%\usage{normalize_vector(Vector_Type v);}
%\qualifiers
%  none
%\description
%  The given vector is normalized such that
%#v+
%    vector_norm(v) = 1
%#v-
%\seealso{vector_norm, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable v = ();
   variable len = hypot (v.x, v.y, v.z);
   v.x /= len;
   v.y /= len;
   v.z /= len;
}

%%%%%%%%%%%%%%%%%%%%%%%%
define unit_vector ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{unit_vector}
%\synopsis{normalizes the given vector}
%\usage{Vector_Type unit_vector(Vector_Type v)}
%\qualifiers
%  none
%\description
%  The given vector is normalized such that
%#v+
%    vector_norm(v) = 1
%#v-
%\seealso{normalize_vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable v = ();
   v = @v; %  ok if normalize_vector creates new fields
   normalize_vector (v);
   return v;
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_sum ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_sum}
%\synopsis{calculates the sum of two vectors}
%\usage{Vector_Type vector_sum(Vector_Type a, b)}
%\qualifiers
%  none
%\description
%  The components of the two given vectors are
%  added and the resulting vector is returned.
%  Instead of calling this function, operator
%  arithmetic can be used as well:
%#v+
%    a + b
%#v-
%\seealso{vector_diff, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable a, b; (a,b) = ();
   variable c = @Vector_Type;
   c.x = a.x+b.x; c.y = a.y+b.y; c.z = a.z+b.z;
   return c;
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_a_plus_bt ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_a_plus_bt}
%\synopsis{calculates the time dependent sum of two vectors}
%\usage{Vector_Type vector_a_plus_bt(Vector_Type a, b, Double_Type t)}
%\qualifiers
%  none
%\description
%  The components of the second vector are scaled
%  by t and added to the first vector:
%#v+
%    a + t*b
%#v-
%  This can be done by pure operator arithmetic as
%  well as using other functions like
%#v+
%    vector_sum(a, vector_mul(t, b))
%#v-
%\seealso{vector_sum, vector_mul, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable a, b, t; (a, b, t) = ();
   return vector(a.x + t * b.x,
                 a.y + t * b.y,
                 a.z + t * b.z);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_diff ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_diff}
%\synopsis{calculates the difference of two vectors}
%\usage{Vector_Type vector_diff(Vector_Type a, b)}
%\qualifiers
%  none
%\description
%  The components of the two given vectors are
%  subtracted and the resulting vector is returned.
%  Instead of calling this function, operator
%  arithmetic can be used as well:
%#v+
%    a - b
%#v-
%\seealso{vector_sum, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable a, b; (a,b) = ();
   return vector(a.x-b.x, a.y-b.y, a.z-b.z);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_mul ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_mul}
%\synopsis{the given vector is scaled by a scalar}
%\usage{Vector_Type vector_mul(Double_Type a, Vector_Type v)}
%\qualifiers
%  none
%\description
%  The components of the given vector are scaled
%  by a scalar and the resulting vector is returned.
%  Instead of calling this function, operator
%  arithmetic can be used as well:
%#v+
%    a*v
%#v-
%\seealso{vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable a, v;  (a, v) = ();
   return vector(a*v.x, a*v.y, a*v.z);
}

% shortcut for vector_mul(a, v)
private define vector_times_scalar (v, a)
{
   return vector_mul (a, v);
}

% logical comparison of the components of two vectors
private define vector_eqs (a, b)
{
   return (a.x == b.x) and (a.y == b.y) and (a.z == b.z);
}

% logical comparison of the components of two vectors
private define vector_neqs (a, b)
{
   return not vector_eqs (a, b);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_change_basis ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_change_basis}
%\synopsis{applies a basis transformation to the given vector}
%\usage{Vector_Type vector_change_basis(Vector_Type v, e1, e2, e3)}
%\qualifiers
%  none
%\description
%  The components of the given vector are transformed into
%  the new basis given by the unit vectors e1, e2 and e3:
%#v+
%    v.x*e1 + v.y*e2 + v.z*e3
%#v-
%\seealso{unit_vector, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable v, e1, e2, e3;
   (v, e1, e2, e3) = ();
   return vector_sum (vector_mul (v.x, e1),
		      vector_sum (vector_mul(v.y, e2), vector_mul(v.z, e3)));
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_rotate ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_rotate}
%\synopsis{rotates the given vector around another vector}
%\usage{Vector_Type vector_rotate(Vector_Type v, n, Double_Type theta)}
%\qualifiers
%  none
%\description
%  The vector v is rotated around the given vector n
%  by the angle theta:
%#v+
%      cos(theta)*v
%    + dotprod(v,n)*(1-cos(theta))*n
%    + sin(theta)*crossprod(n,v)
%#v-
%\seealso{dotprod, crossprod, vector}
%!%-
{
   ifnot (_NARGS) return help (_function_name());
   variable p, n, theta; (p,n,theta) = ();
   variable pn = dotprod (p, n);
   variable s, c; (s, c) = sincos (theta);
   return vector_sum (vector_mul (c,p),
		      vector_sum (vector_mul (pn*(1.0-c),n),
				  vector_mul (s, crossprod(n,p))));
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_get_transformation ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_get_transformation}
%\synopsis{finds a rotation axis and angle that will produce the given basis}
%\usage{(Vector_Type, Double_Type) vector_get_transformation(Vector_Type x1_hat, y1_hat);}
%\qualifiers
%  none
%\description
%  The orthonormal basis, given by the unit vectors
%  x1_hat, y1_hat and x1_hat cross y1_hat = z1_hat,
%  can be produced by a transformation of the
%  standard orthonormal basis
%#v+
%    (1,0,0), (0,1,0), (0,0,1)
%#v-
%  by rotation around an axis and angle, which are
%  returned by this function.
%\seealso{vector_rotate, vector_change_basis, unit_vector, vector}
%!%-
{
   ifnot (_NARGS) return help(_function_name());
   variable x1_hat, x2_hat; (x1_hat, x2_hat) = ();
   variable x3_hat = crossprod (x1_hat, x2_hat);
   variable a1, a2, a3;
   variable b1, b2, b3;
   variable c1, c2, c3;

   a1 = x1_hat.x;		       %  m11
   a2 = x2_hat.y;		       %  m22
   a3 = x3_hat.z;		       %  m33
   b1 = x2_hat.z;		       %  m23
   b2 = x3_hat.x;		       %  m31
   b3 = x1_hat.y;		       %  m12
   c1 = x3_hat.y;		       %  m32
   c2 = x1_hat.z;		       %  m13
   c3 = x2_hat.x;		       %  m21

   % Matrix is:
   %
   %  [a1 b3 c2]
   %  [c3 a2 b1]
   %  [b2 c1 a3]
   %

   variable cos_theta = 0.5*(a1+a2+a3-1.0);
   variable sin_theta = sqrt (1.0 - cos_theta*cos_theta);
   if (sin_theta < 1e-12)
     return vector (0, 0, 1), 0.0;
   variable den = 2.0*sin_theta;
   return vector ((b1-c1)/den, (b2-c2)/den, (b3-c3)/den), asin(sin_theta);
}

%%%%%%%%%%%%%%%%%%%%%%%%
define vector_chs ()
%%%%%%%%%%%%%%%%%%%%%%%%
%!%+
%\function{vector_chs}
%\synopsis{inverts the given vector}
%\usage{Vector_Type vector_chs(Vector_Type v)}
%\qualifiers
%  none
%\description
%  The components of the given vector are
%  inverted such that
%#v+
%    v + vector_chs(v) = (0, 0, 0)
%#v-
%\seealso{vector_sum, vector}
%!%-
{
   ifnot (_NARGS) return help(_function_name());
   variable a = ();
   variable v = @Vector_Type;
   v.x = -a.x;
   v.y = -a.y;
   v.z = -a.z;
   return v;
}

#ifexists __add_unary
% Operator overloading
__add_unary ("sqr", Double_Type, &vector_sqr, Vector_Type);
__add_unary ("abs", Double_Type, &vector_norm, Vector_Type);
__add_unary ("-", Vector_Type, &vector_chs, Vector_Type);

__add_binary ("+", Vector_Type, &vector_sum, Vector_Type, Vector_Type);
__add_binary ("-", Vector_Type, &vector_diff, Vector_Type, Vector_Type);
__add_binary ("*", Double_Type, &dotprod, Vector_Type, Vector_Type);
%__add_binary ("*", Vector_Type, &vector_mul, Array_Type, Vector_Type);
__add_binary ("*", Vector_Type, &vector_mul, Any_Type, Vector_Type);
__add_binary ("*", Vector_Type, &vector_times_scalar, Vector_Type, Any_Type);
__add_binary ("^", Vector_Type, &crossprod, Vector_Type, Vector_Type);

__add_binary ("==", Char_Type, &vector_eqs, Vector_Type, Vector_Type);
__add_binary ("!=", Char_Type, &vector_neqs, Vector_Type, Vector_Type);
#endif

$1 = path_concat (path_concat (path_dirname (__FILE__), "help"), "vector.hlp");
if (NULL != stat_file ($1))
  add_doc_file ($1);