This file is indexed.

/usr/include/scilab/sparseOp.hxx is in scilab-include 6.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 *  Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 *  Copyright (C) 2010-2010 - DIGITEO - Bernard Hugueney
 *
 * Copyright (C) 2012 - 2016 - Scilab Enterprises
 *
 * This file is hereby licensed under the terms of the GNU GPL v2.0,
 * pursuant to article 5.3.4 of the CeCILL v.2.1.
 * This file was originally licensed under the terms of the CeCILL v2.1,
 * and continues to be available under such terms.
 * For more information, see the COPYING file which you should have received
 * along with this program.
 *
 */

#ifndef __SPARSEOP_HH__
#define __SPARSEOP_HH__

#include "sparse.hxx"
#include "keepForSparse.hxx"


/*
 * Logical operators implementation for types::Sparse and types::SparseBool
 *
 * Many operations result in sparse matrices with a lot of true elements
 * they are slow and take a lot of memory to implement.
 *
 * Mixed mode operators between real and complex values are commented out
 * until Eigen::Sparse provides a .coeff() member function to cast<> retults.
 *
 * complex ordering is selected through conditional compilation to show
 * how SEP 21 could be implemented.
 *
 * pruning [c|sh]ould be tied to relative precision as defined in elem_common.h
 *
 */

namespace std
{
/* std namespace does not implement complex ordering: we use the lexicographical order   */
typedef double (*cplxFun_t)(std::complex<double> const&);
#ifndef SCI_CPLX_ORDER_SEP21
/* on abs() and arg() according to current practise */
cplxFun_t const mostSignificant (&std::abs);
cplxFun_t const leastSignificant(&std::arg);
#else
/*  on real and imaginary parts as per SEP 21 recommandation.  */
cplxFun_t const mostSignificant (&std::real);
cplxFun_t const leastSignificant(&std::imag);
#endif

template<> struct less<std::complex<double> >: std::binary_function<std::complex<double>, std::complex<double>, bool>
{
    bool operator()(std::complex<double> const& op1, std::complex<double> const& op2) const
    {
        if (mostSignificant(op1) < mostSignificant(op2))
        {
            return true;
        }
        if (mostSignificant(op2) < mostSignificant(op1))
        {
            return false;
        }
        return leastSignificant(op1) < leastSignificant(op2);
    }
};
template<> struct greater<std::complex<double> >: std::binary_function<std::complex<double>, std::complex<double>, bool>
{
    bool operator()(std::complex<double> const& op1, std::complex<double> const& op2) const
    {
        if (mostSignificant(op1) > mostSignificant(op2))
        {
            return true;
        }
        if (mostSignificant(op2) > mostSignificant(op1))
        {
            return false;
        }
        return leastSignificant(op1) > leastSignificant(op2);
    }
};

template<> struct less_equal<std::complex<double> >: std::binary_function<std::complex<double>, std::complex<double>, bool>
{
    bool operator()(std::complex<double> const& op1, std::complex<double> const& op2) const
    {
        return !std::greater<std::complex<double> >()(op2, op1);
    }
};
template<> struct greater_equal<std::complex<double> >: std::binary_function<std::complex<double>, std::complex<double>, bool>
{
    bool operator()(std::complex<double> const& op1, std::complex<double> const& op2) const
    {
        return !std::less<std::complex<double> >()(op2, op1);
    }
};
}

namespace
{
/*
 * Operations on sparse matrices can require full traversal of the sparse args if the default (0 or false) value
 * of one arg does not set the result to the default result value.
 * For example, '==' does require full traversal because "0. == 0" is true (and the default SparseBool value is false)
 * However, '!=' does not require it because "0. != 0." is false so the default value of the sparse result is good.
 * we dispatch according the operators thanks to the OperatorTraits struct (as is usually done for example to
 * dispatch amongst std:: algorithms implementations according to the iterator_category in std::iterator_traits<>
 */
struct FullTraversal {};
struct UnionTraversal {};

struct WithFullTraversal
{
    typedef FullTraversal traversal;
};

struct WithUnionTraversal
{
    typedef UnionTraversal traversal;
};

template<typename T> struct OperatorTraits : WithFullTraversal
{
};


template<typename Scalar> struct OperatorTraits<std::less<Scalar> > : WithUnionTraversal
{
};
template<typename Scalar> struct OperatorTraits<std::greater<Scalar> > : WithUnionTraversal
{
};
template<typename Scalar> struct OperatorTraits<std::not_equal_to<Scalar> > : WithUnionTraversal
{
};
template<typename Scalar> struct OperatorTraits<std::less_equal<Scalar> > : WithFullTraversal
{
};
template<typename Scalar> struct OperatorTraits<std::greater_equal<Scalar> > : WithFullTraversal
{
};
template<typename Scalar> struct OperatorTraits<std::equal_to<Scalar> > : WithFullTraversal
{
};

// would be even better with intersectionTraversal if Eigen exposed such traversal
template<typename Scalar> struct OperatorTraits<std::logical_and<Scalar> > : WithUnionTraversal
{
};

template<typename Scalar> struct OperatorTraits<std::logical_or<Scalar> > : WithUnionTraversal
{
};

/*
 * Special case when the second operand is a Scalar
 * @param op1 Eigen first operand
 * @param op2 scalar second operand
 * @param op binary operation to perform
 * @return ptr to the new Eigen::Sparse result containing the cwise binary op with the scalar.
 */
template<typename Sp1, typename Scalar2, typename Op>
Eigen::SparseMatrix<typename Op::result_type, Eigen::RowMajor>* scalarOp(Eigen::EigenBase<Sp1> const& op1, Scalar2 op2, Op op)
{
    typedef typename Eigen::internal::traits<Sp1>::Scalar Scalar1;
    typedef typename Op::result_type result_scalar;
    typedef Eigen::SparseMatrix<result_scalar, Eigen::RowMajor> result_t;
    result_t* res;
    if (op(Scalar1(), op2) == result_scalar())
    {
        res = new result_t(op1.derived().unaryExpr(std::bind2nd(op, op2)));
        res->prune(&keepForSparse<result_scalar>);
    }
    else
    {
        /* it is not possible to  perform full traversal (including virtual 0 elts) of the sparse
         matrix hence the need for a dense tmp :( */
        // TODO remove dense temp when Eigen provides sparse full traversal API
        Eigen::Matrix<Scalar1, Eigen::Dynamic, Eigen::Dynamic> tmp(op1);
        res = new result_t(tmp.unaryExpr(std::bind2nd(op, op2)).sparseView());
    }
    return res;
}

/*
 * Special case when the first operand is a Scalar
 * @param op1 scalar first operand
 * @param op2 Eigen second operand
 * @param op binary operation to perform
 * @return ptr to the new Eigen::Sparse result containing the cwise binary op with the scalar.
 */
template<typename Scalar1, typename Sp2, typename Op>
Eigen::SparseMatrix<typename Op::result_type, Eigen::RowMajor>* scalarOp(Scalar1 op1, Eigen::EigenBase<Sp2> const& op2, Op op)
{
    typedef typename Eigen::internal::traits<Sp2>::Scalar Scalar2;
    typedef typename Op::result_type result_scalar;
    typedef Eigen::SparseMatrix<result_scalar, Eigen::RowMajor> result_t;
    result_t* res;
    if (op(op1, Scalar2()) == result_scalar())
    {
        res = new result_t(op2.derived().unaryExpr(std::bind1st(op, op1)));
        res->prune(&keepForSparse<result_scalar>);
    }
    else
    {
        // TODO remove dense temp when Eigen provides sparse full traversal API
        Eigen::Matrix<Scalar2, Eigen::Dynamic, Eigen::Dynamic> tmp(op2);
        res = new result_t(tmp.unaryExpr(std::bind1st(op, op1)).sparseView());
    }
    return res;
}
/*
 * Common case between two Eigen matrices. Performs the dispatch to scalar specialized versions
 * or according to the traversal.
 *
 * @param op1 Eigen first operand
 * @param op2 Eigen second operand
 * @param op binary operation to perform
 * @return ptr to the new Eigen::Sparse result containing the cwise binary op with the two matrices.
 */
template< typename Sp1, typename Sp2 , typename Op>
Eigen::SparseMatrix<typename Op::result_type, Eigen::RowMajor>* cwiseOp(Eigen::EigenBase<Sp1> const& op1, Eigen::EigenBase<Sp2> const& op2, Op op)
{
    if (op1.rows() == 1 && op1.cols() == 1)
    {
        return scalarOp(op1.derived().coeff(0, 0), op2, op);
    }
    if (op2.rows() == 1 && op2.cols() == 1)
    {
        return scalarOp(op1, op2.derived().coeff(0, 0), op);
    }
    return cwiseOp(op1, op2, op, typename OperatorTraits<Op>::traversal());
}
/*
 * Performs the cwise binary operator between two non scalar matrices, with full traversal.
 * SLOW and using memory, but you asked for it by using inapropriate operators.
 *
 * @param op1 Eigen first operand
 * @param op2 Eigen second operand
 * @param op binary operation to perform
 * @return ptr to the new Eigen::Sparse result containing the cwise binary op between the two matrices
 */
template< typename Sp1, typename Sp2 , typename Op>
Eigen::SparseMatrix<typename Op::result_type, Eigen::RowMajor>* cwiseOp(Eigen::EigenBase<Sp1> const& op1, Eigen::EigenBase<Sp2> const& op2, Op op, FullTraversal /*unused*/)
{
    typedef typename Op::result_type result_scalar;
    typedef Eigen::SparseMatrix<result_scalar, Eigen::RowMajor> result_t;
    typedef typename Eigen::internal::traits<Sp1>::Scalar Scalar1;
    typedef typename Eigen::internal::traits<Sp2>::Scalar Scalar2;
    // TODO remove dense temp when Eigen provides sparse full traversal API
    Eigen::Matrix<Scalar1, Eigen::Dynamic, Eigen::Dynamic> tmp1(op1);
    Eigen::Matrix<Scalar2, Eigen::Dynamic, Eigen::Dynamic> tmp2(op2);

    return new result_t(tmp1.binaryExpr(tmp2, op).sparseView());
}
/*
 * Performs the cwise binary operator between two non scalar matrices, with full traversal.
 * SLOW and using memory, but you asked for it by using inapropriate operators.
 *
 * @param op1 Eigen first operand
 * @param op2 Eigen second operand
 * @param op binary operation to perform
 * @return ptr to the new Eigen::Sparse result containing the cwise binary op with the scalar.
 */
template< typename Sp1, typename Sp2 , typename Op>
Eigen::SparseMatrix<typename Op::result_type, Eigen::RowMajor>* cwiseOp(Eigen::EigenBase<Sp1> const& op1, Eigen::EigenBase<Sp2> const& op2, Op op, UnionTraversal /*unused*/)
{
    typedef typename Op::result_type result_scalar;
    typedef Eigen::SparseMatrix<result_scalar, Eigen::RowMajor> result_t;
    result_t* res(new result_t(op1.derived().binaryExpr(op2.derived(), op)));
    res->prune(&keepForSparse<result_scalar>);
    return res;
}

/*
 * Performs the cwise binary operator between two types::Sparse arguments
 * dispatching according to whether they are complex or not.
 *
 * @param op1 types::Sparse first operand
 * @param op2 types::Sparse second operand
 * @param op binary operation to perform
 * @return ptr to the new types::SparseBool result containing the cwise binary op with the scalar.
 */
template<template <typename ElementType> class Op>
types::SparseBool* cwiseOp(types::Sparse const& op1, types::Sparse const& op2)
{
    types::SparseBool::BoolSparse_t* res(0);
    if (op1.isComplex())
    {
        if (op2.isComplex())
        {
            res = cwiseOp(*op1.matrixCplx, *op2.matrixCplx, Op<std::complex<double> >());
        }
        else
        {
            types::Sparse temp(op2);
            temp.toComplex();
            res = cwiseOp(*op1.matrixCplx, *temp.matrixCplx, Op<std::complex<double> >());
        }
    }
    else
    {

        if (op2.isComplex())
        {
            types::Sparse temp(op1);
            temp.toComplex();
            res = cwiseOp(*temp.matrixCplx, *op2.matrixCplx, Op<std::complex<double> >());
        }
        else
        {
            res = cwiseOp(*op1.matrixReal, *op2.matrixReal, Op<double>());
        }
    }
    return new types::SparseBool(res);
}

template<template <typename ElementType> class Op>
types::SparseBool* cwiseOp(types::SparseBool const& op1, types::SparseBool const& op2)
{
    return new types::SparseBool(cwiseOp(*op1.matrixBool, *op2.matrixBool, Op<bool>()));
}

}
#endif