/usr/include/scilab/matrixiterator.hxx is in scilab-include 6.0.1-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 | /*
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008-2008 - DIGITEO - Bernard HUGUENEY
*
* Copyright (C) 2012 - 2016 - Scilab Enterprises
*
* This file is hereby licensed under the terms of the GNU GPL v2.0,
* pursuant to article 5.3.4 of the CeCILL v.2.1.
* This file was originally licensed under the terms of the CeCILL v2.1,
* and continues to be available under such terms.
* For more information, see the COPYING file which you should have received
* along with this program.
*
*/
#ifndef MATRIXITERATORS_HXX
#define MATRIXITERATORS_HXX
#include <complex>
#include <utility>
#include <iterator>
#include <Eigen/Sparse>
#include "double.hxx"
#include "sparse.hxx"
/*
In order to reuse code for the various Matrix Classes, we need some uniform API to access elements.
We cannot use runtime polymorphism (with dynamic dispatching) because of the runtime cost so we have to
use compile-time polymorphism with templates.
The provided free function templates get<>() and set<>() provide such an uniform API.
In order to perform element-wise operations on Matrices (copy, partial or total assignments, etc.),
we provide an iterator. To enable reading (with get<>()) or writiting (with set<>()) we provide an Accessor<> proxy.
As is it common to iterate over a sub-matrix according to indices given by a Scilab variable (Double) we provide
an iterator created from such a variable (IteratorFromVar).
*/
template<typename T>
struct UndefinedAccessorForType {};
/**
This free function overloads perform read access into a 2D container, using 0-based indices.
@param s the 2D structure used to fetch a value of type V.
@param r : the row (0 based)
@param c : the column (0 based)
@return : the value of type V at row r and column c of structure s
*/
template<typename V, typename S> V get(S SPARSE_CONST&, int, int)
{
return UndefinedAccessorForType<S>();
}
template<> double get(types::Double SPARSE_CONST& d, int r, int c)
{
return d.getReal(r, c);
}
template<> std::complex<double> get(types::Double SPARSE_CONST& d, int r, int c)
{
return std::complex<double>(d.getReal(r, c), d.getImg(r, c));
}
template<> bool get(types::Bool SPARSE_CONST& d, int r, int c)
{
return d.get(r, c) == 1;
}
template<> int get(types::Bool SPARSE_CONST& d, int r, int c)
{
return d.get(r, c);
}
template<> bool get(types::SparseBool SPARSE_CONST& d, int r, int c)
{
return d.get(r, c);
}
template<> int get(types::SparseBool SPARSE_CONST& d, int r, int c)
{
return d.get(r, c);
}
template<> double get(types::Sparse SPARSE_CONST& s, int r, int c)
{
return s.getReal(r, c);
}
template<> std::complex<double> get(types::Sparse SPARSE_CONST& s, int r, int c)
{
return s.get(r, c);
}
template<> double get(types::Sparse::RealSparse_t SPARSE_CONST&s, int r, int c)
{
return s.coeff(r, c);
}
template<> std::complex<double> get(types::Sparse::RealSparse_t SPARSE_CONST&s, int r, int c)
{
return std::complex<double>(s.coeff(r, c), 0.);
}
template<> bool get(types::SparseBool::BoolSparse_t SPARSE_CONST& d, int r, int c)
{
return d.coeff(r, c);
}
template<> double get(types::Sparse::CplxSparse_t SPARSE_CONST&s, int r, int c)
{
return s.coeff(r, c).real();
}
template<> std::complex<double> get(types::Sparse::CplxSparse_t SPARSE_CONST&s, int r, int c)
{
return s.coeff(r, c);
}
/**
This free function overloads perform write access into a 2D container, using 0-based indices.
@param s the 2D structure used to fetch a value of type V.
@param r : the row (0 based)
@param c : the column (0 based)
@param v : the value of type V to set at row r and column c of structure s
@return : true iff everything went ok (should throw otherwise anyway).
*/
template<typename S, typename V> bool set(S &, int, int, V)
{
return UndefinedAccessorForType<S>();
}
template<> bool set(types::Double & d, int r, int c, double v)
{
return d.set(r, c, v);
}
template<> bool set(types::Double & d, int r, int c, std::complex<double> v)
{
return d.set(r, c, v.real()) && d.setImg(r, c, v.imag());
}
template<> bool set(types::Sparse & s, int r, int c, double v)
{
return s.set(r, c, v);
}
template<> bool set(types::Sparse & s, int r, int c, std::complex<double> v)
{
return s.set(r, c, v);
}
template<> bool set(types::Bool & d, int r, int c, bool v)
{
return d.set(r, c, v);
}
template<> bool set(types::SparseBool & d, int r, int c, bool v)
{
return d.set(r, c, v);
}
template<> bool set(types::Bool & d, int r, int c, int v)
{
return d.set(r, c, v);
}
template<> bool set(types::SparseBool & d, int r, int c, int v)
{
return d.set(r, c, v != 0);
}
template<> bool set(types::Sparse::RealSparse_t& s, int r, int c, double v)
{
if (v != 0.)
{
if (s.isCompressed() && s.coeff(r, c) == 0)
{
s.reserve(s.nonZeros() + 1);
}
s.coeffRef(r, c) = v;
}
return true;
}
template<> bool set(types::Sparse::RealSparse_t& s, int r, int c, std::complex<double> v)
{
if ( v.real() != 0.)
{
if (s.isCompressed() && s.coeff(r, c) == 0)
{
s.reserve(s.nonZeros() + 1);
}
s.coeffRef(r, c) = v.real();
}
return true;
}
// should we make this a compile error ?
template<> bool set(types::Sparse::CplxSparse_t& s, int r, int c, double v)
{
if (v != 0.)
{
if (s.isCompressed() && s.coeff(r, c) == 0.)
{
s.reserve(s.nonZeros() + 1);
}
s.coeffRef(r, c) = std::complex<double>(v);
}
return true;
}
namespace
{
}
template<> bool set(types::Sparse::CplxSparse_t& s, int r, int c, std::complex<double> v)
{
if (v != 0.)
{
if (s.isCompressed() && s.coeff(r, c) == 0.)
{
s.reserve(s.nonZeros() + 1);
}
s.coeffRef(r, c) = v;
}
return true;
}
template<> bool set(types::SparseBool::BoolSparse_t& s, int r, int c, bool v)
{
if (v)
{
if (s.isCompressed() && s.coeff(r, c) == false)
{
s.reserve(s.nonZeros() + 1);
}
s.coeffRef(r, c) = v;
}
return true;
}
template<typename S> inline int rows(S SPARSE_CONST&s)
{
return s.rows();
}
template<typename S> inline int cols(S SPARSE_CONST&s)
{
return s.cols();
}
template<> inline int rows(types::Double SPARSE_CONST&d)
{
return d.getRows();
}
template<> inline int cols(types::Double SPARSE_CONST&d)
{
return d.getCols();
}
template<> inline int rows(types::Sparse SPARSE_CONST&s)
{
return s.getRows();
}
template<> inline int cols(types::Sparse SPARSE_CONST&s)
{
return s.getCols();
}
template<> inline int rows(types::Bool SPARSE_CONST&s)
{
return s.getRows();
}
template<> inline int cols(types::Bool SPARSE_CONST&s)
{
return s.getCols();
}
template<> inline int rows(types::SparseBool SPARSE_CONST&s)
{
return s.getRows();
}
template<> inline int cols(types::SparseBool SPARSE_CONST&s)
{
return s.getCols();
}
/**
These free function overloads handle nb of rows size queries for 2D containers
wrapping the corresponding member function.
@param s : 2D structure to query
@return : nb of rows
*/
template<typename S> inline int rows(S SPARSE_CONST&s);
template<> inline int rows(types::Double SPARSE_CONST&d);
/**
These free function overloads handle nb of cols size queries for 2D containers
wrapping the corresponding member function.
@param s : 2D structure to query
@return : nb of cols
*/
template<typename S> inline int cols(S SPARSE_CONST&s);
template<> inline int cols(types::Double SPARSE_CONST&d);
/* this proxy struct provides read and write access (using set and get)
with the usual operators (operator*() and operator=() )*/
template<typename S, typename V> struct Accessor
{
/**
@param s_ : 2D structure to access
@param r_ : row to access
@param c_ ; column to access
*/
Accessor(S& s_, int r_, int c_): s(s_), r(r_), c(c_) {}
/**
read accessor as a casting operator
@return : value of s at (r,c)
*/
operator V() SPARSE_CONST
{
// std::cerr<<"reading "<<get<S,V>(s, r, c)<<" @("<<r<<","<<c<<")\n";
return ::get<V>(s, r, c);
}
/**
write accessor as an assignment operator
@param v : value to set at (r,c) in s.
*/
template<typename Sa, typename Va>
Accessor& operator=(Accessor<Sa, Va> const& a)
{
// std::cerr<<"writing "<<( Va(const_cast<Accessor<Sa, Va>&>(a)))<<" @("<<r<<","<<c<<")\n";
// Va tmp=const_cast<Accessor<Sa, Va>&>(a);
// ::set<S,V>(s, r, c, tmp);
::set<S, V>(s, r, c, Va(const_cast<Accessor<Sa, Va>&>(a)));
return *this;
}
Accessor& operator=(Accessor const& a)
{
// std::cerr<<"writing "<<( V(const_cast<Accessor&>(a)))<<" @("<<r<<","<<c<<")\n";
::set<S, V>(s, r, c, V(const_cast<Accessor&>(a)));
return *this;
}
Accessor& operator=(V const& v)
{
// std::cerr<<"writing "<<v<<" @("<<r<<","<<c<<")\n";
::set<S, V>(s, r, c, v);
return *this;
}
private:
S& s;
int r, c;
};
/* convenient typedef for pairs of (row, column) int values used as 2D coords */
typedef std::pair<int, int> Coords2D;
/* convenient typedef for iterator over pairs of (row, column) int values used as 2D coords */
typedef std::iterator<std::forward_iterator_tag, Coords2D > Coords2DIterator;
/**
Iterator over coords making a full row-wise traversal wrapping around when reaching
the end of the 2D container.
*/
struct RowWiseFullIterator : Coords2DIterator
{
/**
@param cMax : size of the 2D structure
*/
RowWiseFullIterator(Coords2D cMax): c(0, 0), cMax(cMax)
{
}
/**
@param cMax : size of the 2D structure
@param cInit : starting coords of the traversal.
*/
RowWiseFullIterator(Coords2D cMax, Coords2D cInit): c(cInit), cMax(cMax)
{
}
/**
@param rm : nb of rows of the 2D structure
@param cm : nb of column of the 2D structure
*/
RowWiseFullIterator(int rm, int cm): c(0, 0), cMax(rm, cm)
{
}
/**
@param rm : nb of rows of the 2D structure
@param cm : nb of column of the 2D structure
@param rInit : starting row of the traversal
@param cInit : starting column of the traversal
*/
RowWiseFullIterator(int rm, int cm, int rInit, int cInit): c(rInit, cInit), cMax(rm, cm)
{
}
RowWiseFullIterator& operator++()
{
if (++c.first == cMax.first)
{
c.first = 0;
if (++c.second == cMax.second)
{
/* wrap around */
c.first = c.second = 0;
}
}
return *this;
}
RowWiseFullIterator operator++(int)
{
RowWiseFullIterator tmp(*this);
++(*this);
return tmp;
}
std::pair<int, int> operator*() const
{
return c;
}
private:
Coords2D c;
Coords2D const cMax;
};
/**
Iterator over coords making a row-wise traversal of non zero elements of an Eigen Sparse Matrix
*/
template<typename Sp>
struct RowWiseSparseIterator : Coords2DIterator
{
/**
@param sp: sparse matrix for non zero elements traversal
*/
RowWiseSparseIterator(Sp const& sp): sp(sp), outerIdx(0), innerIt(sp, 0)
{
}
RowWiseSparseIterator& operator++()
{
++innerIt;
if (!innerIt)
{
if (++outerIdx >= sp.outerSize())
{
outerIdx = 0;
}
new (&innerIt) typename Sp::InnerIterator(sp, outerIdx);// innerIt= typename Sp::InnerIterator(sp, outerIdx) when Eigen will be fixed
}
return *this;
}
RowWiseSparseIterator operator++(int)
{
RowWiseFullIterator tmp(*this);
++(*this);
return tmp;
}
std::pair<int, int> operator*() const
{
// std::cerr<<"sparse it r="<<innerIt.row()<<" c="<<innerIt.col()<<std::endl;
return std::pair<int, int>(innerIt.row(), innerIt.col());
}
private:
Sp const& sp;
typename Eigen::internal::traits<Sp>::Index outerIdx;
typename Sp::InnerIterator innerIt;
};
/**
translate an iterator
*/
template<typename C2DIter>
struct TranslatedIterator : Coords2DIterator
{
/**
@param C2DIter: translation as a vector of (rows, cols)
@param tr: translation as a vector of (rows, cols)
*/
TranslatedIterator(C2DIter const& c2dIter, Coords2D tr): it(c2dIter), tr(tr)
{
}
TranslatedIterator& operator++()
{
++it;
return *this;
}
TranslatedIterator operator++(int)
{
TranslatedIterator tmp(*this);
++(*this);
return tmp;
}
std::pair<int, int> operator*() const
{
std::pair<int, int>res(*it);
res.first += tr.first;
res.second += tr.second;
// std::cerr<<"translated it r="<< res.first<<" c="<<res.second<<std::endl;
return res;
}
private:
C2DIter it;
Coords2D const tr;
};
/**
* Template for iterator over 2D coords from an int*.
* Could handle wrap around with a length arg (i.e. to recycle values instead of raising
* "error 15 Submatrix incorrectly defined."
*/
template<bool AsVector = false> struct Coords : Coords2DIterator
{
Coords(int SPARSE_CONST* coords, int unused = 0): coords(coords), unused(unused)
{
}
Coords& operator++()
{
coords += 2;
return *this;
}
Coords& operator++(int)
{
Coords tmp(*this);
++(*this);
return tmp;
}
Coords2D operator*()const
{
return Coords2D(coords[0] - 1, coords[1] - 1);
}
private:
int const* coords;
int unused;
};
/**
explicit specialization for 2D from 1D int* sequences
(The 2D strcture is considered as a vector)
*/
template<> struct Coords<true> : Coords2DIterator
{
Coords(int SPARSE_CONST* coords, int rMax): coords(coords), rMax(rMax)
{
}
Coords& operator++()
{
++coords;
return *this;
}
Coords operator++(int)
{
Coords tmp(*this);
++(*this);
return tmp;
}
Coords2D operator*()const
{
return Coords2D((coords[0] - 1) % rMax, (coords[0] - 1) / rMax);
}
private:
int const* coords;
int const rMax;
};
/* This 'iterator' class allows traverses the 2D containers, either
Rowwisefull traversal
or with 2D coords from another matrix
or with 1D coords from another vector (1x) matrix
to respect Double insert() API, we take int* and a bool
*/
template<typename S, typename V, typename Iter>
struct MatrixIterator : std::iterator<std::forward_iterator_tag, V>
{
MatrixIterator(S& s_, Iter i_): s(s_), i(i_)
{
}
MatrixIterator& operator++()
{
++i;
return *this;
}
MatrixIterator operator++(int)
{
MatrixIterator tmp(*this);
++i;
return tmp;
}
Accessor<S, V> operator*()
{
return Accessor<S, V>(s, (*i).first, (*i).second);
}
private:
S& s;
Iter i;
};
template<typename V, typename S, typename Iter>
MatrixIterator<S, V, Iter> makeMatrixIterator(S& s, Iter i)
{
return MatrixIterator<S, V, Iter>(s, i);
}
template<typename S> struct IteratorFromVar;
template<typename S> IteratorFromVar<S> makeIteratorFromVar(S& s);
struct Adjacency
{
Adjacency(double const* x, double const*a): xadj(x), adjncy(a) {}
double const* xadj;
double const* adjncy;
};
template<typename In, typename Sz, typename Out>
Out mycopy_n(In i, Sz n, Out o)
{
for (; n; --n, ++i, ++o)
{
*o = *i;
}
return o;
}
template<typename T> std::size_t nonZeros(T SPARSE_CONST& t)
{
return t.getSize();
}
template<> std::size_t nonZeros(types::Sparse SPARSE_CONST& sp)
{
return sp.nonZeros();
}
template<typename Scalar, int Options, typename Index> std::size_t nonZeros(Eigen::SparseMatrix<Scalar, Options, Index> SPARSE_CONST& sp)
{
return sp.nonZeros();
}
/* Default for dense matrix Scilab matrix types
*/
template<typename D> RowWiseFullIterator makeNonZerosIterator(D SPARSE_CONST& d)
{
return RowWiseFullIterator(d.getRows(), d.getCols());
}
template<typename Scalar, int Options, typename Index> RowWiseSparseIterator<Eigen::SparseMatrix<Scalar, Options, Index> > makeNonZerosIterator(Eigen::SparseMatrix<Scalar, Options, Index> SPARSE_CONST& sp)
{
return RowWiseSparseIterator<Eigen::SparseMatrix<Scalar, Options, Index> >(sp);
}
template<typename Iter> TranslatedIterator<Iter> makeTranslatedIterator(Iter const& it, Coords2D const& tr)
{
return TranslatedIterator<Iter>(it, tr);
}
template<typename S> struct IteratorFromVar { };
template<> struct IteratorFromVar<types::Double> : Coords2DIterator
{
IteratorFromVar(types::Double& d_): d(d_), r(0)
{
// check dimension ?
}
IteratorFromVar& operator++()
{
++r;
return *this;
}
IteratorFromVar operator++(int)
{
IteratorFromVar tmp(*this);
++r;
return tmp;
}
Coords2D operator*()
{
return std::pair<int, int>(static_cast<int>(d.getReal(r, 0) - 1), static_cast<int>(d.getReal(r, 1) - 1));
}
private:
types::Double& d;
int r;
};
/*
iterator from adjacency matrices :
*/
template<> struct IteratorFromVar<Adjacency> : Coords2DIterator
{
IteratorFromVar(Adjacency& a): xadj(a.xadj), adjncy(a.adjncy), c(1), nb(1)
{
update();
}
IteratorFromVar& operator++()
{
++nb;
update();
++adjncy;
return *this;
}
IteratorFromVar operator++(int)
{
IteratorFromVar tmp(*this);
++nb;
update();
++adjncy;
return tmp;
}
std::pair<int, int> operator*()
{
return std::pair<int, int>(static_cast<int>(*adjncy) - 1, c - 1);
}
private:
void update()
{
for (; xadj[1] <= nb; ++c, ++xadj)
{
}
}
double const* xadj;
double const* adjncy;
int c;
std::size_t nb;
};
template<typename S> IteratorFromVar<S> makeIteratorFromVar(S& s)
{
return IteratorFromVar<S>(s);
}
#endif
|