This file is indexed.

/usr/include/scilab/gvn/MultivariatePolynomial.hxx is in scilab-include 6.0.1-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
 *  Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 *  Copyright (C) 2015 - Scilab Enterprises - Calixte DENIZET
 *
 * Copyright (C) 2012 - 2016 - Scilab Enterprises
 *
 * This file is hereby licensed under the terms of the GNU GPL v2.0,
 * pursuant to article 5.3.4 of the CeCILL v.2.1.
 * This file was originally licensed under the terms of the CeCILL v2.1,
 * and continues to be available under such terms.
 * For more information, see the COPYING file which you should have received
 * along with this program.
 *
 */

#ifndef __MULTIVARIATE_POLYNOMIAL_HXX__
#define __MULTIVARIATE_POLYNOMIAL_HXX__

#include <cmath>
#include <functional>
#include <iostream>
#include <map>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "core_math.h"
#include "tools.hxx"
#include "MultivariateMonomial.hxx"
#include "dynlib_ast.h"

namespace analysis
{
/**
 * \struct MultivariatePolynomial
 * \brief Represents a multivariate polynomial
 */
struct EXTERN_AST MultivariatePolynomial
{
    typedef std::unordered_set<MultivariateMonomial, MultivariateMonomial::Hash, MultivariateMonomial::Eq> Polynomial;
    int64_t constant;
    bool valid;
    Polynomial polynomial;

    /**
     * \brief constructor
     * \param var to init polynomial
     */
    MultivariatePolynomial(const uint64_t var) : constant(0), valid(true)
    {
        polynomial.emplace(var);
    }

    /**
     * \brief constructor
     * \param _constant to init polynomial
     */
    MultivariatePolynomial(const int64_t _constant = 0, const bool _valid = true) : constant(_constant), valid(_valid) { }

    /**
     * \brief constructor
     * \param _size the size of the polynomial (used to reserve the unordered_set)
     * \param _constant to init polynomial
     */
    MultivariatePolynomial(const unsigned int _size, const int64_t _constant) : constant(_constant), valid(true), polynomial(_size) { }

    /**
     * \brief copy constructor
     */
    MultivariatePolynomial(const MultivariatePolynomial & mp) : constant(mp.constant), valid(mp.valid), polynomial(mp.polynomial) { }

    /**
     * \brief Get an invalid polynomial (i.e. constant == NaN)
     * \return invalid polynomial
     */
    static MultivariatePolynomial getInvalid();

    /**
     * \brief Check if it is valid
     * \return true if it is valid
     */
    bool isValid() const;

    /**
     * \brief Check if it is invalid
     * \return true if it is invalid
     */
    bool isInvalid() const;

    /**
     * \brief Invalidate the polynomial
     */
    void invalid();

    /**
     * \brief Check if a variable is contained in the polynomial
     * \param var an id
     * \return true if the polynomial contains the var
     */
    bool contains(const uint64_t var) const;

    /**
     * \brief Check if the variables of the polynomial have an id lower or equal to max
     * \param max an id
     * \return true if all the variables have an id leq to max
     */
    bool checkVariable(const uint64_t max) const;

    /**
     * \brief Check if the variables of the polynomial have an id greater or equal to min
     * \param min an id
     * \return true if the polynomial contains a var with an id geq than min
     */
    bool containsVarsGEq(const uint64_t min) const;

    /**
     * \brief Translate the variables of the polynomial which have an id greater or equal to min
     * \param min an id
     * \return a translated polynomial
     */
    MultivariatePolynomial translateVariables(const uint64_t t, const uint64_t min) const;

    /**
     * \brief Add a monomial in the polynomial
     * \param m the monomial to add
     * \param coeff the multiplcative coefficient to applicate to the monomial
     * \return *this
     */
    MultivariatePolynomial & add(const MultivariateMonomial & m, const int64_t coeff = 1);

    /**
     * \brief Subtract a monomial in the polynomial
     * \param m the monomial to add
     */
    void sub(const MultivariateMonomial & m);

    /**
     * \brief Overload of the + operator
     */
    MultivariatePolynomial operator+(const MultivariateMonomial & R) const;

    /**
     * \brief Overload of the += operator
     */
    MultivariatePolynomial & operator+=(const MultivariateMonomial & R);

    /**
     * \brief Overload of the + operator
     */
    MultivariatePolynomial operator+(const int64_t R) const;

    /**
     * \brief Overload of the += operator
     */
    MultivariatePolynomial & operator+=(const int64_t R);

    /**
     * \brief Overload of the - operator
     */
    MultivariatePolynomial operator-(const MultivariateMonomial & R) const;

    /**
     * \brief Overload of the -= operator
     */
    MultivariatePolynomial & operator-=(const MultivariateMonomial & R);

    /**
     * \brief Overload of the - operator
     */
    MultivariatePolynomial operator-(const int64_t R) const;

    /**
     * \brief Overload of the - operator (unary)
     */
    MultivariatePolynomial operator-() const;

    /**
     * \brief Overload of the -= operator
     */
    MultivariatePolynomial & operator-=(const int64_t R);

    /**
     * \brief Overload of the + operator
     */
    MultivariatePolynomial operator+(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of the += operator
     */
    MultivariatePolynomial & operator+=(const MultivariatePolynomial & R);

    /**
     * \brief Overload of the - operator
     */
    MultivariatePolynomial operator-(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of the -= operator
     */
    MultivariatePolynomial & operator-=(const MultivariatePolynomial & R);

    /**
     * \brief Overload of the * operator
     */
    MultivariatePolynomial operator*(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of the / operator
     */
    MultivariatePolynomial operator/(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of the /= operator
     */
    MultivariatePolynomial & operator/=(const MultivariatePolynomial & R);

    /**
     * \brief Overload of the *= operator
     */
    MultivariatePolynomial & operator*=(const MultivariatePolynomial & R);

    /**
     * \brief Overload of the * operator
     */
    MultivariatePolynomial operator*(const MultivariateMonomial & R) const;

    /**
     * \brief Overload of the *= operator
     */
    MultivariatePolynomial & operator*=(const MultivariateMonomial & R);

    /**
     * \brief Overload of the * operator
     */
    MultivariatePolynomial operator*(const int64_t R) const;

    /**
     * \brief Overload of the *= operator
     */
    MultivariatePolynomial & operator*=(const int64_t R);

    /**
     * \brief Overload of the / operator
     */
    MultivariatePolynomial operator/(const int64_t R) const;

    /**
     * \brief Overload of the /= operator
     */
    MultivariatePolynomial & operator/=(const int64_t R);

    /**
     * \brief Overload of the ^ operator (exponentiation)
     */
    MultivariatePolynomial operator^(unsigned int R) const;

    /**
     * \brief Overload of the ^ operator (exponentiation)
     */
    MultivariatePolynomial operator^(const MultivariatePolynomial & R) const;

    /**
     * \brief Evaluate a polynomial
     * \param values an unordered_map<ULL, const MultivariatePolynomial *> containing mapping between var number and polynomial
     *        or a std::vector<const MultivariatePolynomial *> (0->vector[0], 1->vector[1], ...)
     * \return the result of the evaluation
     */
    template<typename T>
    inline MultivariatePolynomial eval(T && values) const
    {
        if (isInvalid())
        {
            return getInvalid();
        }
        if (!MultivariatePolynomial::__isValid(values))
        {
            return getInvalid();
        }

        std::unordered_map<uint64_t, std::set<unsigned int>> expected_exps;
        for (const auto & m : polynomial)
        {
            for (const auto & ve : m.monomial)
            {
                if (ve.exp >= 2 && MultivariatePolynomial::__contains(values, ve.var))
                {
                    expected_exps[ve.var].emplace(ve.exp);
                }
            }
        }

        std::unordered_map<uint64_t, std::unordered_map<unsigned int, MultivariatePolynomial>> exps;
        for (const auto & p : expected_exps)
        {
            if (p.second.size() == 1)
            {
                const unsigned int expo = *p.second.begin();
                auto & map = exps.emplace(p.first, std::unordered_map<unsigned int, MultivariatePolynomial>()).first->second;
                map.emplace(expo, (*__getSafe(values, p.first)) ^ expo);
            }
            else
            {
                unsigned int estim = 0;
                for (const auto i : p.second)
                {
                    estim += tools::popcount(i) + tools::log2(i) - 1;
                }
                unsigned int max = *std::prev(p.second.end());
                auto & map = exps.emplace(p.first, std::unordered_map<unsigned int, MultivariatePolynomial>()).first->second;

                // if we have p^3, p^5, p^6 and p^9 to compute:
                //   i) cost of p^3 is 2 mults
                //   ii) cost of p^5 is 3 mults
                //   iii) cost of p^6 is 3 mults
                //   iv) cost of p^9 is 4 mults
                //   v) total cost is 12
                //   vi) 12 > 9 so we compute p^2, p^3, p^4, ..., p^9 and we retains only the exponents 3, 5, 6, 9
                // if we just have p^3, p^9:
                //   i) total cost is 6
                //   ii) we compute p^3 and p^9 separatly in using fast exponentiation
                if (estim > max)
                {
                    MultivariatePolynomial mp(*__getSafe(values, p.first));
                    auto it = p.second.begin();
                    for (unsigned int i = 2; i <= max; ++i)
                    {
                        mp *= *__getSafe(values, p.first);
                        if (i == *it)
                        {
                            map.emplace(i, mp);
                            ++it;
                        }
                    }
                }
                else
                {
                    for (const auto expo : p.second)
                    {
                        map.emplace(expo, (*__getSafe(values, p.first)) ^ expo);
                    }
                }
            }
        }

        MultivariatePolynomial res(constant);
        for (const auto & m : polynomial)
        {
            MultivariatePolynomial r(m.coeff);
            for (const auto & ve : m.monomial)
            {
                const MultivariatePolynomial * mp = MultivariatePolynomial::__get(values, ve.var);
                if (mp)
                {
                    if (ve.exp == 1)
                    {
                        r *= *mp;
                    }
                    else if (ve.exp > 1)
                    {
                        r *= exps[ve.var][ve.exp];
                    }
                }
                else
                {
                    MultivariateMonomial mm(int64_t(1));
                    r *= mm.add(ve);
                }
            }
            res += r;
        }

        return res;
    }

    /**
     * \brief Check divisibility by an integer
     * \return true if all the coeffs are divisible by n
     */
    bool isDivisibleBy(const int64_t n) const;

    /**
     * \brief Check divisibility by a polynomial
     * For now the polynomial must be constant.
     * \return true if this is divisible by mp
     */
    bool isDivisibleBy(const MultivariatePolynomial & mp) const;

    /**
     * \brief Check positivity
     * \return true if all the coeffs are positive and the exponents are even
     */
    bool isPositive() const;

    /**
     * \brief Check strict positivity
     * \param checkConstant if true the constant is checked too
     * \return true if all the coeffs are strict positive
     */
    bool isCoeffStrictPositive(const bool checkConstant = true) const;

    /**
     * \brief Check positivity
     * \param checkConstant if true the constant is checked too
     * \return true if all the coeffs are positive
     */
    bool isCoeffPositive(const bool checkConstant = true) const;

    /**
     * \brief Check strict negativity
     * \param checkConstant if true the constant is checked too
     * \return true if all the coeffs are strict negative
     */
    bool isCoeffStrictNegative(const bool checkConstant = true) const;

    /**
     * \brief Check negativity
     * \param checkConstant if true the constant is checked too
     * \return true if all the coeffs are negative
     */
    bool isCoeffNegative(const bool checkConstant = true) const;

    /**
     * \brief Helper function to print a polynomial
     * \param vars a mapping between vars numbers and wstring representation
     * \return a wstring representing this polynomial
     */
    const std::wstring print(const std::map<uint64_t, std::wstring> & vars) const;

    /**
     * \brief Overload of << operator
     */
    friend std::wostream & operator<<(std::wostream & out, const MultivariatePolynomial & p);

    /**
     * \return true if the two polynomials are differing only by a constant
     */
    bool isDiffConstant(const MultivariatePolynomial & R) const;

    /**
     * \return true if the polynomial is constant
     */
    bool isConstant() const;

    /**
     * \brief Check if a polynomial is constant and equal to a value
     * \param val the constant value to check
     * \return true if the polynomial is constant and equal to val
     */
    bool isConstant(const int64_t val) const;

    /**
     * \brief Get the common coeff for all the monomials
     * \param[out] common the common value
     * \return true if there is a common coeff
     */
    bool getCommonCoeff(int64_t & common) const;

    /**
     * \brief Overload of == operator
     */
    bool operator==(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of != operator
     */
    bool operator!=(const MultivariatePolynomial & R) const;

    /**
     * \brief Overload of == operator
     */
    bool operator==(const int64_t R) const;

    /**
     * \brief Overload of != operator
     */
    bool operator!=(const int64_t R) const;

    /**
     * \brief Overload of == operator
     */
    friend bool operator==(const int64_t L, const MultivariatePolynomial & R);

    /**
     * \brief Overload of != operator
     */
    friend bool operator!=(const int64_t L, const MultivariatePolynomial & R);

    /**
     * \return a hash
     */
    std::size_t hash() const;

    /**
     * \struct Hash
     * \brief To be used in an unordered container
     */
    struct Hash
    {
        inline std::size_t operator()(const MultivariatePolynomial & mp) const
        {
            return mp.hash();
        }
    };

    /**
     * \struct Eq
     * \brief To be used in an unordered container
     */
    struct Eq
    {
        inline bool operator()(const MultivariatePolynomial & L, const MultivariatePolynomial & R) const
        {
            return L == R;
        }
    };

private:

    // Helper functions to use with eval
    static bool __isValid(const std::unordered_map<uint64_t, const MultivariatePolynomial *> & values);
    static bool __isValid(const std::vector<const MultivariatePolynomial *> & values);
    static bool __isValid(const std::pair<uint64_t, const MultivariatePolynomial *> & values);
    static bool __contains(const std::unordered_map<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
    static bool __contains(const std::vector<const MultivariatePolynomial *> & values, const uint64_t val);
    static bool __contains(const std::pair<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __get(const std::unordered_map<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __getSafe(const std::unordered_map<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __get(const std::vector<const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __getSafe(const std::vector<const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __get(const std::pair<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
    static const MultivariatePolynomial * __getSafe(const std::pair<uint64_t, const MultivariatePolynomial *> & values, const uint64_t val);
};

} // namespace analysis

#endif // __MULTIVARIATE_POLYNOMIAL_HXX__