This file is indexed.

/usr/include/libphylo/likeDist.h is in rate4site 3.0.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
// $Id: likeDist.h 9752 2011-08-05 20:27:25Z rubi $

#ifndef ___LIKE_DIST_H
#define ___LIKE_DIST_H

#include "definitions.h"
#include "countTableComponent.h"
#include "distanceMethod.h"
#include "stochasticProcess.h"
#include "logFile.h"
#include "jcDistance.h"
#include "unObservableData.h"
#include <cmath>
using namespace std;

class likeDist : public distanceMethod {
public:
    // WARNING: the stochasticProcess is NOT copied.  The same object is used
    explicit likeDist(const stochasticProcess& sp,
		      const MDOUBLE toll =0.0001,
		      const MDOUBLE maxPairwiseDistance = 5.0,
			  const MDOUBLE minPairwiseDistance = 0.0000001,
			  unObservableData* unObservableData_p=NULL)
	:  _sp(sp),_nonConstSpPtr(NULL),_toll(toll),_maxPairwiseDistance(maxPairwiseDistance),_minPairwiseDistance(minPairwiseDistance),_unObservableData_p(unObservableData_p) {}

  likeDist(const likeDist& other)
	:  _sp(other._sp),_nonConstSpPtr(other._nonConstSpPtr),_toll(other._toll),_maxPairwiseDistance(other._maxPairwiseDistance),_minPairwiseDistance(other._minPairwiseDistance),_jcDist(other._jcDist) {}

  virtual likeDist* clone() const {return new likeDist(*this);}
    // This constructor allows non-const stochasticProcess so that likeDist will be able to change alpha, etc.
    explicit likeDist(stochasticProcess& sp,
		      const MDOUBLE toll =0.0001,
		      const MDOUBLE maxPairwiseDistance = 5.0,
			  const MDOUBLE minPairwiseDistance = 0.0000001)
	:  _sp(sp),_nonConstSpPtr(&sp),_toll(toll),_maxPairwiseDistance(maxPairwiseDistance),_minPairwiseDistance(minPairwiseDistance) {}

    // THIS FUNCTION DOES NOT RETURN THE LOG LIKELIHOOD IN RESQ, BUT RATHER "Q", THE CONTRIBUTION of this edge
    // TO THE EXPECTED LOG-LIKELIHOOD (SEE SEMPHY PAPER).
    // NEVERTHELESS, THE t that optimizes Q is the same t that optimizes log-likelihood.
    const MDOUBLE giveDistance(const countTableComponentGam& ctc,
			       MDOUBLE& resQ,
			       const MDOUBLE initialGuess= 0.03) const; // initial guess

    // given two sequences, it evaluates the log likelihood.
    MDOUBLE evalLogLikelihoodGivenDistance(const sequence& s1,
					   const sequence& s2,
					   const MDOUBLE dis2evaluate);

    // returns the estimated ML distance between the 2 sequences.
    // if score is given, it will be the log-likelihood.
    const MDOUBLE giveDistance(const sequence& s1,
			       const sequence& s2,
			       const vector<MDOUBLE>  * weights,
			       MDOUBLE* score=NULL) const;

    // this function creates a countTableComponent (ctc) from the two sequences.
    // it then computes the distance from this ctc.
    // THIS FUNCTION DOES NOT RETURN THE LOG LIKELIHOOD IN score, BUT RATHER "Q", THE CONTRIBUTION of this edge
    // TO THE EXPECTED LOG-LIKELIHOOD (SEE SEMPHY PAPER).
    // NEVERTHELESS, THE t that optimizes Q is the same t that optimizes log-likelihood.
    MDOUBLE giveDistanceThroughCTC(const sequence& s1,
				   const sequence& s2,
				   const vector<MDOUBLE>  * weights,
				   MDOUBLE* score=NULL) const;

    const MDOUBLE giveLikelihood(const sequence& s1,
				 const sequence& s2,
				 MDOUBLE distance,
				 const vector<MDOUBLE>  * weights=NULL) const;

    // return the stochasticProcess 
    const stochasticProcess& getStochasticProcess() const {return _sp;}
    stochasticProcess& getNonConstStochasticProcess();
    bool isTheInternalStochasticProcessConst() const {return !_nonConstSpPtr;}
    MDOUBLE getToll() const {return _toll;}
    MDOUBLE getMaxPairwiseDistance() const {return _maxPairwiseDistance;}

protected:
    const stochasticProcess &_sp;
    stochasticProcess *_nonConstSpPtr;
    const MDOUBLE _toll;
    const MDOUBLE _maxPairwiseDistance;
	const MDOUBLE _minPairwiseDistance;
    jcDistance _jcDist;
	unObservableData* _unObservableData_p;

private:
    const MDOUBLE giveDistanceBrent(	const countTableComponentGam& ctc,
					MDOUBLE& resL,
					const MDOUBLE initialGuess= 0.03) const; // initial guess
    const MDOUBLE giveDistanceNR(	const countTableComponentGam& ctc,
					MDOUBLE& resL,
					const MDOUBLE initialGuess= 0.03) const; // initial guess



public:
    static MDOUBLE evalLikelihoodForDistance(const stochasticProcess& sp,
						       const sequence& s1,
						       const sequence& s2,
						       const MDOUBLE dist,
						       const vector<MDOUBLE>  * weights=NULL);

};

//////////////////////////////////////////////////////////////////////////
class C_evalLikeDist{
private:
    const countTableComponentGam& _ctc;
    const stochasticProcess& _sp;
	unObservableData* _unObservableData_p;

public:
    C_evalLikeDist(const countTableComponentGam& ctc,
		   const stochasticProcess& inS1,unObservableData* unObservableData_p=NULL)
		   :_ctc(ctc), _sp(inS1),_unObservableData_p(unObservableData_p) {};

		MDOUBLE operator() (MDOUBLE dist) {
		const MDOUBLE epsilonPIJ = 1e-10;
		MDOUBLE sumL=0.0;
		for (int alph1=0; alph1 < _ctc.alphabetSize(); ++alph1){
			for (int alph2=0; alph2 <  _ctc.alphabetSize(); ++alph2){
				for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
					MDOUBLE rate = _sp.rates(rateCategor);					
					MDOUBLE pij= _sp.Pij_t(alph1,alph2,dist*rate);
					if (pij<epsilonPIJ) pij = epsilonPIJ;//SEE REMARK (1) FOR EXPLANATION				
					sumL+= _ctc.getCounts(alph1,alph2,rateCategor)*(log(pij)-log(_sp.freq(alph2)));//*_sp.ratesProb(rateCategor);// removed.			
				}
			}
		}
		//if(_unObservableData_p)
		//	sumL = sumL/(1- exp(_unObservableData_p->getlogLforMissingData()));	// need to find an efficient way to update LofMissingData with dist
		LOG(8,<<"check bl="<<dist<<" gives sumL "<<sumL<<endl);
		return -sumL;
    };
};

// REMARK 1: THE LINE if if (pij<epsilonPIJ) pij = epsilonPIJ
// There are cases when i != j, and t!=0, and yet pij =0, because of numerical problems
// For these cases, it is easier to assume pij is very small, so that log-pij don't fly...

class C_evalLikeDist_d{ // derivative.
public:
    C_evalLikeDist_d(const countTableComponentGam& ctc,
		     const stochasticProcess& inS1,unObservableData* unObservableData_p=NULL): _ctc(ctc), _sp(inS1),_unObservableData_p(unObservableData_p) {};
private:
    const  countTableComponentGam& _ctc;
    const stochasticProcess& _sp;
	unObservableData* _unObservableData_p;

public:
    MDOUBLE operator() (MDOUBLE dist) {
		const MDOUBLE epsilonPIJ = 1e-10;
		MDOUBLE	sumDL=0.0;
		for (int alph1=0; alph1 <  _ctc.alphabetSize(); ++alph1){
			for (int alph2=0; alph2 <  _ctc.alphabetSize(); ++alph2){
				for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
					MDOUBLE rate = _sp.rates(rateCategor);
					MDOUBLE pij= _sp.Pij_t(alph1,alph2,dist*rate);
					if (pij<epsilonPIJ) pij = epsilonPIJ;//SEE REMARK (1) FOR EXPLANATION
					MDOUBLE dpij = _sp.dPij_dt(alph1,alph2,dist*rate);
					sumDL+= _ctc.getCounts(alph1,alph2,rateCategor)*dpij //*_sp.ratesProb(rateCategor) : removed CODE_RED
						*rate/pij;
				}
			}
		}
		//cerr<<"derivation = "<<-sumDL<<endl;
		//if(_unObservableData_p)
		//	sumDL = sumDL/(1- exp(_unObservableData_p->getlogLforMissingData()));	// 1. need to find an efficient way to update LofMissingData with dist 2. correct the derivative?
		LOG(12,<<"check bl="<<dist<<" gives sumDL "<<sumDL<<endl);
		return -sumDL;
    };
};





//////////////////////////////////////////////////////////////////////////
class C_evalLikeDist_d2{ // second derivative.
public:
    C_evalLikeDist_d2(const countTableComponentGam& ctc,
		      const stochasticProcess& inS1)    : _ctc(ctc), _sp(inS1) {};
private:
    const  countTableComponentGam& _ctc;
    const stochasticProcess& _sp;
public:
    MDOUBLE operator() (MDOUBLE dist) {
		MDOUBLE	sumDL=0.0;
		for (int alph1=0; alph1 <  _ctc.alphabetSize(); ++alph1){
			for (int alph2=0; alph2 <  _ctc.alphabetSize(); ++alph2){
			for (int rateCategor = 0; rateCategor<_sp.categories(); ++rateCategor) {
				MDOUBLE rate = _sp.rates(rateCategor);

				MDOUBLE pij= _sp.Pij_t(alph1,alph2,dist*rate);
				MDOUBLE dpij = _sp.dPij_dt(alph1,alph2,dist*rate);
				MDOUBLE d2pij = _sp.d2Pij_dt2(alph1,alph2,dist*rate);
				sumDL+= rate*_ctc.getCounts(alph1,alph2,rateCategor)*
				(pij*d2pij - dpij *dpij )/(pij*pij);
			}
			}
		}
		return -sumDL;
    };
};

#endif