This file is indexed.

/usr/include/libphylo/bestAlpha.h is in rate4site 3.0.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// $Id: bestAlpha.h 10000 2011-11-12 18:20:12Z rubi $

#ifndef ___BEST_ALPHA
#define ___BEST_ALPHA

#include "definitions.h"

#include "likelihoodComputation.h"
#include "sequenceContainer.h"
#include "stochasticProcess.h"
#include "multipleStochasticProcess.h"
#include "gammaDistribution.h"
#include "tree.h"
#include "logFile.h"

#ifndef VERBOS
#define VERBOS
#endif

class bestAlphaFixedTree {
public:
	explicit bestAlphaFixedTree(const tree& et,
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights=NULL,
		const MDOUBLE upperBoundOnAlpha = 15,
		const MDOUBLE epsilonAlphaOptimization = 0.01);
		MDOUBLE getBestAlpha() {return _bestAlpha;}
		MDOUBLE getBestL() {return _bestL;}
private:
	MDOUBLE _bestAlpha;
	MDOUBLE _bestL;
};

class bestAlphaAndBBL {
public:
	explicit bestAlphaAndBBL(tree& et, //find Best Alpha and best BBL
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights=NULL,
		const MDOUBLE initAlpha = 1.5,
		const MDOUBLE upperBoundOnAlpha = 5.0,
		const MDOUBLE epsilonLoglikelihoodForAlphaOptimization= 0.01,
		const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
		const int maxBBLIterations=10,
		const int maxTotalIterations=5);
		MDOUBLE getBestAlpha() {return _bestAlpha;}
		MDOUBLE getBestL() {return _bestL;}
private:
	MDOUBLE _bestAlpha;
	MDOUBLE _bestL;
};

class bestAlphasAndBBLProportional {
public:
	explicit bestAlphasAndBBLProportional(tree& et, //find Best Alphas (per gene - local and proportional factors - global) and best BBL
		vector<sequenceContainer>& sc,
		multipleStochasticProcess* msp,
		gammaDistribution* pProportionDist,
		Vdouble initLocalRateAlphas,
		const MDOUBLE upperBoundOnLocalRateAlpha,
		const MDOUBLE initGlobalRateAlpha,
		const MDOUBLE upperBoundOnGlobalRateAlpha,
		const int maxBBLIterations,
		const int maxTotalIterations,
		const bool optimizeSelectedBranches=false,
		const bool optimizeTree = true,
		const string branchLengthOptimizationMethod="bblLS",
		const bool optimizeLocalAlpha = true,
		const bool optimizeGlobalAlpha = true,
		const Vdouble * weights=NULL,
		const MDOUBLE epsilonLoglikelihoodForLocalRateAlphaOptimization= 0.01,
		const MDOUBLE epsilonLoglikelihoodForGlobalRateAlphaOptimization= 0.01,
		const MDOUBLE epsilonLoglikelihoodForBBL= 0.05);
		MDOUBLE getBestLocalAlpha(int spIndex){return _bestLocalAlphaVec[spIndex];}
		MDOUBLE getBestGlobalAlpha(){return _bestGlobalAlpha;}
		Vdouble getBestL() {return _bestLvec;}
private:
	Vdouble _bestLocalAlphaVec;
	MDOUBLE _bestGlobalAlpha;
	Vdouble _bestLvec;
};

class bestBetaAndBBL {
public:
	explicit bestBetaAndBBL(tree& et, //find Best Beta and best BBL
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights=NULL,
		const MDOUBLE initBeta = 1.5,
		const MDOUBLE upperBoundOnBeta = 5.0,
		const MDOUBLE epsilonLoglikelihoodForBetaOptimization= 0.01,
		const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
		const int maxBBLIterations=10,
		const int maxTotalIterations=5);
		MDOUBLE getBestBeta() {return _bestBeta;}
		MDOUBLE getBestL() {return _bestL;}
private:
	MDOUBLE _bestBeta;
	MDOUBLE _bestL;
};

class bestAlphaAndBetaAndBBL {
public:
	explicit bestAlphaAndBetaAndBBL(tree& et, //find Best Alpha and best BBL
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights=NULL,
		const MDOUBLE initAlpha = 1.5,
		const MDOUBLE initBeta = 1.5,
		const MDOUBLE upperBoundOnAlpha = 5.0,
		const MDOUBLE upperBoundOnBeta = 5.0,
		const MDOUBLE epsilonLoglikelihoodForAlphaOptimization= 0.01,
		const MDOUBLE epsilonLoglikelihoodForBetaOptimization = 0.01,
		const MDOUBLE epsilonLoglikelihoodForBBL= 0.05,
		const int maxBBLIterations=10,
		const int maxTotalIterations=5);
		MDOUBLE getBestAlpha() {return _bestAlpha;}
		MDOUBLE getBestBeta() {return _bestBeta;}
		MDOUBLE getBestL() {return _bestL;}
private:
	MDOUBLE _bestAlpha;
	MDOUBLE _bestBeta;
	MDOUBLE _bestL;
};


class C_evalAlpha{
public:
	C_evalAlpha(	const tree& et,
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights = NULL)
		: _et(et),_sc(sc),_weights(weights),_sp(sp){};
private:
	const tree& _et;
	const sequenceContainer& _sc;
	const Vdouble * _weights;
	stochasticProcess& _sp;
public:
	MDOUBLE operator() (MDOUBLE alpha) {
		if (_sp.categories() == 1) {
			errorMsg::reportError(" one category when trying to optimize alpha");
		}
		(static_cast<generalGammaDistribution*>(_sp.distr()))->setAlpha(alpha);

		MDOUBLE res = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_sp,_weights);
		//LOG(5,<<" with alpha = "<<alpha<<" logL = "<<res<<endl);
#ifdef VERBOS
		LOG(7,<<" while in brent: with alpha = "<<alpha<<" logL = "<<res<<endl);
#endif
		return -res;
	}
};

class C_evalLocalAlpha{
public:
	C_evalLocalAlpha(	const tree& et,
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const gammaDistribution* pProportionDist,
		const Vdouble * weights = NULL)
		: _et(et),_sc(sc),_weights(weights),_sp(sp),_pProportionDist(pProportionDist){};
private:
	const tree& _et;
	const sequenceContainer& _sc;
	const Vdouble * _weights;
	stochasticProcess& _sp;
	const gammaDistribution* _pProportionDist;
public:
	MDOUBLE operator() (MDOUBLE alpha) {
		if (_sp.categories() == 1) {
			errorMsg::reportError("one category when trying to optimize local alpha");
		}
		(static_cast<gammaDistribution*>(_sp.distr()))->setAlpha(alpha);
		vector<sequenceContainer> tmpScVec;
		tmpScVec.push_back(_sc);
		vector<stochasticProcess> tmpSpVec;
		tmpSpVec.push_back(_sp);
		multipleStochasticProcess * tmpMsp = new multipleStochasticProcess();
		tmpMsp->setSpVec(tmpSpVec);	
		Vdouble likeVec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(_et,tmpScVec,tmpMsp,_pProportionDist);
		MDOUBLE res = likeVec[0];
		delete(tmpMsp);
		LOG(5,<<" with local alpha = "<<alpha<<" logL = "<<res<<endl);
		return -res;
	}
};

class C_evalGlobalAlpha{
public:
	C_evalGlobalAlpha(	const tree& et,
		vector<sequenceContainer>& sc,
		multipleStochasticProcess* msp,
		gammaDistribution* pProportionDist,
		const Vdouble * weights = NULL)
		: _et(et),_sc(sc),_weights(weights),_msp(msp),_pProportionDist(pProportionDist){};
private:
	const tree& _et;
	vector<sequenceContainer>& _sc;
	const Vdouble * _weights;
	multipleStochasticProcess* _msp;
	gammaDistribution* _pProportionDist;
public:
	MDOUBLE operator() (MDOUBLE alpha) {
		if (_pProportionDist->categories() < 1) {
			errorMsg::reportError(" less than one category when trying to optimize global alpha");
		}
		_pProportionDist->setAlpha(alpha);
		Vdouble likeVec = likelihoodComputation::getTreeLikelihoodProportionalAllPosAlphTheSame(_et,_sc,_msp,_pProportionDist);
		MDOUBLE res = sumVdouble(likeVec);
		LOG(5,<<" with global alpha = "<<alpha<<" logL = "<<res<<endl);
		return -res;
	}
};

class C_evalBeta{
public:
	C_evalBeta(	const tree& et,
		const sequenceContainer& sc,
		stochasticProcess& sp,
		const Vdouble * weights = NULL)
		: _et(et),_sc(sc),_weights(weights),_sp(sp){};
private:
	const tree& _et;
	const sequenceContainer& _sc;
	const Vdouble * _weights;
	stochasticProcess& _sp;
public:
	MDOUBLE operator() (MDOUBLE beta) {
		if (_sp.categories() == 1) {
			errorMsg::reportError(" one category when trying to optimize beta");
		}
		(static_cast<generalGammaDistribution*>(_sp.distr()))->setBeta(beta);

		MDOUBLE res = likelihoodComputation::getTreeLikelihoodAllPosAlphTheSame(_et,_sc,_sp,_weights);
		//LOG(5,<<" with alpha = "<<alpha<<" logL = "<<res<<endl);
#ifdef VERBOS
		LOG(7,<<" while in brent: with beta = "<<beta<<" logL = "<<res<<endl);
#endif
		return -res;
	}
};

#endif