/usr/lib/R/site-library/spatstat/DESCRIPTION is in r-cran-spatstat 1.53-2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | Package: spatstat
Version: 1.53-2
Date: 2017-10-08
Title: Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests
Author: Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>,
Rolf Turner <r.turner@auckland.ac.nz>
and Ege Rubak <rubak@math.aau.dk>,
with substantial contributions of code by
Kasper Klitgaard Berthelsen;
Ottmar Cronie;
Yongtao Guan;
Ute Hahn;
Abdollah Jalilian;
Marie-Colette van Lieshout;
Greg McSwiggan;
Tuomas Rajala;
Suman Rakshit;
Dominic Schuhmacher;
Rasmus Waagepetersen;
and Hangsheng Wang.
Additional contributions
by M. Adepeju;
C. Anderson;
Q.W. Ang;
M. Austenfeld;
S. Azaele;
M. Baddeley;
C. Beale;
M. Bell;
R. Bernhardt;
T. Bendtsen;
A. Bevan;
B. Biggerstaff;
A. Bilgrau;
L. Bischof;
C. Biscio;
R. Bivand;
J.M. Blanco Moreno;
F. Bonneu;
J. Burgos;
S. Byers;
Y.M. Chang;
J.B. Chen;
I. Chernayavsky;
Y.C. Chin;
B. Christensen;
J.-F. Coeurjolly;
K. Colyvas;
R. Corria Ainslie;
R. Cotton;
M. de la Cruz;
P. Dalgaard;
M. D'Antuono;
S. Das;
T. Davies;
P.J. Diggle;
P. Donnelly;
I. Dryden;
S. Eglen;
A. El-Gabbas;
B. Fandohan;
O. Flores;
E.D. Ford;
P. Forbes;
S. Frank;
J. Franklin;
N. Funwi-Gabga;
O. Garcia;
A. Gault;
J. Geldmann;
M. Genton;
S. Ghalandarayeshi;
J. Gilbey;
J. Goldstick;
P. Grabarnik;
C. Graf;
U. Hahn;
A. Hardegen;
M.B. Hansen;
M. Hazelton;
J. Heikkinen;
M. Hering;
M. Herrmann;
P. Hewson;
K. Hingee;
K. Hornik;
P. Hunziker;
J. Hywood;
R. Ihaka;
C. Icos;
A. Jammalamadaka;
R. John-Chandran;
D. Johnson;
M. Khanmohammadi;
R. Klaver;
P. Kovesi;
M. Kuhn;
J. Laake;
F. Lavancier;
T. Lawrence;
R.A. Lamb;
J. Lee;
G.P. Leser;
H.T. Li;
G. Limitsios;
A. Lister;
B. Madin;
M. Maechler;
J. Marcus;
K. Marchikanti;
R. Mark;
J. Mateu;
P. McCullagh;
U. Mehlig;
F. Mestre;
S. Meyer;
X.C. Mi;
L. De Middeleer;
R.K. Milne;
E. Miranda;
J. Moller;
M. Moradi;
V. Morera Pujol;
E. Mudrak;
G.M. Nair;
N. Najari;
N. Nava;
L.S. Nielsen;
F. Nunes;
J.R. Nyengaard;
J. Oehlschlaegel;
T. Onkelinx;
S. O'Riordan;
E. Parilov;
J. Picka;
N. Picard;
M. Porter;
S. Protsiv;
A. Raftery;
S. Rakshit;
B. Ramage;
P. Ramon;
X. Raynaud;
N. Read;
M. Reiter;
I. Renner;
T.O. Richardson;
B.D. Ripley;
E. Rosenbaum;
B. Rowlingson;
J. Rudokas;
J. Rudge;
C. Ryan;
F. Safavimanesh;
A. Sarkka;
C. Schank;
K. Schladitz;
S. Schutte;
B.T. Scott;
O. Semboli;
F. Semecurbe;
V. Shcherbakov;
G.C. Shen;
P. Shi;
H.-J. Ship;
T.L. Silva;
I.-M. Sintorn;
Y. Song;
M. Spiess;
M. Stevenson;
K. Stucki;
M. Sumner;
P. Surovy;
B. Taylor;
T. Thorarinsdottir;
B. Turlach;
T. Tvedebrink;
K. Ummer;
M. Uppala;
A. van Burgel;
T. Verbeke;
M. Vihtakari;
A. Villers;
F. Vinatier;
S. Voss;
S. Wagner;
H. Wang;
H. Wendrock;
J. Wild;
C. Witthoft;
S. Wong;
M. Woringer;
M.E. Zamboni
and
A. Zeileis.
Maintainer: Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>
Depends: R (>= 3.3.0), spatstat.data (>= 1.1-0), stats, graphics,
grDevices, utils, methods, nlme, rpart
Imports: spatstat.utils (>= 1.7-1), mgcv, Matrix, deldir (>= 0.0-21),
abind, tensor, polyclip (>= 1.5-0), goftest
Suggests: sm, maptools, gsl, locfit, spatial, rpanel, tkrplot,
RandomFields (>= 3.1.24.1), RandomFieldsUtils(>= 0.3.3.1),
fftwtools (>= 0.9-8)
Description: Comprehensive open-source toolbox for analysing Spatial Point Patterns. Focused mainly on two-dimensional point patterns, including multitype/marked points, in any spatial region. Also supports three-dimensional point patterns, space-time point patterns in any number of dimensions, point patterns on a linear network, and patterns of other geometrical objects. Supports spatial covariate data such as pixel images.
Contains over 2000 functions for plotting spatial data, exploratory data analysis, model-fitting, simulation, spatial sampling, model diagnostics, and formal inference.
Data types include point patterns, line segment patterns, spatial windows, pixel images, tessellations, and linear networks.
Exploratory methods include quadrat counts, K-functions and their simulation envelopes, nearest neighbour distance and empty space statistics, Fry plots, pair correlation function, kernel smoothed intensity, relative risk estimation with cross-validated bandwidth selection, mark correlation functions, segregation indices, mark dependence diagnostics, and kernel estimates of covariate effects. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-Smirnov, ANOVA) are also supported.
Parametric models can be fitted to point pattern data using the functions ppm(), kppm(), slrm(), dppm() similar to glm(). Types of models include Poisson, Gibbs and Cox point processes, Neyman-Scott cluster processes, and determinantal point processes. Models may involve dependence on covariates, inter-point interaction, cluster formation and dependence on marks. Models are fitted by maximum likelihood, logistic regression, minimum contrast, and composite likelihood methods.
A model can be fitted to a list of point patterns (replicated point pattern data) using the function mppm(). The model can include random effects and fixed effects depending on the experimental design, in addition to all the features listed above.
Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fitted model are supported (likelihood ratio test, analysis of deviance, Monte Carlo tests) along with basic tools for model selection (stepwise(), AIC()). Tools for validating the fitted model include simulation envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, partial residuals, and added variable plots.
License: GPL (>= 2)
URL: http://www.spatstat.org
LazyData: true
NeedsCompilation: yes
ByteCompile: true
BugReports: https://github.com/spatstat/spatstat/issues
Packaged: 2017-10-08 08:32:19 UTC; adrian
Repository: CRAN
Date/Publication: 2017-10-08 22:07:12 UTC
Built: R 3.4.2; x86_64-pc-linux-gnu; 'Mon, 06 Nov 2017 19:53:54 +0100'; unix
|