/usr/lib/python3/dist-packages/stl/base.py is in python3-stl 2.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | from __future__ import (absolute_import, division, print_function,
unicode_literals)
import enum
import math
import numpy
import logging
import collections
from python_utils import logger
from .utils import s
#: When removing empty areas, remove areas that are smaller than this
AREA_SIZE_THRESHOLD = 0
#: Vectors in a point
VECTORS = 3
#: Dimensions used in a vector
DIMENSIONS = 3
class Dimension(enum.IntEnum):
#: X index (for example, `mesh.v0[0][X]`)
X = 0
#: Y index (for example, `mesh.v0[0][Y]`)
Y = 1
#: Z index (for example, `mesh.v0[0][Z]`)
Z = 2
# For backwards compatibility, leave the original references
X = Dimension.X
Y = Dimension.Y
Z = Dimension.Z
class RemoveDuplicates(enum.Enum):
'''
Choose whether to remove no duplicates, leave only a single of the
duplicates or remove all duplicates (leaving holes).
'''
NONE = 0
SINGLE = 1
ALL = 2
@classmethod
def map(cls, value):
if value and value in cls:
pass
elif value:
value = cls.SINGLE
else:
value = cls.NONE
return value
def logged(class_):
# For some reason the Logged baseclass is not properly initiated on Linux
# systems while this works on OS X. Please let me know if you can tell me
# what silly mistake I made here
logger_name = logger.Logged._Logged__get_name(
__name__,
class_.__name__,
)
class_.logger = logging.getLogger(logger_name)
for key in dir(logger.Logged):
if not key.startswith('__'):
setattr(class_, key, getattr(class_, key))
return class_
@logged
class BaseMesh(logger.Logged, collections.Mapping):
'''
Mesh object with easy access to the vectors through v0, v1 and v2.
The normals, areas, min, max and units are calculated automatically.
:param numpy.array data: The data for this mesh
:param bool calculate_normals: Whether to calculate the normals
:param bool remove_empty_areas: Whether to remove triangles with 0 area
(due to rounding errors for example)
:ivar str name: Name of the solid, only exists in ASCII files
:ivar numpy.array data: Data as :func:`BaseMesh.dtype`
:ivar numpy.array points: All points (Nx9)
:ivar numpy.array normals: Normals for this mesh, calculated automatically
by default (Nx3)
:ivar numpy.array vectors: Vectors in the mesh (Nx3x3)
:ivar numpy.array attr: Attributes per vector (used by binary STL)
:ivar numpy.array x: Points on the X axis by vertex (Nx3)
:ivar numpy.array y: Points on the Y axis by vertex (Nx3)
:ivar numpy.array z: Points on the Z axis by vertex (Nx3)
:ivar numpy.array v0: Points in vector 0 (Nx3)
:ivar numpy.array v1: Points in vector 1 (Nx3)
:ivar numpy.array v2: Points in vector 2 (Nx3)
>>> data = numpy.zeros(10, dtype=BaseMesh.dtype)
>>> mesh = BaseMesh(data, remove_empty_areas=False)
>>> # Increment vector 0 item 0
>>> mesh.v0[0] += 1
>>> mesh.v1[0] += 2
>>> # Check item 0 (contains v0, v1 and v2)
>>> mesh[0]
array([ 1., 1., 1., 2., 2., 2., 0., 0., 0.], dtype=float32)
>>> mesh.vectors[0] # doctest: +NORMALIZE_WHITESPACE
array([[ 1., 1., 1.],
[ 2., 2., 2.],
[ 0., 0., 0.]], dtype=float32)
>>> mesh.v0[0]
array([ 1., 1., 1.], dtype=float32)
>>> mesh.points[0]
array([ 1., 1., 1., 2., 2., 2., 0., 0., 0.], dtype=float32)
>>> mesh.data[0] # doctest: +NORMALIZE_WHITESPACE
([ 0., 0., 0.], [[ 1., 1., 1.], [ 2., 2., 2.], [ 0., 0., 0.]], [0])
>>> mesh.x[0]
array([ 1., 2., 0.], dtype=float32)
>>> mesh[0] = 3
>>> mesh[0]
array([ 3., 3., 3., 3., 3., 3., 3., 3., 3.], dtype=float32)
>>> len(mesh) == len(list(mesh))
True
>>> (mesh.min_ < mesh.max_).all()
True
>>> mesh.update_normals()
>>> mesh.units.sum()
0.0
>>> mesh.v0[:] = mesh.v1[:] = mesh.v2[:] = 0
>>> mesh.points.sum()
0.0
>>> mesh.v0 = mesh.v1 = mesh.v2 = 0
>>> mesh.x = mesh.y = mesh.z = 0
>>> mesh.attr = 1
>>> (mesh.attr == 1).all()
True
>>> mesh.normals = 2
>>> (mesh.normals == 2).all()
True
>>> mesh.vectors = 3
>>> (mesh.vectors == 3).all()
True
>>> mesh.points = 4
>>> (mesh.points == 4).all()
True
'''
#: - normals: :func:`numpy.float32`, `(3, )`
#: - vectors: :func:`numpy.float32`, `(3, 3)`
#: - attr: :func:`numpy.uint16`, `(1, )`
dtype = numpy.dtype([
(s('normals'), numpy.float32, (3, )),
(s('vectors'), numpy.float32, (3, 3)),
(s('attr'), numpy.uint16, (1, )),
])
dtype = dtype.newbyteorder('<') # Even on big endian arches, use little e.
def __init__(self, data, calculate_normals=True,
remove_empty_areas=False,
remove_duplicate_polygons=RemoveDuplicates.NONE,
name='', speedups=True, **kwargs):
super(BaseMesh, self).__init__(**kwargs)
self.speedups = speedups
if remove_empty_areas:
data = self.remove_empty_areas(data)
if RemoveDuplicates.map(remove_duplicate_polygons).value:
data = self.remove_duplicate_polygons(data,
remove_duplicate_polygons)
self.name = name
self.data = data
if calculate_normals:
self.update_normals()
@property
def attr(self):
return self.data['attr']
@attr.setter
def attr(self, value):
self.data['attr'] = value
@property
def normals(self):
return self.data['normals']
@normals.setter
def normals(self, value):
self.data['normals'] = value
@property
def vectors(self):
return self.data['vectors']
@vectors.setter
def vectors(self, value):
self.data['vectors'] = value
@property
def points(self):
return self.vectors.reshape(self.data.size, 9)
@points.setter
def points(self, value):
self.points[:] = value
@property
def v0(self):
return self.vectors[:, 0]
@v0.setter
def v0(self, value):
self.vectors[:, 0] = value
@property
def v1(self):
return self.vectors[:, 1]
@v1.setter
def v1(self, value):
self.vectors[:, 1] = value
@property
def v2(self):
return self.vectors[:, 2]
@v2.setter
def v2(self, value):
self.vectors[:, 2] = value
@property
def x(self):
return self.points[:, Dimension.X::3]
@x.setter
def x(self, value):
self.points[:, Dimension.X::3] = value
@property
def y(self):
return self.points[:, Dimension.Y::3]
@y.setter
def y(self, value):
self.points[:, Dimension.Y::3] = value
@property
def z(self):
return self.points[:, Dimension.Z::3]
@z.setter
def z(self, value):
self.points[:, Dimension.Z::3] = value
@classmethod
def remove_duplicate_polygons(cls, data, value=RemoveDuplicates.SINGLE):
value = RemoveDuplicates.map(value)
polygons = data['vectors'].sum(axis=1)
# Get a sorted list of indices
idx = numpy.lexsort(polygons.T)
# Get the indices of all different indices
diff = numpy.any(polygons[idx[1:]] != polygons[idx[:-1]], axis=1)
if value is RemoveDuplicates.SINGLE:
# Only return the unique data, the True is so we always get at
# least the originals
return data[numpy.sort(idx[numpy.concatenate(([True], diff))])]
elif value is RemoveDuplicates.ALL:
# We need to return both items of the shifted diff
diff_a = numpy.concatenate(([True], diff))
diff_b = numpy.concatenate((diff, [True]))
diff = numpy.concatenate((diff, [False]))
# Combine both unique lists
filtered_data = data[numpy.sort(idx[diff_a & diff_b])]
if len(filtered_data) <= len(data) / 2:
return data[numpy.sort(idx[diff_a])]
else:
return data[numpy.sort(idx[diff])]
else:
return data
@classmethod
def remove_empty_areas(cls, data):
vectors = data['vectors']
v0 = vectors[:, 0]
v1 = vectors[:, 1]
v2 = vectors[:, 2]
normals = numpy.cross(v1 - v0, v2 - v0)
squared_areas = (normals ** 2).sum(axis=1)
return data[squared_areas > AREA_SIZE_THRESHOLD ** 2]
def update_normals(self):
'''Update the normals for all points'''
self.normals[:] = numpy.cross(self.v1 - self.v0, self.v2 - self.v0)
def update_min(self):
self._min = self.vectors.min(axis=(0, 1))
def update_max(self):
self._max = self.vectors.max(axis=(0, 1))
def update_areas(self):
areas = .5 * numpy.sqrt((self.normals ** 2).sum(axis=1))
self.areas = areas.reshape((areas.size, 1))
def get_mass_properties(self):
'''
Evaluate and return a tuple with the following elements:
- the volume
- the position of the center of gravity (COG)
- the inertia matrix expressed at the COG
Documentation can be found here:
http://www.geometrictools.com/Documentation/PolyhedralMassProperties.pdf
'''
def subexpression(x):
w0, w1, w2 = x[:, 0], x[:, 1], x[:, 2]
temp0 = w0 + w1
f1 = temp0 + w2
temp1 = w0 * w0
temp2 = temp1 + w1 * temp0
f2 = temp2 + w2 * f1
f3 = w0 * temp1 + w1 * temp2 + w2 * f2
g0 = f2 + w0 * (f1 + w0)
g1 = f2 + w1 * (f1 + w1)
g2 = f2 + w2 * (f1 + w2)
return f1, f2, f3, g0, g1, g2
x0, x1, x2 = self.x[:, 0], self.x[:, 1], self.x[:, 2]
y0, y1, y2 = self.y[:, 0], self.y[:, 1], self.y[:, 2]
z0, z1, z2 = self.z[:, 0], self.z[:, 1], self.z[:, 2]
a1, b1, c1 = x1 - x0, y1 - y0, z1 - z0
a2, b2, c2 = x2 - x0, y2 - y0, z2 - z0
d0, d1, d2 = b1 * c2 - b2 * c1, a2 * c1 - a1 * c2, a1 * b2 - a2 * b1
f1x, f2x, f3x, g0x, g1x, g2x = subexpression(self.x)
f1y, f2y, f3y, g0y, g1y, g2y = subexpression(self.y)
f1z, f2z, f3z, g0z, g1z, g2z = subexpression(self.z)
intg = numpy.zeros((10))
intg[0] = sum(d0 * f1x)
intg[1:4] = sum(d0 * f2x), sum(d1 * f2y), sum(d2 * f2z)
intg[4:7] = sum(d0 * f3x), sum(d1 * f3y), sum(d2 * f3z)
intg[7] = sum(d0 * (y0 * g0x + y1 * g1x + y2 * g2x))
intg[8] = sum(d1 * (z0 * g0y + z1 * g1y + z2 * g2y))
intg[9] = sum(d2 * (x0 * g0z + x1 * g1z + x2 * g2z))
intg /= numpy.array([6, 24, 24, 24, 60, 60, 60, 120, 120, 120])
volume = intg[0]
cog = intg[1:4] / volume
cogsq = cog ** 2
inertia = numpy.zeros((3, 3))
inertia[0, 0] = intg[5] + intg[6] - volume * (cogsq[1] + cogsq[2])
inertia[1, 1] = intg[4] + intg[6] - volume * (cogsq[2] + cogsq[0])
inertia[2, 2] = intg[4] + intg[5] - volume * (cogsq[0] + cogsq[1])
inertia[0, 1] = inertia[1, 0] = -(intg[7] - volume * cog[0] * cog[1])
inertia[1, 2] = inertia[2, 1] = -(intg[8] - volume * cog[1] * cog[2])
inertia[0, 2] = inertia[2, 0] = -(intg[9] - volume * cog[2] * cog[0])
return volume, cog, inertia
def update_units(self):
units = self.normals.copy()
non_zero_areas = self.areas > 0
areas = self.areas
if non_zero_areas.shape[0] != areas.shape[0]: # pragma: no cover
self.warning('Zero sized areas found, '
'units calculation will be partially incorrect')
if non_zero_areas.any():
non_zero_areas.shape = non_zero_areas.shape[0]
areas = numpy.hstack((2 * areas[non_zero_areas],) * DIMENSIONS)
units[non_zero_areas] /= areas
self.units = units
@classmethod
def rotation_matrix(cls, axis, theta):
'''
Generate a rotation matrix to Rotate the matrix over the given axis by
the given theta (angle)
Uses the `Euler-Rodrigues
<https://en.wikipedia.org/wiki/Euler%E2%80%93Rodrigues_formula>`_
formula for fast rotations.
:param numpy.array axis: Axis to rotate over (x, y, z)
:param float theta: Rotation angle in radians, use `math.radians` to
convert degrees to radians if needed.
'''
axis = numpy.asarray(axis)
# No need to rotate if there is no actual rotation
if not axis.any():
return numpy.zeros((3, 3))
theta = 0.5 * numpy.asarray(theta)
axis = axis / numpy.linalg.norm(axis)
a = math.cos(theta)
b, c, d = - axis * math.sin(theta)
angles = a, b, c, d
powers = [x * y for x in angles for y in angles]
aa, ab, ac, ad = powers[0:4]
ba, bb, bc, bd = powers[4:8]
ca, cb, cc, cd = powers[8:12]
da, db, dc, dd = powers[12:16]
return numpy.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
def rotate(self, axis, theta, point=None):
'''
Rotate the matrix over the given axis by the given theta (angle)
Uses the :py:func:`rotation_matrix` in the background.
.. note:: Note that the `point` was accidentaly inverted with the
old version of the code. To get the old and incorrect behaviour
simply pass `-point` instead of `point` or `-numpy.array(point)` if
you're passing along an array.
:param numpy.array axis: Axis to rotate over (x, y, z)
:param float theta: Rotation angle in radians, use `math.radians` to
convert degrees to radians if needed.
:param numpy.array point: Rotation point so manual translation is not
required
'''
# No need to rotate if there is no actual rotation
if not theta:
return
if isinstance(point, (numpy.ndarray, list, tuple)) and len(point) == 3:
point = numpy.asarray(point)
elif point is None:
point = numpy.array([0, 0, 0])
elif isinstance(point, (int, float)):
point = numpy.asarray([point] * 3)
else:
raise TypeError('Incorrect type for point', point)
rotation_matrix = self.rotation_matrix(axis, theta)
# No need to rotate if there is no actual rotation
if not rotation_matrix.any():
return
def _rotate(matrix):
if point.any():
# Translate while rotating
return (matrix - point).dot(rotation_matrix) + point
else:
# Simply apply the rotation
return matrix.dot(rotation_matrix)
for i in range(3):
self.vectors[:, i] = _rotate(self.vectors[:, i])
def translate(self, translation):
'''
Translate the mesh in the three directions
:param numpy.array translation: Translation vector (x, y, z)
'''
assert len(translation) == 3, "Translation vector must be of length 3"
self.x += translation[0]
self.y += translation[1]
self.z += translation[2]
def transform(self, matrix):
'''
Transform the mesh with a rotation and a translation stored in a
single 4x4 matrix
:param numpy.array matrix: Transform matrix with shape (4, 4), where
matrix[0:3, 0:3] represents the rotation
part of the transformation
matrix[0:3, 3] represents the translation
part of the transformation
'''
is_a_4x4_matrix = matrix.shape == (4, 4)
assert is_a_4x4_matrix, "Transformation matrix must be of shape (4, 4)"
rotation = matrix[0:3, 0:3]
unit_det_rotation = numpy.allclose(numpy.linalg.det(rotation), 1.0)
assert unit_det_rotation, "Rotation matrix has not a unit determinant"
for i in range(3):
self.vectors[:, i] = numpy.dot(rotation, self.vectors[:, i].T).T
self.x += matrix[0, 3]
self.y += matrix[1, 3]
self.z += matrix[2, 3]
def _get_or_update(key):
def _get(self):
if not hasattr(self, '_%s' % key):
getattr(self, 'update_%s' % key)()
return getattr(self, '_%s' % key)
return _get
def _set(key):
def _set(self, value):
setattr(self, '_%s' % key, value)
return _set
min_ = property(_get_or_update('min'), _set('min'),
doc='Mesh minimum value')
max_ = property(_get_or_update('max'), _set('max'),
doc='Mesh maximum value')
areas = property(_get_or_update('areas'), _set('areas'),
doc='Mesh areas')
units = property(_get_or_update('units'), _set('units'),
doc='Mesh unit vectors')
def __getitem__(self, k):
return self.points[k]
def __setitem__(self, k, v):
self.points[k] = v
def __len__(self):
return self.points.shape[0]
def __iter__(self):
for point in self.points:
yield point
|