/usr/lib/python3/dist-packages/pyolib/fourier.py is in python3-pyo 0.8.8-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 | """
Fast Fourier Transform.
A Fast Fourier Transform (FFT) is an efficient algorithm to compute
the discrete Fourier transform (DFT) and its inverse (IFFT).
The objects below can be used to perform sound processing in the
spectral domain.
"""
from __future__ import division
from __future__ import absolute_import
"""
Copyright 2009-2015 Olivier Belanger
This file is part of pyo, a python module to help digital signal
processing script creation.
pyo is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
pyo is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with pyo. If not, see <http://www.gnu.org/licenses/>.
"""
from ._core import *
from ._maps import *
class FFT(PyoObject):
"""
Fast Fourier Transform.
FFT analyses an input signal and converts it into the spectral
domain. Three audio signals are sent out of the object, the
`real` part, from bin 0 (DC) to bin size/2 (Nyquist), the
`imaginary` part, from bin 0 to bin size/2-1, and the bin
number, an increasing count from 0 to size-1. `real` and
`imaginary` buffer's left samples up to size-1 are filled
with zeros. See notes below for an example of how to retrieve
each signal component.
:Parent: :py:class:`PyoObject`
:Args:
input: PyoObject
Input signal to process.
size: int {pow-of-two > 4}, optional
FFT size. Must be a power of two greater than 4.
The FFT size is the number of samples used in each
analysis frame. Defaults to 1024.
overlaps: int, optional
The number of overlaped analysis block. Must be a
positive integer. More overlaps can greatly improved
sound quality synthesis but it is also more CPU
expensive. Defaults to 4.
wintype: int, optional
Shape of the envelope used to filter each input frame.
Possible shapes are :
0. rectangular (no windowing)
1. Hamming
2. Hanning
3. Bartlett (triangular)
4. Blackman 3-term
5. Blackman-Harris 4-term
6. Blackman-Harris 7-term
7. Tuckey (alpha = 0.66)
8. Sine (half-sine window)
.. note::
FFT has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
FFT has no `mul` and `add` attributes.
Real, imaginary and bin_number parts are three separated set
of audio streams. The user should call :
| FFT['real'] to retrieve the real part.
| FFT['imag'] to retrieve the imaginary part.
| FFT['bin'] to retrieve the bin number part.
>>> s = Server().boot()
>>> s.start()
>>> a = Noise(.25).mix(2)
>>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
>>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
>>> amp = TableIndex(t, fin["bin"])
>>> re = fin["real"] * amp
>>> im = fin["imag"] * amp
>>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()
"""
def __init__(self, input, size=1024, overlaps=4, wintype=2):
pyoArgsAssert(self, "oiIi", input, size, overlaps, wintype)
PyoObject.__init__(self)
self._real_dummy = []
self._imag_dummy = []
self._bin_dummy = []
self._input = input
self._size = size
self._overlaps = overlaps
self._wintype = wintype
self._in_fader = InputFader(input)
in_fader, size, wintype, lmax = convertArgsToLists(self._in_fader, size, wintype)
self._base_players = []
for j in range(overlaps):
for i in range(lmax):
hopsize = wrap(size,i) * j // overlaps
self._base_players.append(FFTMain_base(wrap(in_fader,i), wrap(size,i), hopsize, wrap(wintype,i)))
self._real_objs = []
self._imag_objs = []
self._bin_objs = []
for j in range(len(self._base_players)):
self._real_objs.append(FFT_base(wrap(self._base_players,j), 0, self._mul, self._add))
self._imag_objs.append(FFT_base(wrap(self._base_players,j), 1, self._mul, self._add))
self._bin_objs.append(FFT_base(wrap(self._base_players,j), 2, self._mul, self._add))
self.play()
def __len__(self):
return len(self._real_objs)
def __getitem__(self, str):
if str == 'real':
self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._real_objs)]))
return self._real_dummy[-1]
if str == 'imag':
self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._imag_objs)]))
return self._imag_dummy[-1]
if str == 'bin':
self._bin_dummy.append(Dummy([obj for i, obj in enumerate(self._bin_objs)]))
return self._bin_dummy[-1]
def get(self, identifier="real", all=False):
"""
Return the first sample of the current buffer as a float.
Can be used to convert audio stream to usable Python data.
"real", "imag" or "bin" must be given to `identifier` to specify
which stream to get value from.
:Args:
identifier: string {"real", "imag", "bin"}
Address string parameter identifying audio stream.
Defaults to "real".
all: boolean, optional
If True, the first value of each object's stream
will be returned as a list. Otherwise, only the value
of the first object's stream will be returned as a float.
Defaults to False.
"""
if not all:
return self.__getitem__(identifier)[0]._getStream().getValue()
else:
return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]
def setInput(self, x, fadetime=0.05):
"""
Replace the `input` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._input = x
self._in_fader.setInput(x, fadetime)
def play(self, dur=0, delay=0):
dur, delay, lmax = convertArgsToLists(dur, delay)
self._base_players = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._base_players)]
self._real_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._real_objs)]
self._imag_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._imag_objs)]
self._bin_objs = [obj.play(wrap(dur,i), wrap(delay,i)) for i, obj in enumerate(self._bin_objs)]
return self
def stop(self):
[obj.stop() for obj in self._base_players]
[obj.stop() for obj in self._real_objs]
[obj.stop() for obj in self._imag_objs]
[obj.stop() for obj in self._bin_objs]
return self
def out(self, chnl=0, inc=1, dur=0, delay=0):
return self.play(dur, delay)
def setSize(self, x):
"""
Replace the `size` attribute.
:Args:
x: int
new `size` attribute.
"""
pyoArgsAssert(self, "i", x)
self._size = x
x, lmax = convertArgsToLists(x)
poly = len(self._base_players) // self._overlaps
for j in range(self._overlaps):
for i in range(poly):
hopsize = wrap(x,i) * j // self._overlaps
self._base_players[j*poly+i].setSize(wrap(x,i), hopsize)
def setWinType(self, x):
"""
Replace the `wintype` attribute.
:Args:
x: int
new `wintype` attribute.
"""
pyoArgsAssert(self, "i", x)
self._wintype = x
x, lmax = convertArgsToLists(x)
[obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_players)]
@property
def input(self):
"""PyoObject. Input signal to process."""
return self._input
@input.setter
def input(self, x): self.setInput(x)
@property
def size(self):
"""int. FFT size."""
return self._size
@size.setter
def size(self, x): self.setSize(x)
@property
def wintype(self):
"""int. Windowing method."""
return self._wintype
@wintype.setter
def wintype(self, x): self.setWinType(x)
class IFFT(PyoObject):
"""
Inverse Fast Fourier Transform.
IFFT takes a signal in the spectral domain and converts it to a
real audio signal using an inverse fast fourier transform.
IFFT takes two signals in input, the `real` and `imaginary` parts
of an FFT analysis and returns the corresponding real signal.
These signals must correspond to `real` and `imaginary` parts
from an FFT object.
:Parent: :py:class:`PyoObject`
:Args:
inreal: PyoObject
Input `real` signal.
inimag: PyoObject
Input `imaginary` signal.
size: int {pow-of-two > 4}, optional
FFT size. Must be a power of two greater than 4.
The FFT size is the number of samples used in each
analysis frame. This value must match the `size`
attribute of the former FFT object. Defaults to 1024.
overlaps: int, optional
The number of overlaped analysis block. Must be a
positive integer. More overlaps can greatly improved
sound quality synthesis but it is also more CPU
expensive. This value must match the `overlaps`
atribute of the former FFT object. Defaults to 4.
wintype: int, optional
Shape of the envelope used to filter each output frame.
Possible shapes are :
0. rectangular (no windowing)
1. Hamming
2. Hanning
3. Bartlett (triangular)
4. Blackman 3-term
5. Blackman-Harris 4-term
6. Blackman-Harris 7-term
7. Tuckey (alpha = 0.66)
8. Sine (half-sine window)
.. note::
The number of streams in `inreal` and `inimag` attributes
must be egal to the output of the former FFT object. In
most case, it will be `channels of processed sound` * `overlaps`.
The output of IFFT must be mixed to reconstruct the real
signal from the overlapped streams. It is left to the user
to call the mix(channels of the processed sound) method on
an IFFT object.
>>> s = Server().boot()
>>> s.start()
>>> a = Noise(.25).mix(2)
>>> fin = FFT(a, size=1024, overlaps=4, wintype=2)
>>> t = ExpTable([(0,0),(3,0),(10,1),(20,0),(30,.8),(50,0),(70,.6),(150,0),(512,0)], size=512)
>>> amp = TableIndex(t, fin["bin"])
>>> re = fin["real"] * amp
>>> im = fin["imag"] * amp
>>> fout = IFFT(re, im, size=1024, overlaps=4, wintype=2).mix(2).out()
"""
def __init__(self, inreal, inimag, size=1024, overlaps=4, wintype=2, mul=1, add=0):
pyoArgsAssert(self, "ooiIiOO", inreal, inimag, size, overlaps, wintype, mul, add)
PyoObject.__init__(self, mul, add)
self._inreal = inreal
self._inimag = inimag
self._size = size
self._overlaps = overlaps
self._wintype = wintype
self._in_fader = InputFader(inreal)
self._in_fader2 = InputFader(inimag)
in_fader, in_fader2, size, wintype, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, size, wintype, mul, add)
self._base_objs = []
ratio = lmax // overlaps
for i in range(lmax):
hopsize = wrap(size,i) * ((i // ratio) % overlaps) // overlaps
self._base_objs.append(IFFT_base(wrap(in_fader,i), wrap(in_fader2,i), wrap(size,i), hopsize, wrap(wintype,i), wrap(mul,i), wrap(add,i)))
self.play()
def __len__(self):
return len(self._inreal)
def setInReal(self, x, fadetime=0.05):
"""
Replace the `inreal` attribute.
:Args:
x: PyoObject
New input `real` signal.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inreal = x
self._in_fader.setInput(x, fadetime)
def setInImag(self, x, fadetime=0.05):
"""
Replace the `inimag` attribute.
:Args:
x: PyoObject
New input `imag` signal.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inimag = x
self._in_fader2.setInput(x, fadetime)
def setSize(self, x):
"""
Replace the `size` attribute.
:Args:
x: int
new `size` attribute.
"""
pyoArgsAssert(self, "i", x)
self._size = x
x, lmax = convertArgsToLists(x)
ratio = len(self._base_objs) // self._overlaps
for i, obj in enumerate(self._base_objs):
hopsize = wrap(x,i) * ((i // ratio) % self._overlaps) // self._overlaps
self._base_objs[i].setSize(wrap(x,i), hopsize)
def setWinType(self, x):
"""
Replace the `wintype` attribute.
:Args:
x: int
new `wintype` attribute.
"""
pyoArgsAssert(self, "i", x)
self._wintype = x
x, lmax = convertArgsToLists(x)
[obj.setWinType(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
def ctrl(self, map_list=None, title=None, wxnoserver=False):
self._map_list = [SLMapMul(self._mul)]
PyoObject.ctrl(self, map_list, title, wxnoserver)
@property
def inreal(self):
"""PyoObject. Real input signal."""
return self._inreal
@inreal.setter
def inreal(self, x): self.setInReal(x)
@property
def inimag(self):
"""PyoObject. Imaginary input signal."""
return self._inimag
@inimag.setter
def inimag(self, x): self.setInImag(x)
@property
def size(self):
"""int. FFT size."""
return self._size
@size.setter
def size(self, x): self.setSize(x)
@property
def wintype(self):
"""int. Windowing method."""
return self._wintype
@wintype.setter
def wintype(self, x): self.setWinType(x)
class CarToPol(PyoObject):
"""
Performs the cartesian to polar conversion.
The Cartesian system locates points on a plane by measuring the horizontal and
vertical distances from an arbitrary origin to a point. These are usually denoted
as a pair of values (X,Y).
The Polar system locates the point by measuring the straight line distance, usually
denoted by R, from the origin to the point and the angle of an imaginary line from
the origin to the point measured counterclockwise from the positive X axis.
:Parent: :py:class:`PyoObject`
:Args:
inreal: PyoObject
Real input signal.
inimag: PyoObject
Imaginary input signal.
.. note::
Polar coordinates can be retrieve by calling :
| CarToPol['mag'] to retrieve the magnitude part.
| CarToPol['ang'] to retrieve the angle part.
CarToPol has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
>>> s = Server().boot()
>>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
>>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
>>> fin1 = FFT(snd1, size=1024, overlaps=4)
>>> fin2 = FFT(snd2, size=1024, overlaps=4)
>>> # get magnitudes and phases of input sounds
>>> pol1 = CarToPol(fin1["real"], fin1["imag"])
>>> pol2 = CarToPol(fin2["real"], fin2["imag"])
>>> # times magnitudes and adds phases
>>> mag = pol1["mag"] * pol2["mag"] * 100
>>> pha = pol1["ang"] + pol2["ang"]
>>> # converts back to rectangular
>>> car = PolToCar(mag, pha)
>>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
>>> s.start()
"""
def __init__(self, inreal, inimag, mul=1, add=0):
pyoArgsAssert(self, "ooOO", inreal, inimag, mul, add)
PyoObject.__init__(self, mul, add)
self._mag_dummy = []
self._ang_dummy = []
self._inreal = inreal
self._inimag = inimag
self._in_fader = InputFader(inreal)
self._in_fader2 = InputFader(inimag)
in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
self._base_objs = []
for i in range(lmax):
self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
self._base_objs.append(CarToPol_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))
self.play()
def __len__(self):
return len(self._inreal)
def __getitem__(self, str):
if str == 'mag':
self._mag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
return self._mag_dummy[-1]
if str == 'ang':
self._ang_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
return self._ang_dummy[-1]
def get(self, identifier="mag", all=False):
"""
Return the first sample of the current buffer as a float.
Can be used to convert audio stream to usable Python data.
"mag" or "ang" must be given to `identifier` to specify
which stream to get value from.
:Args:
identifier: string {"mag", "ang"}
Address string parameter identifying audio stream.
Defaults to "mag".
all: boolean, optional
If True, the first value of each object's stream
will be returned as a list. Otherwise, only the value
of the first object's stream will be returned as a float.
Defaults to False.
"""
if not all:
return self.__getitem__(identifier)[0]._getStream().getValue()
else:
return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]
def setInReal(self, x, fadetime=0.05):
"""
Replace the `inreal` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inreal = x
self._in_fader.setInput(x, fadetime)
def setInImag(self, x, fadetime=0.05):
"""
Replace the `inimag` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inimag = x
self._in_fader2.setInput(x, fadetime)
@property
def inreal(self):
"""PyoObject. Real input signal."""
return self._inreal
@inreal.setter
def inreal(self, x): self.setInReal(x)
@property
def inimag(self):
"""PyoObject. Imaginary input signal."""
return self._inimag
@inimag.setter
def inimag(self, x): self.setInImag(x)
class PolToCar(PyoObject):
"""
Performs the polar to cartesian conversion.
The Polar system locates the point by measuring the straight line distance, usually
denoted by R, from the origin to the point and the angle of an imaginary line from
the origin to the point measured counterclockwise from the positive X axis.
The Cartesian system locates points on a plane by measuring the horizontal and
vertical distances from an arbitrary origin to a point. These are usually denoted
as a pair of values (X,Y).
:Parent: :py:class:`PyoObject`
:Args:
inmag: PyoObject
Magintude input signal.
inang: PyoObject
Angle input signal.
.. note::
Cartesians coordinates can be retrieve by calling :
| PolToCar['real'] to retrieve the real part.
| CarToPol['imag'] to retrieve the imaginary part.
PolToCar has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
>>> s = Server().boot()
>>> snd1 = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=.7).mix(2)
>>> snd2 = FM(carrier=[75,100,125,150], ratio=[.499,.5,.501,.502], index=20, mul=.1).mix(2)
>>> fin1 = FFT(snd1, size=1024, overlaps=4)
>>> fin2 = FFT(snd2, size=1024, overlaps=4)
>>> # get magnitudes and phases of input sounds
>>> pol1 = CarToPol(fin1["real"], fin1["imag"])
>>> pol2 = CarToPol(fin2["real"], fin2["imag"])
>>> # times magnitudes and adds phases
>>> mag = pol1["mag"] * pol2["mag"] * 100
>>> pha = pol1["ang"] + pol2["ang"]
>>> # converts back to rectangular
>>> car = PolToCar(mag, pha)
>>> fout = IFFT(car["real"], car["imag"], size=1024, overlaps=4).mix(2).out()
>>> s.start()
"""
def __init__(self, inmag, inang, mul=1, add=0):
pyoArgsAssert(self, "ooOO", inmag, inang, mul, add)
PyoObject.__init__(self, mul, add)
self._real_dummy = []
self._imag_dummy = []
self._inmag = inmag
self._inang = inang
self._in_fader = InputFader(inmag)
self._in_fader2 = InputFader(inang)
in_fader, in_fader2, mul, add, lmax = convertArgsToLists(self._in_fader, self._in_fader2, mul, add)
self._base_objs = []
for i in range(lmax):
self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 0, wrap(mul,i), wrap(add,i)))
self._base_objs.append(PolToCar_base(wrap(in_fader,i), wrap(in_fader2,i), 1, wrap(mul,i), wrap(add,i)))
self.play()
def __len__(self):
return len(self._inmag)
def __getitem__(self, str):
if str == 'real':
self._real_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 0]))
return self._real_dummy[-1]
if str == 'imag':
self._imag_dummy.append(Dummy([obj for i, obj in enumerate(self._base_objs) if i%2 == 1]))
return self._imag_dummy[-1]
def get(self, identifier="real", all=False):
"""
Return the first sample of the current buffer as a float.
Can be used to convert audio stream to usable Python data.
"real" or "imag" must be given to `identifier` to specify
which stream to get value from.
:Args:
identifier: string {"real", "imag"}
Address string parameter identifying audio stream.
Defaults to "mag".
all: boolean, optional
If True, the first value of each object's stream
will be returned as a list. Otherwise, only the value
of the first object's stream will be returned as a float.
Defaults to False.
"""
if not all:
return self.__getitem__(identifier)[0]._getStream().getValue()
else:
return [obj._getStream().getValue() for obj in self.__getitem__(identifier).getBaseObjects()]
def setInMag(self, x, fadetime=0.05):
"""
Replace the `inmag` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inmag = x
self._in_fader.setInput(x, fadetime)
def setInAng(self, x, fadetime=0.05):
"""
Replace the `inang` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._inang = x
self._in_fader2.setInput(x, fadetime)
@property
def inmag(self):
"""PyoObject. Magnitude input signal."""
return self._inmag
@inmag.setter
def inmag(self, x): self.setInMag(x)
@property
def inang(self):
"""PyoObject. Angle input signal."""
return self._inang
@inang.setter
def inang(self, x): self.setInAng(x)
class FrameDelta(PyoObject):
"""
Computes the phase differences between successive frames.
The difference between the phase values of successive FFT frames for a given bin
determines the exact frequency of the energy centered in that bin. This is often
known as the phase difference (and sometimes also referred to as phase derivative
or instantaneous frequency if it's been subjected to a few additional calculations).
In order to reconstruct a plausible playback of re-ordered FFT frames, we need to
calculate the phase difference between successive frames and use it to construct a
`running phase` (by simply summing the successive differences with FrameAccum) for
the output FFT frames.
:Parent: :py:class:`PyoObject`
:Args:
input: PyoObject
Phase input signal, usually from an FFT analysis.
framesize: int, optional
Frame size in samples. Usually the same as the FFT size.
Defaults to 1024.
overlaps: int, optional
Number of overlaps in incomming signal. Usually the same
as the FFT overlaps. Defaults to 4.
.. note::
FrameDelta has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
>>> s = Server().boot()
>>> s.start()
>>> snd = SNDS_PATH + '/transparent.aif'
>>> size, hop = 1024, 256
>>> nframes = sndinfo(snd)[0] / size
>>> a = SfPlayer(snd, mul=.3)
>>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
>>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
>>> fin = FFT(a, size=size, overlaps=4)
>>> pol = CarToPol(fin["real"], fin["imag"])
>>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
>>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
>>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
>>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
>>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
>>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
>>> car = PolToCar(m_mag_read, accum)
>>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
>>> right = Delay(fout, delay=0.013).out(1)
"""
def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
pyoArgsAssert(self, "oiiOO", input, framesize, overlaps, mul, add)
PyoObject.__init__(self, mul, add)
self._input = input
self._framesize = framesize
self._overlaps = overlaps
self._in_fader = InputFader(input)
in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
num_of_mains = len(self._in_fader) // self._overlaps
self._base_players = []
for j in range(num_of_mains):
objs_list = []
for i in range(len(self._in_fader)):
if (i % num_of_mains) == j:
objs_list.append(self._in_fader[i])
self._base_players.append(FrameDeltaMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
self._base_objs = []
for i in range(lmax):
base_player = i % num_of_mains
overlap = i // num_of_mains
self._base_objs.append(FrameDelta_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))
self.play()
def out(self, chnl=0, inc=1, dur=0, delay=0):
return self.play(dur, delay)
def setInput(self, x, fadetime=0.05):
"""
Replace the `input` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._input = x
self._in_fader.setInput(x, fadetime)
def setFrameSize(self, x):
"""
Replace the `framesize` attribute.
:Args:
x: int
new `framesize` attribute.
"""
pyoArgsAssert(self, "i", x)
self._framesize = x
x, lmax = convertArgsToLists(x)
[obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]
@property
def input(self):
"""PyoObject. Phase input signal."""
return self._input
@input.setter
def input(self, x): self.setInput(x)
@property
def framesize(self):
"""PyoObject. Frame size in samples."""
return self._framesize
@framesize.setter
def framesize(self, x): self.setFrameSize(x)
class FrameAccum(PyoObject):
"""
Accumulates the phase differences between successive frames.
The difference between the phase values of successive FFT frames for a given bin
determines the exact frequency of the energy centered in that bin. This is often
known as the phase difference (and sometimes also referred to as phase derivative
or instantaneous frequency if it's been subjected to a few additional calculations).
In order to reconstruct a plausible playback of re-ordered FFT frames, we need to
calculate the phase difference between successive frames, with FrameDelta, and use
it to construct a `running phase` (by simply summing the successive differences) for
the output FFT frames.
:Parent: :py:class:`PyoObject`
:Args:
input: PyoObject
Phase input signal.
framesize: int, optional
Frame size in samples. Usually same as the FFT size.
Defaults to 1024.
overlaps: int, optional
Number of overlaps in incomming signal. Usually the same
as the FFT overlaps. Defaults to 4.
.. note::
FrameAccum has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
>>> s = Server().boot()
>>> s.start()
>>> snd = SNDS_PATH + '/transparent.aif'
>>> size, hop = 1024, 256
>>> nframes = sndinfo(snd)[0] / size
>>> a = SfPlayer(snd, mul=.3)
>>> m_mag = [NewMatrix(width=size, height=nframes) for i in range(4)]
>>> m_pha = [NewMatrix(width=size, height=nframes) for i in range(4)]
>>> fin = FFT(a, size=size, overlaps=4)
>>> pol = CarToPol(fin["real"], fin["imag"])
>>> delta = FrameDelta(pol["ang"], framesize=size, overlaps=4)
>>> m_mag_rec = MatrixRec(pol["mag"], m_mag, 0, [i*hop for i in range(4)]).play()
>>> m_pha_rec = MatrixRec(delta, m_pha, 0, [i*hop for i in range(4)]).play()
>>> m_mag_read = MatrixPointer(m_mag, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
>>> m_pha_read = MatrixPointer(m_pha, fin["bin"]/size, Sine(freq=0.25, mul=.5, add=.5))
>>> accum = FrameAccum(m_pha_read, framesize=size, overlaps=4)
>>> car = PolToCar(m_mag_read, accum)
>>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=4).mix(1).out()
>>> right = Delay(fout, delay=0.013).out(1)
"""
def __init__(self, input, framesize=1024, overlaps=4, mul=1, add=0):
pyoArgsAssert(self, "oiiOO", input, framesize, overlaps, mul, add)
PyoObject.__init__(self, mul, add)
self._input = input
self._framesize = framesize
self._overlaps = overlaps
self._in_fader = InputFader(input)
in_fader, framesize, overlaps, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, mul, add)
num_of_mains = len(self._in_fader) // self._overlaps
self._base_players = []
for j in range(num_of_mains):
objs_list = []
for i in range(len(self._in_fader)):
if (i%num_of_mains) == j:
objs_list.append(self._in_fader[i])
self._base_players.append(FrameAccumMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j)))
self._base_objs = []
for i in range(lmax):
base_player = i % num_of_mains
overlap = i // num_of_mains
self._base_objs.append(FrameAccum_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))
self.play()
def out(self, chnl=0, inc=1, dur=0, delay=0):
return self.play(dur, delay)
def setInput(self, x, fadetime=0.05):
"""
Replace the `input` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._input = x
self._in_fader.setInput(x, fadetime)
def setFrameSize(self, x):
"""
Replace the `framesize` attribute.
:Args:
x: int
new `framesize` attribute.
"""
pyoArgsAssert(self, "i", x)
self._framesize = x
x, lmax = convertArgsToLists(x)
[obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]
@property
def input(self):
"""PyoObject. Phase input signal."""
return self._input
@input.setter
def input(self, x): self.setInput(x)
@property
def framesize(self):
"""PyoObject. Frame size in samples."""
return self._framesize
@framesize.setter
def framesize(self, x): self.setFrameSize(x)
class Vectral(PyoObject):
"""
Performs magnitude smoothing between successive frames.
Vectral applies filter with different coefficients for increasing
and decreasing magnitude vectors, bin by bin.
:Parent: :py:class:`PyoObject`
:Args:
input: PyoObject
Magnitude input signal, usually from an FFT analysis.
framesize: int, optional
Frame size in samples. Usually the same as the FFT size.
Defaults to 1024.
overlaps: int, optional
Number of overlaps in incomming signal. Usually the same
as the FFT overlaps. Defaults to 4.
up: float or PyoObject, optional
Filter coefficient for increasing bins, between 0 and 1.
Lower values results in a longer ramp time for bin magnitude.
Defaults to 1.
down: float or PyoObject, optional
Filter coefficient for decreasing bins, between 0 and 1.
Lower values results in a longer decay time for bin magnitude.
Defaults to 0.7
damp: float or PyoObject, optional
High frequencies damping factor, between 0 and 1. Lower values
mean more damping. Defaults to 0.9.
.. note::
Vectral has no `out` method. Signal must be converted back to time domain,
with IFFT, before being sent to output.
>>> s = Server().boot()
>>> snd = SNDS_PATH + '/accord.aif'
>>> size, olaps = 1024, 4
>>> snd = SfPlayer(snd, speed=[.75,.8], loop=True, mul=.3)
>>> fin = FFT(snd, size=size, overlaps=olaps)
>>> pol = CarToPol(fin["real"], fin["imag"])
>>> vec = Vectral(pol["mag"], framesize=size, overlaps=olaps, down=.2, damp=.6)
>>> car = PolToCar(vec, pol["ang"])
>>> fout = IFFT(car["real"], car["imag"], size=size, overlaps=olaps).mix(2).out()
>>> s.start()
"""
def __init__(self, input, framesize=1024, overlaps=4, up=1.0, down=0.7, damp=0.9, mul=1, add=0):
pyoArgsAssert(self, "oiiOOOOO", input, framesize, overlaps, up, down, damp, mul, add)
PyoObject.__init__(self, mul, add)
self._input = input
self._framesize = framesize
self._overlaps = overlaps
self._up = up
self._down = down
self._damp = damp
self._in_fader = InputFader(input)
in_fader, framesize, overlaps, up, down, damp, mul, add, lmax = convertArgsToLists(self._in_fader, framesize, overlaps, up, down, damp, mul, add)
num_of_mains = len(self._in_fader) // self._overlaps
self._base_players = []
for j in range(num_of_mains):
objs_list = []
for i in range(len(self._in_fader)):
if (i % num_of_mains) == j:
objs_list.append(self._in_fader[i])
self._base_players.append(VectralMain_base(objs_list, wrap(framesize,j), wrap(overlaps,j), wrap(up,j), wrap(down,j), wrap(damp,j)))
self._base_objs = []
for i in range(lmax):
base_player = i % num_of_mains
overlap = i // num_of_mains
self._base_objs.append(Vectral_base(self._base_players[base_player], overlap, wrap(mul,i), wrap(add,i)))
self.play()
def out(self, chnl=0, inc=1, dur=0, delay=0):
return self.play(dur, delay)
def setInput(self, x, fadetime=0.05):
"""
Replace the `input` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._input = x
self._in_fader.setInput(x, fadetime)
def setFrameSize(self, x):
"""
Replace the `framesize` attribute.
:Args:
x: int
new `framesize` attribute.
"""
pyoArgsAssert(self, "i", x)
self._framesize = x
x, lmax = convertArgsToLists(x)
[obj.setFrameSize(wrap(x,i)) for i, obj in enumerate(self._base_players)]
def setUp(self, x):
"""
Replace the `up` attribute.
:Args:
x: float or PyoObject
new `up` attribute.
"""
pyoArgsAssert(self, "O", x)
self._up = x
x, lmax = convertArgsToLists(x)
[obj.setUp(wrap(x,i)) for i, obj in enumerate(self._base_players)]
def setDown(self, x):
"""
Replace the `down` attribute.
:Args:
x: float or PyoObject
new `down` attribute.
"""
pyoArgsAssert(self, "O", x)
self._down = x
x, lmax = convertArgsToLists(x)
[obj.setDown(wrap(x,i)) for i, obj in enumerate(self._base_players)]
def setDamp(self, x):
"""
Replace the `damp` attribute.
:Args:
x: float or PyoObject
new `damp` attribute.
"""
pyoArgsAssert(self, "O", x)
self._damp = x
x, lmax = convertArgsToLists(x)
[obj.setDamp(wrap(x,i)) for i, obj in enumerate(self._base_players)]
def ctrl(self, map_list=None, title=None, wxnoserver=False):
self._map_list = [SLMap(0., 1., "lin", "up", self._up),
SLMap(0., 1., "lin", "down", self._down),
SLMap(0., 1., "lin", "damp", self._damp),
SLMapMul(self._mul)]
PyoObject.ctrl(self, map_list, title, wxnoserver)
@property
def input(self):
"""PyoObject. Magnitude input signal."""
return self._input
@input.setter
def input(self, x): self.setInput(x)
@property
def framesize(self):
"""int. Frame size in samples."""
return self._framesize
@framesize.setter
def framesize(self, x): self.setFrameSize(x)
@property
def up(self):
"""float or PyoObject. Filter coefficient for increasing bins."""
return self._up
@up.setter
def up(self, x): self.setUp(x)
@property
def down(self):
"""float or PyoObject. Filter coefficient for decreasing bins."""
return self._down
@down.setter
def down(self, x): self.setDown(x)
@property
def damp(self):
"""float or PyoObject. High frequencies damping factor."""
return self._damp
@damp.setter
def damp(self, x): self.setDamp(x)
class CvlVerb(PyoObject):
"""
Convolution based reverb.
CvlVerb implements convolution based on a uniformly partitioned overlap-save
algorithm. This object can be used to convolve an input signal with an
impulse response soundfile to simulate real acoustic spaces.
:Parent: :py:class:`PyoObject`
:Args:
input: PyoObject
Input signal to process.
impulse: string, optional
Path to the impulse response soundfile. The file must have the same
sampling rate as the server to get the proper convolution. Available at
initialization time only. Defaults to 'IRMediumHallStereo.wav', located
in pyolib SNDS_PATH folder.
size: int {pow-of-two}, optional
The size in samples of each partition of the impulse file. Small size means
smaller latency but more computation time. If not a power-of-2, the object
will find the next power-of-2 greater and use that as the actual partition size.
This value must also be greater or equal than the server's buffer size.
Available at initialization time only. Defaults to 1024.
bal: float or PyoObject, optional
Balance between wet and dry signal, between 0 and 1. 0 means no
reverb. Defaults to 0.25.
>>> s = Server().boot()
>>> s.start()
>>> sf = SfPlayer(SNDS_PATH+"/transparent.aif", loop=True, mul=0.5)
>>> cv = CvlVerb(sf, SNDS_PATH+"/IRMediumHallStereo.wav", size=1024, bal=0.4).out()
"""
def __init__(self, input, impulse=SNDS_PATH+"/IRMediumHallStereo.wav", bal=0.25, size=1024, mul=1, add=0):
pyoArgsAssert(self, "osOiOO", input, impulse, bal, size, mul, add)
PyoObject.__init__(self, mul, add)
self._input = input
self._impulse = impulse
self._bal = bal
self._size = size
self._in_fader = InputFader(input)
in_fader, bal, size, mul, add, lmax = convertArgsToLists(self._in_fader, bal, size, mul, add)
impulse, lmax2 = convertArgsToLists(impulse)
self._base_objs = []
for file in impulse:
_size, _dur, _snd_sr, _snd_chnls, _format, _type = sndinfo(file)
lmax3 = max(lmax, _snd_chnls)
self._base_objs.extend([CvlVerb_base(wrap(in_fader,i), stringencode(file), wrap(bal,i), wrap(size,i), i%_snd_chnls, wrap(mul,i), wrap(add,i)) for i in range(lmax3)])
self.play()
def setInput(self, x, fadetime=0.05):
"""
Replace the `input` attribute.
:Args:
x: PyoObject
New signal to process.
fadetime: float, optional
Crossfade time between old and new input. Default to 0.05.
"""
pyoArgsAssert(self, "oN", x, fadetime)
self._input = x
self._in_fader.setInput(x, fadetime)
def setBal(self, x):
"""
Replace the `bal` attribute.
:Args:
x: float or PyoObject
new `bal` attribute.
"""
pyoArgsAssert(self, "O", x)
self._bal = x
x, lmax = convertArgsToLists(x)
[obj.setBal(wrap(x,i)) for i, obj in enumerate(self._base_objs)]
def ctrl(self, map_list=None, title=None, wxnoserver=False):
self._map_list = [SLMap(0., 1., "lin", "bal", self._bal),
SLMapMul(self._mul)]
PyoObject.ctrl(self, map_list, title, wxnoserver)
@property
def input(self):
"""PyoObject. Input signal to process."""
return self._input
@input.setter
def input(self, x): self.setInput(x)
@property
def bal(self):
"""float or PyoObject. Wet / dry balance."""
return self._bal
@bal.setter
def bal(self, x): self.setBal(x)
|