This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/collections.py is in python3-matplotlib 2.1.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
"""
Classes for the efficient drawing of large collections of objects that
share most properties, e.g., a large number of line segments or
polygons.

The classes are not meant to be as flexible as their single element
counterparts (e.g., you may not be able to select all line styles) but
they are meant to be fast for common use cases (e.g., a large set of solid
line segemnts)
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six
from six.moves import zip
try:
    from math import gcd
except ImportError:
    # LPy workaround
    from fractions import gcd

import numpy as np
import matplotlib as mpl
import matplotlib.cbook as cbook
import matplotlib.colors as mcolors
import matplotlib.cm as cm
from matplotlib import docstring
import matplotlib.transforms as transforms
import matplotlib.artist as artist
from matplotlib.artist import allow_rasterization
import matplotlib.path as mpath
from matplotlib import _path
import matplotlib.mlab as mlab
import matplotlib.lines as mlines

CIRCLE_AREA_FACTOR = 1.0 / np.sqrt(np.pi)


_color_aliases = {'facecolors': ['facecolor'],
                  'edgecolors': ['edgecolor']}


class Collection(artist.Artist, cm.ScalarMappable):
    """
    Base class for Collections.  Must be subclassed to be usable.

    All properties in a collection must be sequences or scalars;
    if scalars, they will be converted to sequences.  The
    property of the ith element of the collection is::

      prop[i % len(props)]

    Keyword arguments and default values:

        * *edgecolors*: None
        * *facecolors*: None
        * *linewidths*: None
        * *antialiaseds*: None
        * *offsets*: None
        * *transOffset*: transforms.IdentityTransform()
        * *offset_position*: 'screen' (default) or 'data'
        * *norm*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *cmap*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *hatch*: None
        * *zorder*: 1


    *offsets* and *transOffset* are used to translate the patch after
    rendering (default no offsets).  If offset_position is 'screen'
    (default) the offset is applied after the master transform has
    been applied, that is, the offsets are in screen coordinates.  If
    offset_position is 'data', the offset is applied before the master
    transform, i.e., the offsets are in data coordinates.

    If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
    are None, they default to their :data:`matplotlib.rcParams` patch
    setting, in sequence form.

    The use of :class:`~matplotlib.cm.ScalarMappable` is optional.  If
    the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not None
    (i.e., a call to set_array has been made), at draw time a call to
    scalar mappable will be made to set the face colors.
    """
    _offsets = np.zeros((0, 2))
    _transOffset = transforms.IdentityTransform()
    #: Either a list of 3x3 arrays or an Nx3x3 array of transforms, suitable
    #: for the `all_transforms` argument to
    #: :meth:`~matplotlib.backend_bases.RendererBase.draw_path_collection`;
    #: each 3x3 array is used to initialize an
    #: :class:`~matplotlib.transforms.Affine2D` object.
    #: Each kind of collection defines this based on its arguments.
    _transforms = np.empty((0, 3, 3))

    # Whether to draw an edge by default.  Set on a
    # subclass-by-subclass basis.
    _edge_default = False

    def __init__(self,
                 edgecolors=None,
                 facecolors=None,
                 linewidths=None,
                 linestyles='solid',
                 antialiaseds=None,
                 offsets=None,
                 transOffset=None,
                 norm=None,  # optional for ScalarMappable
                 cmap=None,  # ditto
                 pickradius=5.0,
                 hatch=None,
                 urls=None,
                 offset_position='screen',
                 zorder=1,
                 **kwargs
                 ):
        """
        Create a Collection

        %(Collection)s
        """
        artist.Artist.__init__(self)
        cm.ScalarMappable.__init__(self, norm, cmap)
        # list of un-scaled dash patterns
        # this is needed scaling the dash pattern by linewidth
        self._us_linestyles = [(None, None)]
        # list of dash patterns
        self._linestyles = [(None, None)]
        # list of unbroadcast/scaled linewidths
        self._us_lw = [0]
        self._linewidths = [0]
        self._is_filled = True  # May be modified by set_facecolor().

        self._hatch_color = mcolors.to_rgba(mpl.rcParams['hatch.color'])
        self.set_facecolor(facecolors)
        self.set_edgecolor(edgecolors)
        self.set_linewidth(linewidths)
        self.set_linestyle(linestyles)
        self.set_antialiased(antialiaseds)
        self.set_pickradius(pickradius)
        self.set_urls(urls)
        self.set_hatch(hatch)
        self.set_offset_position(offset_position)
        self.set_zorder(zorder)

        self._offsets = np.zeros((1, 2))
        self._uniform_offsets = None
        if offsets is not None:
            offsets = np.asanyarray(offsets, float)
            # Broadcast (2,) -> (1, 2) but nothing else.
            if offsets.shape == (2,):
                offsets = offsets[None, :]
            if transOffset is not None:
                self._offsets = offsets
                self._transOffset = transOffset
            else:
                self._uniform_offsets = offsets

        self._path_effects = None
        self.update(kwargs)
        self._paths = None

    def get_paths(self):
        return self._paths

    def set_paths(self):
        raise NotImplementedError

    def get_transforms(self):
        return self._transforms

    def get_offset_transform(self):
        t = self._transOffset
        if (not isinstance(t, transforms.Transform)
                and hasattr(t, '_as_mpl_transform')):
            t = t._as_mpl_transform(self.axes)
        return t

    def get_datalim(self, transData):
        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        offsets = self._offsets
        paths = self.get_paths()

        if not transform.is_affine:
            paths = [transform.transform_path_non_affine(p) for p in paths]
            transform = transform.get_affine()
        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)
            transOffset = transOffset.get_affine()

        if isinstance(offsets, np.ma.MaskedArray):
            offsets = offsets.filled(np.nan)
            # get_path_collection_extents handles nan but not masked arrays

        if len(paths) and len(offsets):
            result = mpath.get_path_collection_extents(
                transform.frozen(), paths, self.get_transforms(),
                offsets, transOffset.frozen())
            result = result.inverse_transformed(transData)
        else:
            result = transforms.Bbox.null()
        return result

    def get_window_extent(self, renderer):
        # TODO:check to ensure that this does not fail for
        # cases other than scatter plot legend
        return self.get_datalim(transforms.IdentityTransform())

    def _prepare_points(self):
        """Point prep for drawing and hit testing"""

        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        offsets = self._offsets
        paths = self.get_paths()

        if self.have_units():
            paths = []
            for path in self.get_paths():
                vertices = path.vertices
                xs, ys = vertices[:, 0], vertices[:, 1]
                xs = self.convert_xunits(xs)
                ys = self.convert_yunits(ys)
                paths.append(mpath.Path(np.column_stack([xs, ys]), path.codes))

            if offsets.size > 0:
                xs = self.convert_xunits(offsets[:, 0])
                ys = self.convert_yunits(offsets[:, 1])
                offsets = np.column_stack([xs, ys])

        if not transform.is_affine:
            paths = [transform.transform_path_non_affine(path)
                     for path in paths]
            transform = transform.get_affine()
        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)
            # This might have changed an ndarray into a masked array.
            transOffset = transOffset.get_affine()

        if isinstance(offsets, np.ma.MaskedArray):
            offsets = offsets.filled(np.nan)
            # Changing from a masked array to nan-filled ndarray
            # is probably most efficient at this point.

        return transform, transOffset, offsets, paths

    @allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__, self.get_gid())

        self.update_scalarmappable()

        transform, transOffset, offsets, paths = self._prepare_points()

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_snap(self.get_snap())

        if self._hatch:
            gc.set_hatch(self._hatch)
            try:
                gc.set_hatch_color(self._hatch_color)
            except AttributeError:
                # if we end up with a GC that does not have this method
                warnings.warn("Your backend does not support setting the "
                              "hatch color.")

        if self.get_sketch_params() is not None:
            gc.set_sketch_params(*self.get_sketch_params())

        if self.get_path_effects():
            from matplotlib.patheffects import PathEffectRenderer
            renderer = PathEffectRenderer(self.get_path_effects(), renderer)

        # If the collection is made up of a single shape/color/stroke,
        # it can be rendered once and blitted multiple times, using
        # `draw_markers` rather than `draw_path_collection`.  This is
        # *much* faster for Agg, and results in smaller file sizes in
        # PDF/SVG/PS.

        trans = self.get_transforms()
        facecolors = self.get_facecolor()
        edgecolors = self.get_edgecolor()
        do_single_path_optimization = False
        if (len(paths) == 1 and len(trans) <= 1 and
            len(facecolors) == 1 and len(edgecolors) == 1 and
            len(self._linewidths) == 1 and
            self._linestyles == [(None, None)] and
            len(self._antialiaseds) == 1 and len(self._urls) == 1 and
            self.get_hatch() is None):
            if len(trans):
                combined_transform = (transforms.Affine2D(trans[0]) +
                                      transform)
            else:
                combined_transform = transform
            extents = paths[0].get_extents(combined_transform)
            width, height = renderer.get_canvas_width_height()
            if (extents.width < width and
                extents.height < height):
                do_single_path_optimization = True

        if do_single_path_optimization:
            gc.set_foreground(tuple(edgecolors[0]))
            gc.set_linewidth(self._linewidths[0])
            gc.set_dashes(*self._linestyles[0])
            gc.set_antialiased(self._antialiaseds[0])
            gc.set_url(self._urls[0])
            renderer.draw_markers(
                gc, paths[0], combined_transform.frozen(),
                mpath.Path(offsets), transOffset, tuple(facecolors[0]))
        else:
            renderer.draw_path_collection(
                gc, transform.frozen(), paths,
                self.get_transforms(), offsets, transOffset,
                self.get_facecolor(), self.get_edgecolor(),
                self._linewidths, self._linestyles,
                self._antialiaseds, self._urls,
                self._offset_position)

        gc.restore()
        renderer.close_group(self.__class__.__name__)
        self.stale = False

    def set_pickradius(self, pr):
        """Set the pick radius used for containment tests.

        ..
            ACCEPTS: float distance in points

        Parameters
        ----------
        d : float
            Pick radius, in points.
        """
        self._pickradius = pr

    def get_pickradius(self):
        return self._pickradius

    def contains(self, mouseevent):
        """
        Test whether the mouse event occurred in the collection.

        Returns True | False, ``dict(ind=itemlist)``, where every
        item in itemlist contains the event.
        """
        if callable(self._contains):
            return self._contains(self, mouseevent)

        if not self.get_visible():
            return False, {}

        pickradius = (
            float(self._picker)
            if cbook.is_numlike(self._picker) and
               self._picker is not True  # the bool, not just nonzero or 1
            else self._pickradius)

        transform, transOffset, offsets, paths = self._prepare_points()

        ind = _path.point_in_path_collection(
            mouseevent.x, mouseevent.y, pickradius,
            transform.frozen(), paths, self.get_transforms(),
            offsets, transOffset, pickradius <= 0,
            self.get_offset_position())

        return len(ind) > 0, dict(ind=ind)

    def set_urls(self, urls):
        """
        Parameters
        ----------
        urls : List[str] or None
            ..
                ACCEPTS: List[str] or None
        """
        self._urls = urls if urls is not None else [None]
        self.stale = True

    def get_urls(self):
        return self._urls

    def set_hatch(self, hatch):
        r"""
        Set the hatching pattern

        *hatch* can be one of::

          /   - diagonal hatching
          \   - back diagonal
          |   - vertical
          -   - horizontal
          +   - crossed
          x   - crossed diagonal
          o   - small circle
          O   - large circle
          .   - dots
          *   - stars

        Letters can be combined, in which case all the specified
        hatchings are done.  If same letter repeats, it increases the
        density of hatching of that pattern.

        Hatching is supported in the PostScript, PDF, SVG and Agg
        backends only.

        Unlike other properties such as linewidth and colors, hatching
        can only be specified for the collection as a whole, not separately
        for each member.

        ACCEPTS: [ '/' | '\\' | '|' | '-' | '+' | 'x' | 'o' | 'O' | '.' | '*' ]
        """
        self._hatch = hatch
        self.stale = True

    def get_hatch(self):
        """Return the current hatching pattern."""
        return self._hatch

    def set_offsets(self, offsets):
        """
        Set the offsets for the collection.  *offsets* can be a scalar
        or a sequence.

        ACCEPTS: float or sequence of floats
        """
        offsets = np.asanyarray(offsets, float)
        if offsets.shape == (2,):  # Broadcast (2,) -> (1, 2) but nothing else.
            offsets = offsets[None, :]
        # This decision is based on how they are initialized above in __init__.
        if self._uniform_offsets is None:
            self._offsets = offsets
        else:
            self._uniform_offsets = offsets
        self.stale = True

    def get_offsets(self):
        """Return the offsets for the collection."""
        # This decision is based on how they are initialized above in __init__.
        if self._uniform_offsets is None:
            return self._offsets
        else:
            return self._uniform_offsets

    def set_offset_position(self, offset_position):
        """
        Set how offsets are applied.  If *offset_position* is 'screen'
        (default) the offset is applied after the master transform has
        been applied, that is, the offsets are in screen coordinates.
        If offset_position is 'data', the offset is applied before the
        master transform, i.e., the offsets are in data coordinates.

        ..
            ACCEPTS: [ 'screen' | 'data' ]
        """
        if offset_position not in ('screen', 'data'):
            raise ValueError("offset_position must be 'screen' or 'data'")
        self._offset_position = offset_position
        self.stale = True

    def get_offset_position(self):
        """
        Returns how offsets are applied for the collection.  If
        *offset_position* is 'screen', the offset is applied after the
        master transform has been applied, that is, the offsets are in
        screen coordinates.  If offset_position is 'data', the offset
        is applied before the master transform, i.e., the offsets are
        in data coordinates.
        """
        return self._offset_position

    def set_linewidth(self, lw):
        """
        Set the linewidth(s) for the collection.  *lw* can be a scalar
        or a sequence; if it is a sequence the patches will cycle
        through the sequence

        ACCEPTS: float or sequence of floats
        """
        if lw is None:
            lw = mpl.rcParams['patch.linewidth']
            if lw is None:
                lw = mpl.rcParams['lines.linewidth']
        # get the un-scaled/broadcast lw
        self._us_lw = np.atleast_1d(np.asarray(lw))

        # scale all of the dash patterns.
        self._linewidths, self._linestyles = self._bcast_lwls(
            self._us_lw, self._us_linestyles)
        self.stale = True

    def set_linewidths(self, lw):
        """alias for set_linewidth"""
        return self.set_linewidth(lw)

    def set_lw(self, lw):
        """alias for set_linewidth"""
        return self.set_linewidth(lw)

    def set_linestyle(self, ls):
        """
        Set the linestyle(s) for the collection.

        ===========================   =================
        linestyle                     description
        ===========================   =================
        ``'-'`` or ``'solid'``        solid line
        ``'--'`` or  ``'dashed'``     dashed line
        ``'-.'`` or  ``'dashdot'``    dash-dotted line
        ``':'`` or ``'dotted'``       dotted line
        ===========================   =================

        Alternatively a dash tuple of the following form can be provided::

            (offset, onoffseq),

        where ``onoffseq`` is an even length tuple of on and off ink
        in points.

        ACCEPTS: ['solid' | 'dashed', 'dashdot', 'dotted' |
                   (offset, on-off-dash-seq) |
                   ``'-'`` | ``'--'`` | ``'-.'`` | ``':'`` | ``'None'`` |
                   ``' '`` | ``''``]

        Parameters
        ----------
        ls : { '-',  '--', '-.', ':'} and more see description
            The line style.
        """
        try:
            if isinstance(ls, six.string_types):
                ls = cbook.ls_mapper.get(ls, ls)
                dashes = [mlines._get_dash_pattern(ls)]
            else:
                try:
                    dashes = [mlines._get_dash_pattern(ls)]
                except ValueError:
                    dashes = [mlines._get_dash_pattern(x) for x in ls]

        except ValueError:
            raise ValueError(
                'Do not know how to convert {!r} to dashes'.format(ls))

        # get the list of raw 'unscaled' dash patterns
        self._us_linestyles = dashes

        # broadcast and scale the lw and dash patterns
        self._linewidths, self._linestyles = self._bcast_lwls(
            self._us_lw, self._us_linestyles)

    @staticmethod
    def _bcast_lwls(linewidths, dashes):
        '''Internal helper function to broadcast + scale ls/lw

        In the collection drawing code the linewidth and linestyle are
        cycled through as circular buffers (via v[i % len(v)]).  Thus,
        if we are going to scale the dash pattern at set time (not
        draw time) we need to do the broadcasting now and expand both
        lists to be the same length.

        Parameters
        ----------
        linewidths : list
            line widths of collection

        dashes : list
            dash specification (offset, (dash pattern tuple))

        Returns
        -------
        linewidths, dashes : list
             Will be the same length, dashes are scaled by paired linewidth

        '''
        if mpl.rcParams['_internal.classic_mode']:
            return linewidths, dashes
        # make sure they are the same length so we can zip them
        if len(dashes) != len(linewidths):
            l_dashes = len(dashes)
            l_lw = len(linewidths)
            GCD = gcd(l_dashes, l_lw)
            dashes = list(dashes) * (l_lw // GCD)
            linewidths = list(linewidths) * (l_dashes // GCD)

        # scale the dash patters
        dashes = [mlines._scale_dashes(o, d, lw)
                  for (o, d), lw in zip(dashes, linewidths)]

        return linewidths, dashes

    def set_linestyles(self, ls):
        """alias for set_linestyle"""
        return self.set_linestyle(ls)

    def set_dashes(self, ls):
        """alias for set_linestyle"""
        return self.set_linestyle(ls)

    def set_antialiased(self, aa):
        """
        Set the antialiasing state for rendering.

        ACCEPTS: Boolean or sequence of booleans
        """
        if aa is None:
            aa = mpl.rcParams['patch.antialiased']
        self._antialiaseds = np.atleast_1d(np.asarray(aa, bool))
        self.stale = True

    def set_antialiaseds(self, aa):
        """alias for set_antialiased"""
        return self.set_antialiased(aa)

    def set_color(self, c):
        """
        Set both the edgecolor and the facecolor.

        ACCEPTS: matplotlib color arg or sequence of rgba tuples

        .. seealso::

            :meth:`set_facecolor`, :meth:`set_edgecolor`
               For setting the edge or face color individually.
        """
        self.set_facecolor(c)
        self.set_edgecolor(c)

    def _set_facecolor(self, c):
        if c is None:
            c = mpl.rcParams['patch.facecolor']

        self._is_filled = True
        try:
            if c.lower() == 'none':
                self._is_filled = False
        except AttributeError:
            pass
        self._facecolors = mcolors.to_rgba_array(c, self._alpha)
        self.stale = True

    def set_facecolor(self, c):
        """
        Set the facecolor(s) of the collection.  *c* can be a
        matplotlib color spec (all patches have same color), or a
        sequence of specs; if it is a sequence the patches will
        cycle through the sequence.

        If *c* is 'none', the patch will not be filled.

        ACCEPTS: matplotlib color spec or sequence of specs
        """
        self._original_facecolor = c
        self._set_facecolor(c)

    def set_facecolors(self, c):
        """alias for set_facecolor"""
        return self.set_facecolor(c)

    def get_facecolor(self):
        return self._facecolors
    get_facecolors = get_facecolor

    def get_edgecolor(self):
        if (isinstance(self._edgecolors, six.string_types)
                   and self._edgecolors == str('face')):
            return self.get_facecolors()
        else:
            return self._edgecolors
    get_edgecolors = get_edgecolor

    def _set_edgecolor(self, c):
        set_hatch_color = True
        if c is None:
            if (mpl.rcParams['patch.force_edgecolor'] or
                    not self._is_filled or self._edge_default):
                c = mpl.rcParams['patch.edgecolor']
            else:
                c = 'none'
                set_hatch_color = False

        self._is_stroked = True
        try:
            if c.lower() == 'none':
                self._is_stroked = False
        except AttributeError:
            pass

        try:
            if c.lower() == 'face':   # Special case: lookup in "get" method.
                self._edgecolors = 'face'
                return
        except AttributeError:
            pass
        self._edgecolors = mcolors.to_rgba_array(c, self._alpha)
        if set_hatch_color and len(self._edgecolors):
            self._hatch_color = tuple(self._edgecolors[0])
        self.stale = True

    def set_edgecolor(self, c):
        """
        Set the edgecolor(s) of the collection. *c* can be a
        matplotlib color spec (all patches have same color), or a
        sequence of specs; if it is a sequence the patches will
        cycle through the sequence.

        If *c* is 'face', the edge color will always be the same as
        the face color.  If it is 'none', the patch boundary will not
        be drawn.

        ACCEPTS: matplotlib color spec or sequence of specs
        """
        self._original_edgecolor = c
        self._set_edgecolor(c)

    def set_edgecolors(self, c):
        """alias for set_edgecolor"""
        return self.set_edgecolor(c)

    def set_alpha(self, alpha):
        """
        Set the alpha tranparencies of the collection.  *alpha* must be
        a float or *None*.

        ACCEPTS: float or None
        """
        if alpha is not None:
            try:
                float(alpha)
            except TypeError:
                raise TypeError('alpha must be a float or None')
        self.update_dict['array'] = True
        artist.Artist.set_alpha(self, alpha)
        self._set_facecolor(self._original_facecolor)
        self._set_edgecolor(self._original_edgecolor)

    def get_linewidths(self):
        return self._linewidths
    get_linewidth = get_linewidths

    def get_linestyles(self):
        return self._linestyles
    get_dashes = get_linestyle = get_linestyles

    def update_scalarmappable(self):
        """
        If the scalar mappable array is not none, update colors
        from scalar data
        """
        if self._A is None:
            return
        if self._A.ndim > 1:
            raise ValueError('Collections can only map rank 1 arrays')
        if not self.check_update("array"):
            return
        if self._is_filled:
            self._facecolors = self.to_rgba(self._A, self._alpha)
        elif self._is_stroked:
            self._edgecolors = self.to_rgba(self._A, self._alpha)
        self.stale = True

    def get_fill(self):
        'return whether fill is set'
        return self._is_filled

    def update_from(self, other):
        'copy properties from other to self'

        artist.Artist.update_from(self, other)
        self._antialiaseds = other._antialiaseds
        self._original_edgecolor = other._original_edgecolor
        self._edgecolors = other._edgecolors
        self._original_facecolor = other._original_facecolor
        self._facecolors = other._facecolors
        self._linewidths = other._linewidths
        self._linestyles = other._linestyles
        self._us_linestyles = other._us_linestyles
        self._pickradius = other._pickradius
        self._hatch = other._hatch

        # update_from for scalarmappable
        self._A = other._A
        self.norm = other.norm
        self.cmap = other.cmap
        # self.update_dict = other.update_dict # do we need to copy this? -JJL
        self.stale = True

# these are not available for the object inspector until after the
# class is built so we define an initial set here for the init
# function and they will be overridden after object defn
docstring.interpd.update(Collection="""\
    Valid Collection keyword arguments:

        * *edgecolors*: None
        * *facecolors*: None
        * *linewidths*: None
        * *antialiaseds*: None
        * *offsets*: None
        * *transOffset*: transforms.IdentityTransform()
        * *norm*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)
        * *cmap*: None (optional for
          :class:`matplotlib.cm.ScalarMappable`)

    *offsets* and *transOffset* are used to translate the patch after
    rendering (default no offsets)

    If any of *edgecolors*, *facecolors*, *linewidths*, *antialiaseds*
    are None, they default to their :data:`matplotlib.rcParams` patch
    setting, in sequence form.
""")


class _CollectionWithSizes(Collection):
    """
    Base class for collections that have an array of sizes.
    """
    _factor = 1.0

    def get_sizes(self):
        """
        Returns the sizes of the elements in the collection.  The
        value represents the 'area' of the element.

        Returns
        -------
        sizes : array
            The 'area' of each element.
        """
        return self._sizes

    def set_sizes(self, sizes, dpi=72.0):
        """
        Set the sizes of each member of the collection.

        Parameters
        ----------
        sizes : ndarray or None
            The size to set for each element of the collection.  The
            value is the 'area' of the element.

        dpi : float
            The dpi of the canvas. Defaults to 72.0.
        """
        if sizes is None:
            self._sizes = np.array([])
            self._transforms = np.empty((0, 3, 3))
        else:
            self._sizes = np.asarray(sizes)
            self._transforms = np.zeros((len(self._sizes), 3, 3))
            scale = np.sqrt(self._sizes) * dpi / 72.0 * self._factor
            self._transforms[:, 0, 0] = scale
            self._transforms[:, 1, 1] = scale
            self._transforms[:, 2, 2] = 1.0
        self.stale = True

    @allow_rasterization
    def draw(self, renderer):
        self.set_sizes(self._sizes, self.figure.dpi)
        Collection.draw(self, renderer)


class PathCollection(_CollectionWithSizes):
    """
    This is the most basic :class:`Collection` subclass.
    """
    @docstring.dedent_interpd
    def __init__(self, paths, sizes=None, **kwargs):
        """
        *paths* is a sequence of :class:`matplotlib.path.Path`
        instances.

        %(Collection)s
        """

        Collection.__init__(self, **kwargs)
        self.set_paths(paths)
        self.set_sizes(sizes)
        self.stale = True

    def set_paths(self, paths):
        self._paths = paths
        self.stale = True

    def get_paths(self):
        return self._paths


class PolyCollection(_CollectionWithSizes):
    @docstring.dedent_interpd
    def __init__(self, verts, sizes=None, closed=True, **kwargs):
        """
        *verts* is a sequence of ( *verts0*, *verts1*, ...) where
        *verts_i* is a sequence of *xy* tuples of vertices, or an
        equivalent :mod:`numpy` array of shape (*nv*, 2).

        *sizes* is *None* (default) or a sequence of floats that
        scale the corresponding *verts_i*.  The scaling is applied
        before the Artist master transform; if the latter is an identity
        transform, then the overall scaling is such that if
        *verts_i* specify a unit square, then *sizes_i* is the area
        of that square in points^2.
        If len(*sizes*) < *nv*, the additional values will be
        taken cyclically from the array.

        *closed*, when *True*, will explicitly close the polygon.

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self.set_verts(verts, closed)
        self.stale = True

    def set_verts(self, verts, closed=True):
        '''This allows one to delay initialization of the vertices.'''
        if isinstance(verts, np.ma.MaskedArray):
            verts = verts.astype(float).filled(np.nan)
            # This is much faster than having Path do it one at a time.
        if closed:
            self._paths = []
            for xy in verts:
                if len(xy):
                    if isinstance(xy, np.ma.MaskedArray):
                        xy = np.ma.concatenate([xy, xy[0:1]])
                    else:
                        xy = np.asarray(xy)
                        xy = np.concatenate([xy, xy[0:1]])
                    codes = np.empty(xy.shape[0], dtype=mpath.Path.code_type)
                    codes[:] = mpath.Path.LINETO
                    codes[0] = mpath.Path.MOVETO
                    codes[-1] = mpath.Path.CLOSEPOLY
                    self._paths.append(mpath.Path(xy, codes))
                else:
                    self._paths.append(mpath.Path(xy))
        else:
            self._paths = [mpath.Path(xy) for xy in verts]
        self.stale = True

    set_paths = set_verts

    def set_verts_and_codes(self, verts, codes):
        '''This allows one to initialize vertices with path codes.'''
        if (len(verts) != len(codes)):
            raise ValueError("'codes' must be a 1D list or array "
                             "with the same length of 'verts'")
        self._paths = []
        for xy, cds in zip(verts, codes):
            if len(xy):
                self._paths.append(mpath.Path(xy, cds))
            else:
                self._paths.append(mpath.Path(xy))
        self.stale = True


class BrokenBarHCollection(PolyCollection):
    """
    A collection of horizontal bars spanning *yrange* with a sequence of
    *xranges*.
    """
    @docstring.dedent_interpd
    def __init__(self, xranges, yrange, **kwargs):
        """
        *xranges*
            sequence of (*xmin*, *xwidth*)

        *yrange*
            *ymin*, *ywidth*

        %(Collection)s
        """
        ymin, ywidth = yrange
        ymax = ymin + ywidth
        verts = [[(xmin, ymin),
                  (xmin, ymax),
                  (xmin + xwidth, ymax),
                  (xmin + xwidth, ymin),
                  (xmin, ymin)] for xmin, xwidth in xranges]
        PolyCollection.__init__(self, verts, **kwargs)

    @staticmethod
    def span_where(x, ymin, ymax, where, **kwargs):
        """
        Create a BrokenBarHCollection to plot horizontal bars from
        over the regions in *x* where *where* is True.  The bars range
        on the y-axis from *ymin* to *ymax*

        A :class:`BrokenBarHCollection` is returned.  *kwargs* are
        passed on to the collection.
        """
        xranges = []
        for ind0, ind1 in mlab.contiguous_regions(where):
            xslice = x[ind0:ind1]
            if not len(xslice):
                continue
            xranges.append((xslice[0], xslice[-1] - xslice[0]))

        collection = BrokenBarHCollection(
            xranges, [ymin, ymax - ymin], **kwargs)
        return collection


class RegularPolyCollection(_CollectionWithSizes):
    """Draw a collection of regular polygons with *numsides*."""
    _path_generator = mpath.Path.unit_regular_polygon

    _factor = CIRCLE_AREA_FACTOR

    @docstring.dedent_interpd
    def __init__(self,
                 numsides,
                 rotation=0,
                 sizes=(1,),
                 **kwargs):
        """
        *numsides*
            the number of sides of the polygon

        *rotation*
            the rotation of the polygon in radians

        *sizes*
            gives the area of the circle circumscribing the
            regular polygon in points^2

        %(Collection)s

        Example: see :file:`examples/dynamic_collection.py` for
        complete example::

            offsets = np.random.rand(20,2)
            facecolors = [cm.jet(x) for x in np.random.rand(20)]
            black = (0,0,0,1)

            collection = RegularPolyCollection(
                numsides=5, # a pentagon
                rotation=0, sizes=(50,),
                facecolors = facecolors,
                edgecolors = (black,),
                linewidths = (1,),
                offsets = offsets,
                transOffset = ax.transData,
                )
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self._numsides = numsides
        self._paths = [self._path_generator(numsides)]
        self._rotation = rotation
        self.set_transform(transforms.IdentityTransform())

    def get_numsides(self):
        return self._numsides

    def get_rotation(self):
        return self._rotation

    @allow_rasterization
    def draw(self, renderer):
        self.set_sizes(self._sizes, self.figure.dpi)
        self._transforms = [
            transforms.Affine2D(x).rotate(-self._rotation).get_matrix()
            for x in self._transforms
        ]
        Collection.draw(self, renderer)


class StarPolygonCollection(RegularPolyCollection):
    """
    Draw a collection of regular stars with *numsides* points."""

    _path_generator = mpath.Path.unit_regular_star


class AsteriskPolygonCollection(RegularPolyCollection):
    """
    Draw a collection of regular asterisks with *numsides* points."""

    _path_generator = mpath.Path.unit_regular_asterisk


class LineCollection(Collection):
    """
    All parameters must be sequences or scalars; if scalars, they will
    be converted to sequences.  The property of the ith line
    segment is::

       prop[i % len(props)]

    i.e., the properties cycle if the ``len`` of props is less than the
    number of segments.
    """

    _edge_default = True

    def __init__(self, segments,     # Can be None.
                 linewidths=None,
                 colors=None,
                 antialiaseds=None,
                 linestyles='solid',
                 offsets=None,
                 transOffset=None,
                 norm=None,
                 cmap=None,
                 pickradius=5,
                 zorder=2,
                 facecolors='none',
                 **kwargs
                 ):
        """
        *segments*
            a sequence of (*line0*, *line1*, *line2*), where::

                linen = (x0, y0), (x1, y1), ... (xm, ym)

            or the equivalent numpy array with two columns. Each line
            can be a different length.

        *colors*
            must be a sequence of RGBA tuples (e.g., arbitrary color
            strings, etc, not allowed).

        *antialiaseds*
            must be a sequence of ones or zeros

        *linestyles* [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
            a string or dash tuple. The dash tuple is::

                (offset, onoffseq),

            where *onoffseq* is an even length tuple of on and off ink
            in points.

        If *linewidths*, *colors*, or *antialiaseds* is None, they
        default to their rcParams setting, in sequence form.

        If *offsets* and *transOffset* are not None, then
        *offsets* are transformed by *transOffset* and applied after
        the segments have been transformed to display coordinates.

        If *offsets* is not None but *transOffset* is None, then the
        *offsets* are added to the segments before any transformation.
        In this case, a single offset can be specified as::

            offsets=(xo,yo)

        and this value will be added cumulatively to each successive
        segment, so as to produce a set of successively offset curves.

        *norm*
            None (optional for :class:`matplotlib.cm.ScalarMappable`)
        *cmap*
            None (optional for :class:`matplotlib.cm.ScalarMappable`)

        *pickradius* is the tolerance for mouse clicks picking a line.
        The default is 5 pt.

        *zorder*
           The zorder of the LineCollection.  Default is 2

        *facecolors*
           The facecolors of the LineCollection. Default is 'none'
           Setting to a value other than 'none' will lead to a filled
           polygon being drawn between points on each line.

        The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
        If the :class:`~matplotlib.cm.ScalarMappable` array
        :attr:`~matplotlib.cm.ScalarMappable._A` is not None (i.e., a call to
        :meth:`~matplotlib.cm.ScalarMappable.set_array` has been made), at
        draw time a call to scalar mappable will be made to set the colors.
        """
        if colors is None:
            colors = mpl.rcParams['lines.color']
        if linewidths is None:
            linewidths = (mpl.rcParams['lines.linewidth'],)
        if antialiaseds is None:
            antialiaseds = (mpl.rcParams['lines.antialiased'],)

        colors = mcolors.to_rgba_array(colors)

        Collection.__init__(
            self,
            edgecolors=colors,
            facecolors=facecolors,
            linewidths=linewidths,
            linestyles=linestyles,
            antialiaseds=antialiaseds,
            offsets=offsets,
            transOffset=transOffset,
            norm=norm,
            cmap=cmap,
            pickradius=pickradius,
            zorder=zorder,
            **kwargs)

        self.set_segments(segments)

    def set_segments(self, segments):
        if segments is None:
            return
        _segments = []

        for seg in segments:
            if not isinstance(seg, np.ma.MaskedArray):
                seg = np.asarray(seg, float)
            _segments.append(seg)

        if self._uniform_offsets is not None:
            _segments = self._add_offsets(_segments)

        self._paths = [mpath.Path(_seg) for _seg in _segments]
        self.stale = True

    set_verts = set_segments  # for compatibility with PolyCollection
    set_paths = set_segments

    def get_segments(self):
        segments = []

        for path in self._paths:
            vertices = [vertex for vertex, _ in path.iter_segments()]
            vertices = np.asarray(vertices)
            segments.append(vertices)

        return segments

    def _add_offsets(self, segs):
        offsets = self._uniform_offsets
        Nsegs = len(segs)
        Noffs = offsets.shape[0]
        if Noffs == 1:
            for i in range(Nsegs):
                segs[i] = segs[i] + i * offsets
        else:
            for i in range(Nsegs):
                io = i % Noffs
                segs[i] = segs[i] + offsets[io:io + 1]
        return segs

    def set_color(self, c):
        """
        Set the color(s) of the line collection.  *c* can be a
        matplotlib color arg (all patches have same color), or a
        sequence or rgba tuples; if it is a sequence the patches will
        cycle through the sequence.

        ACCEPTS: matplotlib color arg or sequence of rgba tuples
        """
        self.set_edgecolor(c)
        self.stale = True

    def get_color(self):
        return self._edgecolors

    get_colors = get_color  # for compatibility with old versions


class EventCollection(LineCollection):
    '''
    A collection of discrete events.

    The events are given by a 1-dimensional array, usually the position of
    something along an axis, such as time or length.  They do not have an
    amplitude and are displayed as vertical or horizontal parallel bars.
    '''

    _edge_default = True

    def __init__(self,
                 positions,     # Cannot be None.
                 orientation=None,
                 lineoffset=0,
                 linelength=1,
                 linewidth=None,
                 color=None,
                 linestyle='solid',
                 antialiased=None,
                 **kwargs
                 ):
        """
        Parameters
        ----------
        positions : 1D array-like object
            Each value is an event.

        orientation : {None, 'horizontal', 'vertical'}, optional
            The orientation of the **collection** (the event bars are along
            the orthogonal direction). Defaults to 'horizontal' if not
            specified or None.

        lineoffset : scalar, optional, default: 0
            The offset of the center of the markers from the origin, in the
            direction orthogonal to *orientation*.

        linelength : scalar, optional, default: 1
            The total height of the marker (i.e. the marker stretches from
            ``lineoffset - linelength/2`` to ``lineoffset + linelength/2``).

        linewidth : scalar or None, optional, default: None
            If it is None, defaults to its rcParams setting, in sequence form.

        color : color, sequence of colors or None, optional, default: None
            If it is None, defaults to its rcParams setting, in sequence form.

        linestyle : str or tuple, optional, default: 'solid'
            Valid strings are ['solid', 'dashed', 'dashdot', 'dotted',
            '-', '--', '-.', ':']. Dash tuples should be of the form::

                (offset, onoffseq),

            where *onoffseq* is an even length tuple of on and off ink
            in points.

        antialiased : {None, 1, 2}, optional
            If it is None, defaults to its rcParams setting, in sequence form.

        **kwargs : optional
            Other keyword arguments are line collection properties.  See
            :class:`~matplotlib.collections.LineCollection` for a list of
            the valid properties.

        Examples
        --------

        .. plot:: mpl_examples/lines_bars_and_markers/eventcollection_demo.py
        """

        segment = (lineoffset + linelength / 2.,
                   lineoffset - linelength / 2.)
        if positions is None or len(positions) == 0:
            segments = []
        elif hasattr(positions, 'ndim') and positions.ndim > 1:
            raise ValueError('positions cannot be an array with more than '
                             'one dimension.')
        elif (orientation is None or orientation.lower() == 'none' or
              orientation.lower() == 'horizontal'):
            positions.sort()
            segments = [[(coord1, coord2) for coord2 in segment] for
                        coord1 in positions]
            self._is_horizontal = True
        elif orientation.lower() == 'vertical':
            positions.sort()
            segments = [[(coord2, coord1) for coord2 in segment] for
                        coord1 in positions]
            self._is_horizontal = False
        else:
            raise ValueError("orientation must be 'horizontal' or 'vertical'")

        LineCollection.__init__(self,
                                segments,
                                linewidths=linewidth,
                                colors=color,
                                antialiaseds=antialiased,
                                linestyles=linestyle,
                                **kwargs)

        self._linelength = linelength
        self._lineoffset = lineoffset

    def get_positions(self):
        '''
        return an array containing the floating-point values of the positions
        '''
        segments = self.get_segments()
        pos = 0 if self.is_horizontal() else 1
        positions = []
        for segment in segments:
            positions.append(segment[0, pos])
        return positions

    def set_positions(self, positions):
        '''
        set the positions of the events to the specified value
        '''
        if positions is None or (hasattr(positions, 'len') and
                                 len(positions) == 0):
            self.set_segments([])
            return

        lineoffset = self.get_lineoffset()
        linelength = self.get_linelength()
        segment = (lineoffset + linelength / 2.,
                   lineoffset - linelength / 2.)
        positions = np.asanyarray(positions)
        positions.sort()
        if self.is_horizontal():
            segments = [[(coord1, coord2) for coord2 in segment] for
                        coord1 in positions]
        else:
            segments = [[(coord2, coord1) for coord2 in segment] for
                        coord1 in positions]
        self.set_segments(segments)

    def add_positions(self, position):
        '''
        add one or more events at the specified positions
        '''
        if position is None or (hasattr(position, 'len') and
                                len(position) == 0):
            return
        positions = self.get_positions()
        positions = np.hstack([positions, np.asanyarray(position)])
        self.set_positions(positions)
    extend_positions = append_positions = add_positions

    def is_horizontal(self):
        '''
        True if the eventcollection is horizontal, False if vertical
        '''
        return self._is_horizontal

    def get_orientation(self):
        '''
        get the orientation of the event line, may be:
        [ 'horizontal' | 'vertical' ]
        '''
        return 'horizontal' if self.is_horizontal() else 'vertical'

    def switch_orientation(self):
        '''
        switch the orientation of the event line, either from vertical to
        horizontal or vice versus
        '''
        segments = self.get_segments()
        for i, segment in enumerate(segments):
            segments[i] = np.fliplr(segment)
        self.set_segments(segments)
        self._is_horizontal = not self.is_horizontal()
        self.stale = True

    def set_orientation(self, orientation=None):
        '''
        set the orientation of the event line
        [ 'horizontal' | 'vertical' | None ]
        defaults to 'horizontal' if not specified or None
        '''
        if (orientation is None or orientation.lower() == 'none' or
                orientation.lower() == 'horizontal'):
            is_horizontal = True
        elif orientation.lower() == 'vertical':
            is_horizontal = False
        else:
            raise ValueError("orientation must be 'horizontal' or 'vertical'")

        if is_horizontal == self.is_horizontal():
            return
        self.switch_orientation()

    def get_linelength(self):
        '''
        get the length of the lines used to mark each event
        '''
        return self._linelength

    def set_linelength(self, linelength):
        '''
        set the length of the lines used to mark each event
        '''
        if linelength == self.get_linelength():
            return
        lineoffset = self.get_lineoffset()
        segments = self.get_segments()
        pos = 1 if self.is_horizontal() else 0
        for segment in segments:
            segment[0, pos] = lineoffset + linelength / 2.
            segment[1, pos] = lineoffset - linelength / 2.
        self.set_segments(segments)
        self._linelength = linelength

    def get_lineoffset(self):
        '''
        get the offset of the lines used to mark each event
        '''
        return self._lineoffset

    def set_lineoffset(self, lineoffset):
        '''
        set the offset of the lines used to mark each event
        '''
        if lineoffset == self.get_lineoffset():
            return
        linelength = self.get_linelength()
        segments = self.get_segments()
        pos = 1 if self.is_horizontal() else 0
        for segment in segments:
            segment[0, pos] = lineoffset + linelength / 2.
            segment[1, pos] = lineoffset - linelength / 2.
        self.set_segments(segments)
        self._lineoffset = lineoffset

    def get_linewidth(self):
        '''
        get the width of the lines used to mark each event
        '''
        return self.get_linewidths()[0]

    def get_linestyle(self):
        '''
        get the style of the lines used to mark each event
        [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
        '''
        return self.get_linestyles()

    def get_color(self):
        '''
        get the color of the lines used to mark each event
        '''
        return self.get_colors()[0]


class CircleCollection(_CollectionWithSizes):
    """
    A collection of circles, drawn using splines.
    """
    _factor = CIRCLE_AREA_FACTOR

    @docstring.dedent_interpd
    def __init__(self, sizes, **kwargs):
        """
        *sizes*
            Gives the area of the circle in points^2

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self.set_sizes(sizes)
        self.set_transform(transforms.IdentityTransform())
        self._paths = [mpath.Path.unit_circle()]


class EllipseCollection(Collection):
    """
    A collection of ellipses, drawn using splines.
    """
    @docstring.dedent_interpd
    def __init__(self, widths, heights, angles, units='points', **kwargs):
        """
        *widths*: sequence
            lengths of first axes (e.g., major axis lengths)

        *heights*: sequence
            lengths of second axes

        *angles*: sequence
            angles of first axes, degrees CCW from the X-axis

        *units*: ['points' | 'inches' | 'dots' | 'width' | 'height'
        | 'x' | 'y' | 'xy']

            units in which majors and minors are given; 'width' and
            'height' refer to the dimensions of the axes, while 'x'
            and 'y' refer to the *offsets* data units. 'xy' differs
            from all others in that the angle as plotted varies with
            the aspect ratio, and equals the specified angle only when
            the aspect ratio is unity.  Hence it behaves the same as
            the :class:`~matplotlib.patches.Ellipse` with
            axes.transData as its transform.

        Additional kwargs inherited from the base :class:`Collection`:

        %(Collection)s
        """
        Collection.__init__(self, **kwargs)
        self._widths = 0.5 * np.asarray(widths).ravel()
        self._heights = 0.5 * np.asarray(heights).ravel()
        self._angles = np.deg2rad(angles).ravel()
        self._units = units
        self.set_transform(transforms.IdentityTransform())
        self._transforms = np.empty((0, 3, 3))
        self._paths = [mpath.Path.unit_circle()]

    def _set_transforms(self):
        """
        Calculate transforms immediately before drawing.
        """
        ax = self.axes
        fig = self.figure

        if self._units == 'xy':
            sc = 1
        elif self._units == 'x':
            sc = ax.bbox.width / ax.viewLim.width
        elif self._units == 'y':
            sc = ax.bbox.height / ax.viewLim.height
        elif self._units == 'inches':
            sc = fig.dpi
        elif self._units == 'points':
            sc = fig.dpi / 72.0
        elif self._units == 'width':
            sc = ax.bbox.width
        elif self._units == 'height':
            sc = ax.bbox.height
        elif self._units == 'dots':
            sc = 1.0
        else:
            raise ValueError('unrecognized units: %s' % self._units)

        self._transforms = np.zeros((len(self._widths), 3, 3))
        widths = self._widths * sc
        heights = self._heights * sc
        sin_angle = np.sin(self._angles)
        cos_angle = np.cos(self._angles)
        self._transforms[:, 0, 0] = widths * cos_angle
        self._transforms[:, 0, 1] = heights * -sin_angle
        self._transforms[:, 1, 0] = widths * sin_angle
        self._transforms[:, 1, 1] = heights * cos_angle
        self._transforms[:, 2, 2] = 1.0

        _affine = transforms.Affine2D
        if self._units == 'xy':
            m = ax.transData.get_affine().get_matrix().copy()
            m[:2, 2:] = 0
            self.set_transform(_affine(m))

    @allow_rasterization
    def draw(self, renderer):
        self._set_transforms()
        Collection.draw(self, renderer)


class PatchCollection(Collection):
    """
    A generic collection of patches.

    This makes it easier to assign a color map to a heterogeneous
    collection of patches.

    This also may improve plotting speed, since PatchCollection will
    draw faster than a large number of patches.
    """

    def __init__(self, patches, match_original=False, **kwargs):
        """
        *patches*
            a sequence of Patch objects.  This list may include
            a heterogeneous assortment of different patch types.

        *match_original*
            If True, use the colors and linewidths of the original
            patches.  If False, new colors may be assigned by
            providing the standard collection arguments, facecolor,
            edgecolor, linewidths, norm or cmap.

        If any of *edgecolors*, *facecolors*, *linewidths*,
        *antialiaseds* are None, they default to their
        :data:`matplotlib.rcParams` patch setting, in sequence form.

        The use of :class:`~matplotlib.cm.ScalarMappable` is optional.
        If the :class:`~matplotlib.cm.ScalarMappable` matrix _A is not
        None (i.e., a call to set_array has been made), at draw time a
        call to scalar mappable will be made to set the face colors.
        """

        if match_original:
            def determine_facecolor(patch):
                if patch.get_fill():
                    return patch.get_facecolor()
                return [0, 0, 0, 0]

            kwargs['facecolors'] = [determine_facecolor(p) for p in patches]
            kwargs['edgecolors'] = [p.get_edgecolor() for p in patches]
            kwargs['linewidths'] = [p.get_linewidth() for p in patches]
            kwargs['linestyles'] = [p.get_linestyle() for p in patches]
            kwargs['antialiaseds'] = [p.get_antialiased() for p in patches]

        Collection.__init__(self, **kwargs)

        self.set_paths(patches)

    def set_paths(self, patches):
        paths = [p.get_transform().transform_path(p.get_path())
                 for p in patches]
        self._paths = paths


class TriMesh(Collection):
    """
    Class for the efficient drawing of a triangular mesh using
    Gouraud shading.

    A triangular mesh is a :class:`~matplotlib.tri.Triangulation`
    object.
    """
    def __init__(self, triangulation, **kwargs):
        Collection.__init__(self, **kwargs)
        self._triangulation = triangulation
        self._shading = 'gouraud'
        self._is_filled = True

        self._bbox = transforms.Bbox.unit()

        # Unfortunately this requires a copy, unless Triangulation
        # was rewritten.
        xy = np.hstack((triangulation.x.reshape(-1, 1),
                        triangulation.y.reshape(-1, 1)))
        self._bbox.update_from_data_xy(xy)

    def get_paths(self):
        if self._paths is None:
            self.set_paths()
        return self._paths

    def set_paths(self):
        self._paths = self.convert_mesh_to_paths(self._triangulation)

    @staticmethod
    def convert_mesh_to_paths(tri):
        """
        Converts a given mesh into a sequence of
        :class:`matplotlib.path.Path` objects for easier rendering by
        backends that do not directly support meshes.

        This function is primarily of use to backend implementers.
        """
        Path = mpath.Path
        triangles = tri.get_masked_triangles()
        verts = np.concatenate((tri.x[triangles][..., np.newaxis],
                                tri.y[triangles][..., np.newaxis]), axis=2)
        return [Path(x) for x in verts]

    @allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__)
        transform = self.get_transform()

        # Get a list of triangles and the color at each vertex.
        tri = self._triangulation
        triangles = tri.get_masked_triangles()

        verts = np.concatenate((tri.x[triangles][..., np.newaxis],
                                tri.y[triangles][..., np.newaxis]), axis=2)

        self.update_scalarmappable()
        colors = self._facecolors[triangles]

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_linewidth(self.get_linewidth()[0])
        renderer.draw_gouraud_triangles(gc, verts, colors, transform.frozen())
        gc.restore()
        renderer.close_group(self.__class__.__name__)


class QuadMesh(Collection):
    """
    Class for the efficient drawing of a quadrilateral mesh.

    A quadrilateral mesh consists of a grid of vertices. The
    dimensions of this array are (*meshWidth* + 1, *meshHeight* +
    1). Each vertex in the mesh has a different set of "mesh
    coordinates" representing its position in the topology of the
    mesh. For any values (*m*, *n*) such that 0 <= *m* <= *meshWidth*
    and 0 <= *n* <= *meshHeight*, the vertices at mesh coordinates
    (*m*, *n*), (*m*, *n* + 1), (*m* + 1, *n* + 1), and (*m* + 1, *n*)
    form one of the quadrilaterals in the mesh. There are thus
    (*meshWidth* * *meshHeight*) quadrilaterals in the mesh.  The mesh
    need not be regular and the polygons need not be convex.

    A quadrilateral mesh is represented by a (2 x ((*meshWidth* + 1) *
    (*meshHeight* + 1))) numpy array *coordinates*, where each row is
    the *x* and *y* coordinates of one of the vertices.  To define the
    function that maps from a data point to its corresponding color,
    use the :meth:`set_cmap` method.  Each of these arrays is indexed in
    row-major order by the mesh coordinates of the vertex (or the mesh
    coordinates of the lower left vertex, in the case of the
    colors).

    For example, the first entry in *coordinates* is the
    coordinates of the vertex at mesh coordinates (0, 0), then the one
    at (0, 1), then at (0, 2) .. (0, meshWidth), (1, 0), (1, 1), and
    so on.

    *shading* may be 'flat', or 'gouraud'
    """
    def __init__(self, meshWidth, meshHeight, coordinates,
                 antialiased=True, shading='flat', **kwargs):
        Collection.__init__(self, **kwargs)
        self._meshWidth = meshWidth
        self._meshHeight = meshHeight
        # By converting to floats now, we can avoid that on every draw.
        self._coordinates = np.asarray(coordinates, float).reshape(
            (meshHeight + 1, meshWidth + 1, 2))
        self._antialiased = antialiased
        self._shading = shading

        self._bbox = transforms.Bbox.unit()
        self._bbox.update_from_data_xy(coordinates.reshape(
            ((meshWidth + 1) * (meshHeight + 1), 2)))

    def get_paths(self):
        if self._paths is None:
            self.set_paths()
        return self._paths

    def set_paths(self):
        self._paths = self.convert_mesh_to_paths(
            self._meshWidth, self._meshHeight, self._coordinates)
        self.stale = True

    def get_datalim(self, transData):
        return (self.get_transform() - transData).transform_bbox(self._bbox)

    @staticmethod
    def convert_mesh_to_paths(meshWidth, meshHeight, coordinates):
        """
        Converts a given mesh into a sequence of
        :class:`matplotlib.path.Path` objects for easier rendering by
        backends that do not directly support quadmeshes.

        This function is primarily of use to backend implementers.
        """
        Path = mpath.Path

        if isinstance(coordinates, np.ma.MaskedArray):
            c = coordinates.data
        else:
            c = coordinates

        points = np.concatenate((
                    c[0:-1, 0:-1],
                    c[0:-1, 1:],
                    c[1:, 1:],
                    c[1:, 0:-1],
                    c[0:-1, 0:-1]
                ), axis=2)
        points = points.reshape((meshWidth * meshHeight, 5, 2))
        return [Path(x) for x in points]

    def convert_mesh_to_triangles(self, meshWidth, meshHeight, coordinates):
        """
        Converts a given mesh into a sequence of triangles, each point
        with its own color.  This is useful for experiments using
        `draw_qouraud_triangle`.
        """
        if isinstance(coordinates, np.ma.MaskedArray):
            p = coordinates.data
        else:
            p = coordinates

        p_a = p[:-1, :-1]
        p_b = p[:-1, 1:]
        p_c = p[1:, 1:]
        p_d = p[1:, :-1]
        p_center = (p_a + p_b + p_c + p_d) / 4.0

        triangles = np.concatenate((
                p_a, p_b, p_center,
                p_b, p_c, p_center,
                p_c, p_d, p_center,
                p_d, p_a, p_center,
            ), axis=2)
        triangles = triangles.reshape((meshWidth * meshHeight * 4, 3, 2))

        c = self.get_facecolor().reshape((meshHeight + 1, meshWidth + 1, 4))
        c_a = c[:-1, :-1]
        c_b = c[:-1, 1:]
        c_c = c[1:, 1:]
        c_d = c[1:, :-1]
        c_center = (c_a + c_b + c_c + c_d) / 4.0

        colors = np.concatenate((
                        c_a, c_b, c_center,
                        c_b, c_c, c_center,
                        c_c, c_d, c_center,
                        c_d, c_a, c_center,
                    ), axis=2)
        colors = colors.reshape((meshWidth * meshHeight * 4, 3, 4))

        return triangles, colors

    @allow_rasterization
    def draw(self, renderer):
        if not self.get_visible():
            return
        renderer.open_group(self.__class__.__name__, self.get_gid())
        transform = self.get_transform()
        transOffset = self.get_offset_transform()
        offsets = self._offsets

        if self.have_units():
            if len(self._offsets):
                xs = self.convert_xunits(self._offsets[:, 0])
                ys = self.convert_yunits(self._offsets[:, 1])
                offsets = np.column_stack([xs, ys])

        self.update_scalarmappable()

        if not transform.is_affine:
            coordinates = self._coordinates.reshape((-1, 2))
            coordinates = transform.transform(coordinates)
            coordinates = coordinates.reshape(self._coordinates.shape)
            transform = transforms.IdentityTransform()
        else:
            coordinates = self._coordinates

        if not transOffset.is_affine:
            offsets = transOffset.transform_non_affine(offsets)
            transOffset = transOffset.get_affine()

        gc = renderer.new_gc()
        self._set_gc_clip(gc)
        gc.set_linewidth(self.get_linewidth()[0])

        if self._shading == 'gouraud':
            triangles, colors = self.convert_mesh_to_triangles(
                self._meshWidth, self._meshHeight, coordinates)
            renderer.draw_gouraud_triangles(
                gc, triangles, colors, transform.frozen())
        else:
            renderer.draw_quad_mesh(
                gc, transform.frozen(), self._meshWidth, self._meshHeight,
                coordinates, offsets, transOffset, self.get_facecolor(),
                self._antialiased, self.get_edgecolors())
        gc.restore()
        renderer.close_group(self.__class__.__name__)
        self.stale = False


patchstr = artist.kwdoc(Collection)
for k in ('QuadMesh', 'TriMesh', 'PolyCollection', 'BrokenBarHCollection',
          'RegularPolyCollection', 'PathCollection',
          'StarPolygonCollection', 'PatchCollection',
          'CircleCollection', 'Collection',):
    docstring.interpd.update({k: patchstr})
docstring.interpd.update(LineCollection=artist.kwdoc(LineCollection))