This file is indexed.

/usr/lib/python3/dist-packages/matplotlib/bezier.py is in python3-matplotlib 2.1.1-2ubuntu3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"""
A module providing some utility functions regarding bezier path manipulation.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

import six

import numpy as np
from matplotlib.path import Path

from operator import xor
import warnings


class NonIntersectingPathException(ValueError):
    pass

# some functions


def get_intersection(cx1, cy1, cos_t1, sin_t1,
                     cx2, cy2, cos_t2, sin_t2):
    """ return a intersecting point between a line through (cx1, cy1)
    and having angle t1 and a line through (cx2, cy2) and angle t2.
    """

    # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0.
    # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1

    line1_rhs = sin_t1 * cx1 - cos_t1 * cy1
    line2_rhs = sin_t2 * cx2 - cos_t2 * cy2

    # rhs matrix
    a, b = sin_t1, -cos_t1
    c, d = sin_t2, -cos_t2

    ad_bc = a * d - b * c
    if ad_bc == 0.:
        raise ValueError("Given lines do not intersect")

    # rhs_inverse
    a_, b_ = d, -b
    c_, d_ = -c, a
    a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]]

    x = a_ * line1_rhs + b_ * line2_rhs
    y = c_ * line1_rhs + d_ * line2_rhs

    return x, y


def get_normal_points(cx, cy, cos_t, sin_t, length):
    """
    For a line passing through (*cx*, *cy*) and having a angle *t*, return
    locations of the two points located along its perpendicular line at the
    distance of *length*.
    """

    if length == 0.:
        return cx, cy, cx, cy

    cos_t1, sin_t1 = sin_t, -cos_t
    cos_t2, sin_t2 = -sin_t, cos_t

    x1, y1 = length * cos_t1 + cx, length * sin_t1 + cy
    x2, y2 = length * cos_t2 + cx, length * sin_t2 + cy

    return x1, y1, x2, y2


# BEZIER routines

# subdividing bezier curve
# http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html


def _de_casteljau1(beta, t):
    next_beta = beta[:-1] * (1 - t) + beta[1:] * t
    return next_beta


def split_de_casteljau(beta, t):
    """split a bezier segment defined by its controlpoints *beta*
    into two separate segment divided at *t* and return their control points.

    """
    beta = np.asarray(beta)
    beta_list = [beta]
    while True:
        beta = _de_casteljau1(beta, t)
        beta_list.append(beta)
        if len(beta) == 1:
            break
    left_beta = [beta[0] for beta in beta_list]
    right_beta = [beta[-1] for beta in reversed(beta_list)]

    return left_beta, right_beta


# FIXME spelling mistake in the name of the parameter ``tolerence``
def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
                                               inside_closedpath,
                                               t0=0., t1=1., tolerence=0.01):
    """ Find a parameter t0 and t1 of the given bezier path which
    bounds the intersecting points with a provided closed
    path(*inside_closedpath*). Search starts from *t0* and *t1* and it
    uses a simple bisecting algorithm therefore one of the end point
    must be inside the path while the orther doesn't. The search stop
    when |t0-t1| gets smaller than the given tolerence.
    value for

    - bezier_point_at_t : a function which returns x, y coordinates at *t*

    - inside_closedpath : return True if the point is inside the path

    """
    # inside_closedpath : function

    start = bezier_point_at_t(t0)
    end = bezier_point_at_t(t1)

    start_inside = inside_closedpath(start)
    end_inside = inside_closedpath(end)

    if start_inside == end_inside and start != end:
        raise NonIntersectingPathException(
            "Both points are on the same side of the closed path")

    while True:

        # return if the distance is smaller than the tolerence
        if np.hypot(start[0] - end[0], start[1] - end[1]) < tolerence:
            return t0, t1

        # calculate the middle point
        middle_t = 0.5 * (t0 + t1)
        middle = bezier_point_at_t(middle_t)
        middle_inside = inside_closedpath(middle)

        if xor(start_inside, middle_inside):
            t1 = middle_t
            end = middle
            end_inside = middle_inside
        else:
            t0 = middle_t
            start = middle
            start_inside = middle_inside


class BezierSegment(object):
    """
    A simple class of a 2-dimensional bezier segment
    """

    # Higher order bezier lines can be supported by simplying adding
    # corresponding values.
    _binom_coeff = {1: np.array([1., 1.]),
                    2: np.array([1., 2., 1.]),
                    3: np.array([1., 3., 3., 1.])}

    def __init__(self, control_points):
        """
        *control_points* : location of contol points. It needs have a
         shpae of n * 2, where n is the order of the bezier line. 1<=
         n <= 3 is supported.
        """
        _o = len(control_points)
        self._orders = np.arange(_o)
        _coeff = BezierSegment._binom_coeff[_o - 1]

        _control_points = np.asarray(control_points)
        xx = _control_points[:, 0]
        yy = _control_points[:, 1]

        self._px = xx * _coeff
        self._py = yy * _coeff

    def point_at_t(self, t):
        "evaluate a point at t"
        one_minus_t_powers = np.power(1. - t, self._orders)[::-1]
        t_powers = np.power(t, self._orders)

        tt = one_minus_t_powers * t_powers
        _x = sum(tt * self._px)
        _y = sum(tt * self._py)

        return _x, _y


def split_bezier_intersecting_with_closedpath(bezier,
                                              inside_closedpath,
                                              tolerence=0.01):

    """
    bezier : control points of the bezier segment
    inside_closedpath : a function which returns true if the point is inside
                        the path
    """

    bz = BezierSegment(bezier)
    bezier_point_at_t = bz.point_at_t

    t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
                                                        inside_closedpath,
                                                        tolerence=tolerence)

    _left, _right = split_de_casteljau(bezier, (t0 + t1) / 2.)
    return _left, _right


def find_r_to_boundary_of_closedpath(inside_closedpath, xy,
                                     cos_t, sin_t,
                                     rmin=0., rmax=1., tolerence=0.01):
    """
    Find a radius r (centered at *xy*) between *rmin* and *rmax* at
    which it intersect with the path.

    inside_closedpath : function
    cx, cy : center
    cos_t, sin_t : cosine and sine for the angle
    rmin, rmax :
    """

    cx, cy = xy

    def _f(r):
        return cos_t * r + cx, sin_t * r + cy

    find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath,
                                               t0=rmin, t1=rmax,
                                               tolerence=tolerence)

# matplotlib specific


def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False):
    """ divide a path into two segment at the point where inside(x, y)
    becomes False.
    """

    path_iter = path.iter_segments()

    ctl_points, command = next(path_iter)
    begin_inside = inside(ctl_points[-2:])  # true if begin point is inside

    bezier_path = None
    ctl_points_old = ctl_points

    concat = np.concatenate

    iold = 0
    i = 1

    for ctl_points, command in path_iter:
        iold = i
        i += len(ctl_points) // 2
        if inside(ctl_points[-2:]) != begin_inside:
            bezier_path = concat([ctl_points_old[-2:], ctl_points])
            break

        ctl_points_old = ctl_points

    if bezier_path is None:
        raise ValueError("The path does not seem to intersect with the patch")

    bp = list(zip(bezier_path[::2], bezier_path[1::2]))
    left, right = split_bezier_intersecting_with_closedpath(bp,
                                                            inside,
                                                            tolerence)
    if len(left) == 2:
        codes_left = [Path.LINETO]
        codes_right = [Path.MOVETO, Path.LINETO]
    elif len(left) == 3:
        codes_left = [Path.CURVE3, Path.CURVE3]
        codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
    elif len(left) == 4:
        codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4]
        codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
    else:
        raise ValueError()

    verts_left = left[1:]
    verts_right = right[:]

    if path.codes is None:
        path_in = Path(concat([path.vertices[:i], verts_left]))
        path_out = Path(concat([verts_right, path.vertices[i:]]))

    else:
        path_in = Path(concat([path.vertices[:iold], verts_left]),
                       concat([path.codes[:iold], codes_left]))

        path_out = Path(concat([verts_right, path.vertices[i:]]),
                        concat([codes_right, path.codes[i:]]))

    if reorder_inout and begin_inside is False:
        path_in, path_out = path_out, path_in

    return path_in, path_out


def inside_circle(cx, cy, r):
    r2 = r ** 2

    def _f(xy):
        x, y = xy
        return (x - cx) ** 2 + (y - cy) ** 2 < r2
    return _f


# quadratic bezier lines

def get_cos_sin(x0, y0, x1, y1):
    dx, dy = x1 - x0, y1 - y0
    d = (dx * dx + dy * dy) ** .5
    # Account for divide by zero
    if d == 0:
        return 0.0, 0.0
    return dx / d, dy / d


def check_if_parallel(dx1, dy1, dx2, dy2, tolerence=1.e-5):
    """ returns
       * 1 if two lines are parralel in same direction
       * -1 if two lines are parralel in opposite direction
       * 0 otherwise
    """
    theta1 = np.arctan2(dx1, dy1)
    theta2 = np.arctan2(dx2, dy2)
    dtheta = np.abs(theta1 - theta2)
    if dtheta < tolerence:
        return 1
    elif np.abs(dtheta - np.pi) < tolerence:
        return -1
    else:
        return False


def get_parallels(bezier2, width):
    """
    Given the quadratic bezier control points *bezier2*, returns
    control points of quadratic bezier lines roughly parallel to given
    one separated by *width*.
    """

    # The parallel bezier lines are constructed by following ways.
    #  c1 and  c2 are contol points representing the begin and end of the
    #  bezier line.
    #  cm is the middle point

    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c2x, c2y = bezier2[2]

    parallel_test = check_if_parallel(c1x - cmx, c1y - cmy,
                                      cmx - c2x, cmy - c2y)

    if parallel_test == -1:
        warnings.warn(
            "Lines do not intersect. A straight line is used instead.")
        cos_t1, sin_t1 = get_cos_sin(c1x, c1y, c2x, c2y)
        cos_t2, sin_t2 = cos_t1, sin_t1
    else:
        # t1 and t2 is the angle between c1 and cm, cm, c2.  They are
        # also a angle of the tangential line of the path at c1 and c2
        cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
        cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)

    # find c1_left, c1_right which are located along the lines
    # throught c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c2_left and
    # c2_right with respect to c2.
    c1x_left, c1y_left, c1x_right, c1y_right = (
        get_normal_points(c1x, c1y, cos_t1, sin_t1, width)
    )
    c2x_left, c2y_left, c2x_right, c2y_right = (
        get_normal_points(c2x, c2y, cos_t2, sin_t2, width)
    )

    # find cm_left which is the intersectng point of a line through
    # c1_left with angle t1 and a line throught c2_left with angle
    # t2. Same with cm_right.
    if parallel_test != 0:
        # a special case for a straight line, i.e., angle between two
        # lines are smaller than some (arbitrtay) value.
        cmx_left, cmy_left = (
            0.5 * (c1x_left + c2x_left), 0.5 * (c1y_left + c2y_left)
        )
        cmx_right, cmy_right = (
            0.5 * (c1x_right + c2x_right), 0.5 * (c1y_right + c2y_right)
        )
    else:
        cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1,
                                              sin_t1, c2x_left, c2y_left,
                                              cos_t2, sin_t2)

        cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1,
                                                sin_t1, c2x_right, c2y_right,
                                                cos_t2, sin_t2)

    # the parralel bezier lines are created with control points of
    # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right]
    path_left = [(c1x_left, c1y_left),
                 (cmx_left, cmy_left),
                 (c2x_left, c2y_left)]
    path_right = [(c1x_right, c1y_right),
                  (cmx_right, cmy_right),
                  (c2x_right, c2y_right)]

    return path_left, path_right


def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y):
    """ Find control points of the bezier line throught c1, mm, c2. We
    simply assume that c1, mm, c2 which have parametric value 0, 0.5, and 1.
    """

    cmx = .5 * (4 * mmx - (c1x + c2x))
    cmy = .5 * (4 * mmy - (c1y + c2y))

    return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]


def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.):
    """
    Being similar to get_parallels, returns control points of two quadrativ
    bezier lines having a width roughly parralel to given one separated by
    *width*.
    """

    # c1, cm, c2
    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c3x, c3y = bezier2[2]

    # t1 and t2 is the anlge between c1 and cm, cm, c3.
    # They are also a angle of the tangential line of the path at c1 and c3
    cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
    cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)

    # find c1_left, c1_right which are located along the lines
    # throught c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c3_left and
    # c3_right with respect to c3.
    c1x_left, c1y_left, c1x_right, c1y_right = (
        get_normal_points(c1x, c1y, cos_t1, sin_t1, width * w1)
    )
    c3x_left, c3y_left, c3x_right, c3y_right = (
        get_normal_points(c3x, c3y, cos_t2, sin_t2, width * w2)
    )

    # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and
    # c12-c23
    c12x, c12y = (c1x + cmx) * .5, (c1y + cmy) * .5
    c23x, c23y = (cmx + c3x) * .5, (cmy + c3y) * .5
    c123x, c123y = (c12x + c23x) * .5, (c12y + c23y) * .5

    # tangential angle of c123 (angle between c12 and c23)
    cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)

    c123x_left, c123y_left, c123x_right, c123y_right = (
        get_normal_points(c123x, c123y, cos_t123, sin_t123, width * wm)
    )

    path_left = find_control_points(c1x_left, c1y_left,
                                    c123x_left, c123y_left,
                                    c3x_left, c3y_left)
    path_right = find_control_points(c1x_right, c1y_right,
                                     c123x_right, c123y_right,
                                     c3x_right, c3y_right)

    return path_left, path_right


def make_path_regular(p):
    """
    fill in the codes if None.
    """
    c = p.codes
    if c is None:
        c = np.empty(p.vertices.shape[:1], "i")
        c.fill(Path.LINETO)
        c[0] = Path.MOVETO

        return Path(p.vertices, c)
    else:
        return p


def concatenate_paths(paths):
    """
    concatenate list of paths into a single path.
    """

    vertices = []
    codes = []
    for p in paths:
        p = make_path_regular(p)
        vertices.append(p.vertices)
        codes.append(p.codes)

    _path = Path(np.concatenate(vertices),
                 np.concatenate(codes))
    return _path