/usr/lib/python3/dist-packages/kivy/multistroke.py is in python3-kivy 1.9.1-1build3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 | '''
Multistroke gesture recognizer
==============================
.. versionadded::
1.9.0
.. warning::
This is experimental and subject to change as long as this warning notice
is present.
See :file:`kivy/examples/demo/multistroke/main.py` for a complete application
example.
Conceptual Overview
-------------------
This module implements the Protractor gesture recognition algorithm.
:class:`Recognizer` is the search/database API similar to
:class:`~kivy.gesture.GestureDatabase`. It maintains a list of
:class:`MultistrokeGesture` objects and allows you to search for a
user-input gestures among them.
:class:`ProgressTracker` tracks the progress of a :meth:`Recognizer.recognize`
call. It can be used to interact with the running recognizer task, for example
forcing it to stop half-way, or analyzing results as they arrive.
:class:`MultistrokeGesture` represents a gesture in the gesture database
(:attr:`Recognizer.db`). It is a container for :class:`UnistrokeTemplate`
objects, and implements the heap permute algorithm to automatically generate
all possible stroke orders (if desired).
:class:`UnistrokeTemplate` represents a single stroke path. It's typically
instantiated automatically by :class:`MultistrokeGesture`, but sometimes you
may need to create them manually.
:class:`Candidate` represents a user-input gesture that is used to search
the gesture database for matches. It is normally instantiated automatically
by calling :meth:`Recognizer.recognize`.
Usage examples
--------------
See :file:`kivy/examples/demo/multistroke/main.py` for a complete application
example.
You can bind to events on :class:`Recognizer` to track the state of all
calls to :meth:`Recognizer.recognize`. The callback function will receive an
instance of :class:`ProgressTracker` that can be used to analyze and control
various aspects of the recognition process ::
from kivy.vector import Vector
from kivy.multistroke import Recognizer
gdb = Recognizer()
def search_start(gdb, pt):
print("A search is starting with %d tasks" % (pt.tasks))
def search_stop(gdb, pt):
# This will call max() on the result dictonary, so it's best to store
# it instead of calling it 3 times consecutively
best = pt.best
print("Search ended (%s). Best is %s (score %f, distance %f)" % (
pt.status, best['name'], best['score'], best['dist'] ))
# Bind your callbacks to track all matching operations
gdb.bind(on_search_start=search_start)
gdb.bind(on_search_complete=search_stop)
# The format below is referred to as `strokes`, a list of stroke paths.
# Note that each path shown here consists of two points, ie a straight
# line; if you plot them it looks like a T, hence the name.
gdb.add_gesture('T', [
[Vector(30, 7), Vector(103, 7)],
[Vector(66, 7), Vector(66, 87)]])
# Now you can search for the 'T' gesture using similar data (user input).
# This will trigger both of the callbacks bound above.
gdb.recognize([
[Vector(45, 8), Vector(110, 12)],
[Vector(88, 9), Vector(85, 95)]])
On the next :class:`~kivy.clock.Clock` tick, the matching process starts
(and, in this case, completes).
To track individual calls to :meth:`Recognizer.recognize`, use the return
value (also a :class:`ProgressTracker` instance) ::
# Same as above, but keep track of progress using returned value
progress = gdb.recognize([
[Vector(45, 8), Vector(110, 12)],
[Vector(88, 9), Vector(85, 95)]])
progress.bind(on_progress=my_other_callback)
print(progress.progress) # = 0
# [ assuming a kivy.clock.Clock.tick() here ]
print(result.progress) # = 1
Algorithm details
-----------------
For more information about the matching algorithm, see:
"Protractor: A fast and accurate gesture recognizer" by Yang Li
http://yangl.org/pdf/protractor-chi2010.pdf
"$N-Protractor" by Lisa Anthony and Jacob O. Wobbrock
http://depts.washington.edu/aimgroup/proj/dollar/ndollar-protractor.pdf
Some of the code is derived from the JavaScript implementation here:
http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html
'''
__all__ = ('Recognizer', 'ProgressTracker', 'MultistrokeGesture',
'UnistrokeTemplate', 'Candidate')
import pickle
import base64
import zlib
from re import match as re_match
from collections import deque
from math import sqrt, pi, radians, acos, atan, atan2, pow, floor
from math import sin as math_sin, cos as math_cos
from kivy.vector import Vector
from kivy.clock import Clock
from kivy.event import EventDispatcher
from kivy.properties import ListProperty
from kivy.compat import PY2
from io import BytesIO
if not PY2:
xrange = range
# Default number of gesture matches per frame
# FIXME: relevant number
DEFAULT_GPF = 10
# Algorithm data
SQUARESIZE = 250.0
ONEDTHRESHOLD = 0.25
ORIGIN = Vector(0, 0)
class MultistrokeError(Exception):
pass
# -----------------------------------------------------------------------------
# Recognizer
# -----------------------------------------------------------------------------
class Recognizer(EventDispatcher):
''':class:`Recognizer` provides a gesture database with matching
facilities.
:Events:
`on_search_start`
Fired when a new search is started using this Recognizer.
`on_search_complete`
Fired when a running search ends, for whatever reason.
(use :data:`ProgressTracker.status` to find out)
:Properties:
`db`
A :class:`ListProperty` that contains the available
:class:`MultistrokeGesture` objects.
:attr:`db` is a
:class:`~kivy.properties.ListProperty` and defaults to []
'''
db = ListProperty([])
def __init__(self, **kwargs):
super(Recognizer, self).__init__(**kwargs)
self.register_event_type('on_search_start')
self.register_event_type('on_search_complete')
def filter(self, **kwargs):
''':meth:`filter` returns a subset of objects in :attr:`self.db`,
according to given criteria. This is used by many other methods of
the :class:`Recognizer`; the arguments below can for example be
used when calling :meth:`Recognizer.recognize` or
:meth:`Recognizer.export_gesture`. You normally don't need to call
this directly.
:Arguments:
`name`
Limits the returned list to gestures where
:attr:`MultistrokeGesture.name` matches given regular
expression(s). If re.match(name, MultistrokeGesture.name)
tests true, the gesture is included in the returned list.
Can be a string or an array of strings ::
gdb = Recognizer()
# Will match all names that start with a captial N
# (ie Next, New, N, Nebraska etc, but not "n" or "next")
gdb.filter(name='N')
# exactly 'N'
gdb.filter(name='N$')
# Nebraska, teletubbies, France, fraggle, N, n, etc
gdb.filter(name=['[Nn]', '(?i)T', '(?i)F'])
`priority`
Limits the returned list to gestures with certain
:attr:`MultistrokeGesture.priority` values. If specified as an
integer, only gestures with a lower priority are returned. If
specified as a list (min/max) ::
# Max priority 50
gdb.filter(priority=50)
# Max priority 50 (same result as above)
gdb.filter(priority=[0, 50])
# Min priority 50, max 100
gdb.filter(priority=[50, 100])
When this option is used, :attr:`Recognizer.db` is automatically
sorted according to priority, incurring extra cost. You can use
`force_priority_sort` to override this behavior if your gestures
are already sorted according to priority.
`orientation_sensitive`
Limits the returned list to gestures that are
orientation sensitive (True), gestures that are not orientation
sensitive (False) or None (ignore template sensitivity, this is
the default).
`numstrokes`
Limits the returned list to gestures that have the specified
number of strokes (in :attr:`MultistrokeGesture.strokes`).
Can be a single integer or a list of integers.
`numpoints`
Limits the returned list to gestures that have specific
:attr:`MultistrokeGesture.numpoints` values. This is provided
for flexibility, do not use it unless you understand what it
does. Can be a single integer or a list of integers.
`force_priority_sort`
Can be used to override the default sort behavior. Normally
:class:`MultistrokeGesture` objects are returned in priority
order if the `priority` option is used. Setting this to True
will return gestures sorted in priority order, False will
return in the order gestures were added. None means decide
automatically (the default).
.. Note ::
For improved performance, you can load your gesture
database in priority order and set this to False when
calling :meth:`Recognizer.recognize`
`db`
Can be set if you want to filter a different list of objects
than :attr:`Recognizer.db`. You probably don't want to do this;
it is used internally by :meth:`import_gesture`.
'''
have_filters = False
kwargs_get = kwargs.get
name = kwargs_get('name', None)
if name is not None:
have_filters = True
if not isinstance(name, list):
name = [name]
priority = kwargs_get('priority', None)
min_p, max_p = None, None
if priority is not None:
have_filters = True
if isinstance(priority, list):
min_p, max_p = priority
elif isinstance(priority, int):
min_p, max_p = None, priority
numstrokes = kwargs_get('numstrokes', None)
if numstrokes is not None:
have_filters = True
if not isinstance(numstrokes, list):
numstrokes = [numstrokes]
numpoints = kwargs_get('numpoints', None)
if numpoints is not None:
have_filters = True
if not isinstance(numpoints, list):
numpoints = [numpoints]
orientation_sens = kwargs_get('orientation_sensitive', None)
if orientation_sens is not None:
have_filters = True
# Prepare a correctly sorted tasklist
force_priority_sort = kwargs.get('force_priority_sort', None)
force_sort_on = force_priority_sort and True
force_sort_off = (force_priority_sort is False) and True
db = kwargs.get('db', None) or self.db
if (force_sort_on or priority) and not force_sort_off:
tasklist = sorted(db, key=lambda n: n.priority)
else:
tasklist = db
# Now test each gesture in the database against filter criteria
out = deque()
if not have_filters:
out.extend(tasklist)
return out
out_append = out.append
for gesture in tasklist:
if (orientation_sens is not None and
orientation_sens != gesture.orientation_sens):
continue
if numpoints and gesture.numpoints not in numpoints:
continue
if numstrokes and len(gesture.strokes) not in numstrokes:
continue
if min_p is not None and gesture.priority < min_p:
continue
if max_p is not None and gesture.priority > max_p:
return out
if name:
for f in name:
if re_match(f, gesture.name):
out_append(gesture)
break
else:
out_append(gesture)
return out
def add_gesture(self, name, strokes, **kwargs):
'''Add a new gesture to the database. This will instantiate a new
:class:`MultistrokeGesture` with `strokes` and append it to self.db.
.. Note ::
If you already have instantiated a :class:`MultistrokeGesture`
object and wish to add it, append it to :attr:`Recognizer.db`
manually.
'''
if not strokes:
return False
self.db.append(MultistrokeGesture(name=name, strokes=strokes, **kwargs))
return True
def parse_gesture(self, data):
'''Parse data formatted by export_gesture(). Returns a list of
:class:`MultistrokeGesture` objects. This is used internally by
:meth:`import_gesture`, you normally don't need to call this
directly.'''
io = BytesIO(zlib.decompress(base64.b64decode(data)))
p = pickle.Unpickler(io)
multistrokes = []
ms_append = multistrokes.append
for multistroke in p.load():
strokes = multistroke['strokes']
multistroke['strokes'] = [[Vector(
x, y) for x, y in line] for line in strokes]
ms_append(MultistrokeGesture(**multistroke))
return multistrokes
# FIXME: use a try block, maybe shelve or something
def export_gesture(self, filename=None, **kwargs):
'''Export a list of :class:`MultistrokeGesture` objects. Outputs a
base64-encoded string that can be decoded to a Python list with
the :meth:`parse_gesture` function or imported directly to
:attr:`self.db` using :meth:`Recognizer.import_gesture`. If
`filename` is specified, the output is written to disk, otherwise
returned.
This method accepts optional :meth:`Recognizer.filter` arguments.
'''
io = BytesIO()
p = pickle.Pickler(io, protocol=0)
multistrokes = []
defaults = {'priority': 100, 'numpoints': 16, 'stroke_sens': True,
'orientation_sens': False, 'angle_similarity': 30.0}
dkeys = defaults.keys()
for multistroke in self.filter(**kwargs):
m = dict(defaults)
m = {'name': multistroke.name}
for attr in dkeys:
m[attr] = getattr(multistroke, attr)
m['strokes'] = tuple([(p.x, p.y) for p in line]
for line in multistroke.strokes)
multistrokes.append(m)
p.dump(multistrokes)
if filename:
f = open(filename, 'wb')
f.write(base64.b64encode(zlib.compress(io.getvalue(), 9)))
f.close()
else:
return base64.b64encode(zlib.compress(io.getvalue(), 9))
# FIXME: match them all with protractor, and don't load exacts? or
# just compare the data or something; seems better to do this on import
# than on every subsequent call to recognize(). And fix it in general,
# too.
def import_gesture(self, data=None, filename=None, **kwargs):
'''Import a list of gestures as formatted by :meth:`export_gesture`.
One of `data` or `filename` must be specified.
This method accepts optional :meth:`Recognizer.filter` arguments,
if none are specified then all gestures in specified data are
imported.'''
if filename is not None:
with open(filename, "rb") as infile:
data = infile.read()
elif data is None:
raise MultistrokeError('import_gesture needs data= or filename=')
new = self.filter(db=self.parse_gesture(data), **kwargs)
if new:
self.db.extend(new)
def transfer_gesture(self, tgt, **kwargs):
'''Transfers :class:`MultistrokeGesture` objects from
:attr:`Recognizer.db` to another :class:`Recognizer` instance `tgt`.
This method accepts optional :meth:`Recognizer.filter` arguments.
'''
if hasattr(tgt, 'db') and isinstance(tgt.db, list):
send = self.filter(**kwargs)
if send:
tgt.db.append(None)
tgt.db[-1:] = send
return True
def prepare_templates(self, **kwargs):
'''This method is used to prepare :class:`UnistrokeTemplate` objects
within the gestures in self.db. This is useful if you want to minimize
punishment of lazy resampling by preparing all vectors in advance. If
you do this before a call to :meth:`Recognizer.export_gesture`, you
will have the vectors computed when you load the data later.
This method accepts optional :meth:`Recognizer.filter` arguments.
`force_numpoints`, if specified, will prepare all templates to the
given number of points (instead of each template's preferred n; ie
:data:`UnistrokeTemplate.numpoints`). You normally don't want to
do this.'''
for gesture in self.filter(**kwargs):
for tpl in gesture:
n = kwargs.get('force_numpoints', tpl.numpoints)
tpl.prepare(n)
def recognize(self, strokes, goodscore=None, timeout=0, delay=0, **kwargs):
'''Search for gestures matching `strokes`. Returns a
:class:`ProgressTracker` instance.
This method accepts optional :meth:`Recognizer.filter` arguments.
:Arguments:
`strokes`
A list of stroke paths (list of lists of
:class:`~kivy.vector.Vector` objects) that will be matched
against gestures in the database. Can also be a
:class:`Candidate` instance.
.. Warning ::
If you manually supply a :class:`Candidate` that has a
skip-flag, make sure that the correct filter arguments
are set. Otherwise the system will attempt to load vectors
that have not been computed. For example, if you set
`skip_bounded` and do not set `orientation_sensitive` to
False, it will raise an exception if an
orientation_sensitive :class:`UnistrokeTemplate`
is encountered.
`goodscore`
If this is set (between 0.0 - 1.0) and a gesture score is
equal to or higher than the specified value, the search is
immediately halted and the on_search_complete event is
fired (+ the on_complete event of the associated
:class:`ProgressTracker` instance). Default is None (disabled).
`timeout`
Specifies a timeout (in seconds) for when the search is
aborted and the results returned. This option applies only
when `max_gpf` is not 0. Default value is 0, meaning all
gestures in the database will be tested, no matter how long
it takes.
`max_gpf`
Specifies the maximum number of :class:`MultistrokeGesture`
objects that can be processed per frame. When exceeded, will
cause the search to halt and resume work in the next frame.
Setting to 0 will complete the search immediately (and block
the UI).
.. Warning ::
This does not limit the number of
:class:`UnistrokeTemplate` objects matched! If a single
gesture has a million templates, they will all be
processed in a single frame with max_gpf=1!
`delay`
Sets an optional delay between each run of the recognizer
loop. Normally, a run is scheduled for the next frame until
the tasklist is exhausted. If you set this, there will be an
additional delay between each run (specified in seconds).
Default is 0, resume in the next frame.
`force_numpoints`
forces all templates (and candidate) to be prepared to a
certain number of points. This can be useful for example if
you are evaluating templates for optimal n (do not use this
unless you understand what it does).
'''
GPF = kwargs.get('max_gpf', DEFAULT_GPF)
# Obtain a list of MultistrokeGesture objects matching filter arguments
tasklist = self.filter(**kwargs)
# Initialize the candidate and result objects
cand = self._candidate(strokes)
result = ProgressTracker(cand, len(tasklist))
# This is done to inform caller if they bind to on_complete and there
# is nothing to do; perhaps should just return None?
if not tasklist:
result.status = 'complete'
self.dispatch('on_search_complete', result)
def result_hack(dt):
result.dispatch('on_complete')
Clock.schedule_once(result_hack)
return result
# This callback is scheduled once per frame until completed
def _recognize_tick(dt):
start_gc = result._completed
stop_now = False
while not stop_now and (tasklist and not result._break_flag) and \
(not GPF or (result._completed - start_gc < GPF)):
if (timeout and
Clock.get_time() - result._start_time >= timeout):
result.status = 'timeout'
stop_now = True
break
# Get the best distance and number of matching operations done
gesture = tasklist.popleft()
tpl, d, res, mos = gesture.match_candidate(
cand, **kwargs)
if tpl is not None:
score = result._add_result(gesture, d, tpl, res)
if goodscore is not None and score >= goodscore:
result.status = 'goodscore'
stop_now = True
result._match_ops += mos
result._completed += 1
result.dispatch('on_progress')
# The loop has ended. Prepare to dispatch 'complete'
def _dispatch():
result.dispatch('on_complete')
self.dispatch('on_search_complete', result)
return False
# Dispatch or reschedule another run
if not tasklist:
result.status = 'complete'
return _dispatch()
elif result._break_flag:
result.status = 'stop'
return _dispatch()
elif stop_now:
return _dispatch()
else:
Clock.schedule_once(_recognize_tick, delay)
return True
# End _recognize_tick()
self.dispatch('on_search_start', result)
if not GPF:
_recognize_tick(0)
else:
Clock.schedule_once(_recognize_tick, 0)
return result
def _candidate(self, strokes, **kwargs):
# recognize() helper function, do not use directly. Set up a
# Candidate object from arguments. Either use a specified object
# or make a new one from strokes and apply safe skip_* settings to
# use less resources.
if isinstance(strokes, Candidate):
return strokes
if (not isinstance(strokes, list) or not len(strokes) or not
isinstance(strokes[0], list)):
raise MultistrokeError('recognize() needs strokes= '
'list or Candidate')
cand = Candidate(strokes)
o_filter = kwargs.get('orientation_sensitive', None)
if o_filter is False:
cand.skip_bounded = True
elif o_filter is True:
cand.skip_invariant = True
return cand
# Default event handlers
def on_search_start(self, result):
pass
def on_search_complete(self, result):
pass
# -----------------------------------------------------------------------------
# ProgressTracker
# -----------------------------------------------------------------------------
class ProgressTracker(EventDispatcher):
'''Represents an ongoing (or completed) search operation. Instantiated and
returned by the :meth:`Recognizer.recognize` method when it is called. The
`results` attribute is a dictionary that is updated as the recognition
operation progresses.
.. Note ::
You do not need to instantiate this class.
:Arguments:
`candidate`
:class:`Candidate` object to be evaluated
`tasks`
Total number of gestures in tasklist (to test against)
:Events:
`on_progress`
Fired for every gesture that is processed
`on_result`
Fired when a new result is added, and it is the first match
for the `name` so far, or a consecutive match with better score.
`on_complete`
Fired when the search is completed, for whatever reason.
(use `ProgressTracker.status` to find out)
:Attributes:
`results`
A dictionary of all results (so far). The key is the name of the
gesture (ie :attr:`UnistrokeTemplate.name` usually inherited from
:class:`MultistrokeGesture`). Each item in the dictionary is a
dict with the following entries:
`name`
Name of the matched template (redundant)
`score`
Computed score from 1.0 (perfect match) to 0.0
`dist`
Cosine distance from candidate to template (low=closer)
`gesture`
The :class:`MultistrokeGesture` object that was matched
`best_template`
Index of the best matching template (in
:attr:`MultistrokeGesture.templates`)
`template_results`
List of distances for all templates. The list index
corresponds to a :class:`UnistrokeTemplate` index in
gesture.templates.
`status`
`search`
Currently working
`stop`
Was stopped by the user (:meth:`stop` called)
`timeout`
A timeout occured (specified as `timeout=` to recognize())
`goodscore`
The search was stopped early because a gesture with a high
enough score was found (specified as `goodscore=` to
recognize())
`complete`
The search is complete (all gestures matching filters were
tested)
'''
def __init__(self, candidate, tasks, **kwargs):
self.status = 'search'
self.candidate = candidate
self.results = {}
self.tasks = tasks
self._start_time = Clock.get_time()
self._match_ops = 0
self._completed = 0
self._break_flag = False
# fired by recognize()
self.register_event_type('on_complete')
self.register_event_type('on_progress')
# fired locally
self.register_event_type('on_result')
super(ProgressTracker, self).__init__(**kwargs)
@property
def progress(self):
'''Returns the progress as a float, 0 is 0% done, 1 is 100%. This
is a Python property.'''
if not self.tasks:
return 1
return self._completed / float(self.tasks)
@property
def best(self):
'''Return the best match found by recognize() so far. It returns a
dictionary with three keys, 'name', 'dist' and 'score' representing
the template's name, distance (from candidate path) and the
computed score value. This is a Python property.'''
results = self.results # to avoid too many self. lookups
if not results:
return {'name': None, 'dist': None, 'score': 0}
b = max(results, key=lambda r: results[r]['score'])
return {
'name': results[b]['name'],
'dist': results[b]['dist'],
'score': results[b]['score']
}
def stop(self):
'''Raises a stop flag that is checked by the search process. It will
be stopped on the next clock tick (if it is still running).'''
self._break_flag = True
def _add_result(self, gesture, dist, tpl, res):
# Add a result; used internally by the recognize() function
if tpl <= len(res):
n = gesture.templates[tpl].name
else:
return 0.
if n not in self.results or dist < self.results[n]['dist']:
self.results[n] = {
'name': n,
'dist': dist,
'gesture': gesture,
'best_template': tpl,
'template_results': res
}
if not dist:
self.results[n]['score'] = 1.0
else:
self.results[n]['score'] = 1.0 - (dist / pi)
self.dispatch('on_result', self.results[n])
return self.results[n]['score']
else:
return 0.
def on_complete(self):
pass
def on_progress(self):
pass
def on_result(self, result):
pass
# -----------------------------------------------------------------------------
# MultistrokeGesture
# -----------------------------------------------------------------------------
class MultistrokeGesture(object):
''':class:`MultistrokeGesture` represents a gesture. It maintains a set of
`strokes` and generates unistroke (ie :class:`UnistrokeTemplate`)
permutations that are used for evaluating candidates against this gesture
later.
:Arguments:
`name`
Identifies the name of the gesture - it is returned to you in the
results of a :meth:`Recognizer.recognize` search. You can have any
number of MultistrokeGesture objects with the same name; many
definitions of one gesture. The same name is given to all the
generated unistroke permutations. Required, no default.
`strokes`
A list of paths that represents the gesture. A path is a list of
Vector objects::
gesture = MultistrokeGesture('my_gesture', strokes=[
[Vector(x1, y1), Vector(x2, y2), ...... ], # stroke 1
[Vector(), Vector(), Vector(), Vector() ] # stroke 2
#, [stroke 3], [stroke 4], ...
])
For template matching purposes, all the strokes are combined to a
single list (unistroke). You should still specify the strokes
individually, and set `stroke_sensitive` True (whenever possible).
Once you do this, unistroke permutations are immediately generated
and stored in `self.templates` for later, unless you set the
`permute` flag to False.
`priority`
Determines when :func:`Recognizer.recognize` will attempt to match
this template, lower priorities are evaluated first (only if
a priority `filter` is used). You should use lower priority on
gestures that are more likely to match. For example, set user
templates at lower number than generic templates. Default is 100.
`numpoints`
Determines the number of points this gesture should be resampled to
(for matching purposes). The default is 16.
`stroke_sensitive`
Determines if the number of strokes (paths) in this gesture is
required to be the same in the candidate (user input) gesture
during matching. If this is False, candidates will always be
evaluated, disregarding the number of strokes. Default is True.
`orientation_sensitive`
Determines if this gesture is orientation sensitive. If True,
aligns the indicative orientation with the one of eight base
orientations that requires least rotation. Default is True.
`angle_similarity`
This is used by the :func:`Recognizer.recognize` function when a
candidate is evaluated against this gesture. If the angles between
them are too far off, the template is considered a non-match.
Default is 30.0 (degrees)
`permute`
If False, do not use Heap Permute algorithm to generate different
stroke orders when instantiated. If you set this to False, a
single UnistrokeTemplate built from `strokes` is used.
'''
def __init__(self, name, strokes=None, **kwargs):
self.name = name
self.priority = kwargs.get('priority', 100)
self.numpoints = kwargs.get('numpoints', 16)
self.stroke_sens = kwargs.get('stroke_sensitive', True)
self.orientation_sens = kwargs.get('orientation_sensitive', True)
self.angle_similarity = kwargs.get('angle_similarity', 30.0)
self.strokes = []
if strokes is not None:
self.strokes = strokes
if kwargs.get('permute', True):
self.permute()
else:
self.templates = [UnistrokeTemplate(name,
points=[i for sub in strokes for i in sub],
numpoints=self.numpoints,
orientation_sensitive=self.orientation_sens)]
def angle_similarity_threshold(self):
return radians(self.angle_similarity)
def add_stroke(self, stroke, permute=False):
'''Add a stroke to the self.strokes list. If `permute` is True, the
:meth:`permute` method is called to generate new unistroke templates'''
self.strokes.append(stroke)
if permute:
self.permute()
def get_distance(self, cand, tpl, numpoints=None):
'''Compute the distance from this Candiate to a UnistrokeTemplate.
Returns the Cosine distance between the stroke paths.
`numpoints` will prepare both the UnistrokeTemplate and Candidate path
to n points (when neccessary), you probably don't want to do this.
'''
n = numpoints
if n is None or n < 2:
n = self.numpoints
# optimal_cosine_distance() inlined here for performance
v1 = tpl.get_vector(n)
v2 = cand.get_protractor_vector(n, tpl.orientation_sens)
a = 0.0
b = 0.0
for i in xrange(0, len(v1), 2):
a += (v1[i] * v2[i]) + (v1[i + 1] * v2[i + 1])
b += (v1[i] * v2[i + 1]) - (v1[i + 1] * v2[i])
angle = atan(b / a)
# If you put the below directly into math.acos(), you will get a domain
# error when a=1.0 and angle=0.0 (ie math_cos(angle)=1.0). It seems to
# be because float representation of 1.0*1.0 is >1.0 (ie 1.00000...001)
# and this is problematic for math.acos(). If you try math.acos(1.0*1.0)
# in interpreter it does not happen, only with exact match at runtime
result = a * math_cos(angle) + b * math_sin(angle)
# FIXME: I'm sure there is a better way to do it but..
if result >= 1:
result = 1
elif result <= -1: # has not happened to me, but I leave it here.
result = -1
return acos(result)
def match_candidate(self, cand, **kwargs):
'''Match a given candidate against this MultistrokeGesture object. Will
test against all templates and report results as a list of four
items:
`index 0`
Best matching template's index (in self.templates)
`index 1`
Computed distance from the template to the candidate path
`index 2`
List of distances for all templates. The list index
corresponds to a :class:`UnistrokeTemplate` index in
self.templates.
`index 3`
Counter for the number of performed matching operations, ie
templates matched against the candidate
'''
best_d = float('infinity')
best_tpl = None
mos = 0
out = []
if (self.stroke_sens and len(self.strokes) != len(cand.strokes)):
return (best_tpl, best_d, out, mos)
skip_bounded = cand.skip_bounded
skip_invariant = cand.skip_invariant
get_distance = self.get_distance
ang_sim_threshold = self.angle_similarity_threshold()
for idx, tpl in enumerate(self.templates):
# Handle a theoretical case where a MultistrokeGesture is composed
# manually and the orientation_sensitive flag is True, and contains
# a UnistrokeTemplate that has orientation_sensitive=False (or vice
# versa). This would cause KeyError - requesing nonexistant vector.
if tpl.orientation_sens:
if skip_bounded:
continue
elif skip_invariant:
continue
# Count as a match operation now, since the call to get_
# angle_similarity below will force vector calculation,
# even if it doesn't make it to get_distance
mos += 1
# Note: With this implementation, we always resample the candidate
# to *any* encountered UnistrokeTemplate numpoints here, the filter
# is only applied to MultistrokeGesture. See theoretical case
# above; should not matter normally.
n = kwargs.get('force_numpoints', tpl.numpoints)
# Skip if candidate/gesture angles are too far off
ang_sim = cand.get_angle_similarity(tpl, numpoints=n)
if ang_sim > ang_sim_threshold:
continue
# Get the distance between cand/tpl paths
d = get_distance(cand, tpl, numpoints=n)
out.append(d)
if d < best_d:
best_d = d
best_tpl = idx
return (best_tpl, best_d, out, mos)
def permute(self):
'''Generate all possible unistroke permutations from self.strokes and
save the resulting list of UnistrokeTemplate objects in self.templates.
Quote from http://faculty.washington.edu/wobbrock/pubs/gi-10.2.pdf ::
We use Heap Permute [16] (p. 179) to generate all stroke orders
in a multistroke gesture. Then, to generate stroke directions for
each order, we treat each component stroke as a dichotomous
[0,1] variable. There are 2^N combinations for N strokes, so we
convert the decimal values 0 to 2^N-1, inclusive, to binary
representations and regard each bit as indicating forward (0) or
reverse (1). This algorithm is often used to generate truth tables
in propositional logic.
See section 4.1: "$N Algorithm" of the linked paper for details.
.. Warning ::
Using heap permute for gestures with more than 3 strokes
can result in very large number of templates (a 9-stroke
gesture = 38 million templates). If you are dealing with
these types of gestures, you should manually compose
all the desired stroke orders.
'''
# Seed with index of each stroke
self._order = [i for i in xrange(0, len(self.strokes))]
# Prepare ._orders
self._orders = []
self._heap_permute(len(self.strokes))
del self._order
# Generate unistroke permutations
self.templates = [UnistrokeTemplate(
self.name,
points=permutation,
numpoints=self.numpoints,
orientation_sensitive=self.orientation_sens
) for permutation in self._make_unistrokes()]
del self._orders
def _heap_permute(self, n):
# Heap Permute algorithm
self_order = self._order
if n == 1:
self._orders.append(self_order[:])
else:
i = 0
for i in xrange(0, n):
self._heap_permute(n - 1)
if n % 2 == 1:
tmp = self_order[0]
self_order[0] = self_order[n - 1]
self_order[n - 1] = tmp
else:
tmp = self_order[i]
self_order[i] = self_order[n - 1]
self_order[n - 1] = tmp
def _make_unistrokes(self):
# Create unistroke permutations from self.strokes
unistrokes = []
unistrokes_append = unistrokes.append
self_strokes = self.strokes
for r in self._orders:
b = 0
while b < pow(2, len(r)): # use b's bits for directions
unistroke = []
unistroke_append = unistroke.append
for i in xrange(0, len(r)):
pts = self_strokes[r[i]][:]
if (b >> i) & 1 == 1: # is b's bit at index i 1?
pts.reverse()
unistroke_append(None)
unistroke[-1:] = pts
unistrokes_append(unistroke)
b += 1
return unistrokes
# -----------------------------------------------------------------------------
# UnistrokeTemplate
# -----------------------------------------------------------------------------
class UnistrokeTemplate(object):
'''Represents a (uni)stroke path as a list of Vectors. Normally, this class
is instantiated by MultistrokeGesture and not by the programmer directly.
However, it is possible to manually compose UnistrokeTemplate objects.
:Arguments:
`name`
Identifies the name of the gesture. This is normally inherited from
the parent MultistrokeGesture object when a template is generated.
`points`
A list of points that represents a unistroke path. This is normally
one of the possible stroke order permutations from a
MultistrokeGesture.
`numpoints`
The number of points this template should (ideally) be resampled to
before the matching process. The default is 16, but you can use a
template-specific settings if that improves results.
`orientation_sensitive`
Determines if this template is orientation sensitive (True) or
fully rotation invariant (False). The default is True.
.. Note::
You will get an exception if you set a skip-flag and then attempt to
retrieve those vectorsa.
'''
def __init__(self, name, points=None, **kwargs):
self.name = name
self.numpoints = kwargs.get('numpoints', 16)
self.orientation_sens = kwargs.get('orientation_sensitive', True)
self.db = {}
self.points = []
if points is not None:
self.points = points
def add_point(self, p):
'''Add a point to the unistroke/path. This invalidates all previously
computed vectors.'''
self.points.append(p)
# All previously computed data is now void.
self.db = {}
# Used to lazily prepare the template
def _get_db_key(self, key, numpoints=None):
n = numpoints and numpoints or self.numpoints
if n not in self.db:
self.prepare(n)
return self.db[n][key]
def get_start_unit_vector(self, numpoints=None):
return self._get_db_key('startvector', numpoints)
def get_vector(self, numpoints=None):
return self._get_db_key('vector', numpoints)
def get_points(self, numpoints=None):
return self._get_db_key('points', numpoints)
def prepare(self, numpoints=None):
'''This function prepares the UnistrokeTemplate for matching given a
target number of points (for resample). 16 is optimal.'''
if not self.points:
raise MultistrokeError('prepare() called without self.points')
# How many points are we resampling to?
n = numpoints or self.numpoints
if not n or n < 2:
raise MultistrokeError('prepare() called with invalid numpoints')
p = resample(self.points, n)
radians = indicative_angle(p)
p = rotate_by(p, -radians)
p = scale_dim(p, SQUARESIZE, ONEDTHRESHOLD)
if self.orientation_sens:
p = rotate_by(p, +radians) # restore
p = translate_to(p, ORIGIN)
# Now store it using the number of points in the resampled path as the
# dict key. On the next call to get_*, it will be returned instead of
# recomputed. Implicitly, you must reset self.db or call prepare() for
# all the keys once you manipulate self.points.
self.db[n] = {
# Compute STARTANGLEINDEX as n/8:
'startvector': start_unit_vector(p, (n / 8)),
'vector': vectorize(p, self.orientation_sens)
}
# -----------------------------------------------------------------------------
# Candidate
# -----------------------------------------------------------------------------
class Candidate(object):
'''Represents a set of unistroke paths of user input, ie data to be matched
against a :class:`UnistrokeTemplate` object using the Protractor algorithm.
By default, data is precomputed to match both rotation bounded and fully
invariant :class:`UnistrokeTemplate` objects.
:Arguments:
`strokes`
See :data:`MultistrokeGesture.strokes` for format example. The
Candidate strokes are simply combined to a unistroke in the order
given. The idea is that this will match one of the unistroke
permutations in `MultistrokeGesture.templates`.
`numpoints`
The Candidate's default N; this is only for a fallback, it is not
normally used since n is driven by the UnistrokeTemplate we are
being compared to.
`skip_bounded`
If True, do not generate/store rotation bounded vectors
`skip_invariant`
If True, do not generate/store rotation invariant vectors
Note that you WILL get errors if you set a skip-flag and then attempt to
retrieve the data.'''
def __init__(self, strokes=None, numpoints=16, **kwargs):
self.skip_invariant = kwargs.get('skip_invariant', False)
self.skip_bounded = kwargs.get('skip_bounded', False)
self.numpoints = numpoints
self.db = {}
self.strokes = []
if not strokes is None:
self.strokes = strokes
def add_stroke(self, stroke):
'''Add a stroke to the candidate; this will invalidate all
previously computed vectors'''
self.points.append(stroke)
self.db = {}
# Used to lazily prepare the candidate
def _get_db_key(self, key, numpoints, orientation_sens):
n = numpoints and numpoints or self.numpoints
if n not in self.db:
self.prepare(n)
prefix = orientation_sens and 'bound_' or 'inv_'
return self.db[n][prefix + key]
def get_start_unit_vector(self, numpoints, orientation_sens):
'''(Internal use only) Get the start vector for this Candidate,
with the path resampled to `numpoints` points. This is the first
step in the matching process. It is compared to a
UnistrokeTemplate object's start vector to determine angle
similarity.'''
return self._get_db_key('startvector', numpoints, orientation_sens)
def get_protractor_vector(self, numpoints, orientation_sens):
'''(Internal use only) Return vector for comparing to a
UnistrokeTemplate with Protractor'''
return self._get_db_key('vector', numpoints, orientation_sens)
def get_angle_similarity(self, tpl, **kwargs):
'''(Internal use only) Compute the angle similarity between this
Candidate and a UnistrokeTemplate object. Returns a number that
represents the angle similarity (lower is more similar).'''
n = kwargs.get('numpoints', self.numpoints)
# angle_between_unit_vectors() inlined here for performance
v1x, v1y = self.get_start_unit_vector(n, tpl.orientation_sens)
v2x, v2y = tpl.get_start_unit_vector(n)
n = (v1x * v2x + v1y * v2y)
# FIXME: Domain error on float representation of 1.0 (exact match)
# (see comments in MultistrokeGesture.get_distance())
if n >= 1:
return 0.0
if n <= -1:
return pi
return acos(n)
def prepare(self, numpoints=None):
'''Prepare the Candidate vectors. self.strokes is combined to a single
unistroke (connected end-to-end), resampled to :attr:`numpoints` points,
and then the vectors are calculated and stored in self.db (for use by
`get_distance` and `get_angle_similarity`)'''
n = numpoints and numpoints or self.numpoints
# Inlined combine_strokes() for performance
points = [i for sub in self.strokes for i in sub]
points = resample(points, n)
radians = indicative_angle(points)
points = rotate_by(points, -radians)
points = scale_dim(points, SQUARESIZE, ONEDTHRESHOLD)
# Compute STARTANGLEINDEX as n / 8
angidx = n / 8
cand = {}
# full rotation invariance
if not self.skip_invariant:
inv_points = translate_to(points, ORIGIN)
cand['inv_startvector'] = start_unit_vector(inv_points, angidx)
cand['inv_vector'] = vectorize(inv_points, False)
# rotation bounded invariance
if not self.skip_bounded:
bound_points = rotate_by(points, +radians) # restore
bound_points = translate_to(bound_points, ORIGIN)
cand['bound_startvector'] = start_unit_vector(bound_points, angidx)
cand['bound_vector'] = vectorize(bound_points, True)
self.db[n] = cand
# -----------------------------------------------------------------------------
# Helper functions from this point on. This is all directly related to the
# recognition algorithm, and is almost 100% transcription from the JavaScript
# -----------------------------------------------------------------------------
def resample(points, n):
# Resample a path to `n` points
if not len(points) or not n or n < 2:
raise MultistrokeError('resample() called with invalid arguments')
interval = path_length(points) / (n - 1)
D = 0.0
i = 1
newpoints = [points[0]]
workpoints = points[:]
newpoints_len = 1
workpoints_len = len(points)
new_append = newpoints.append
work_insert = workpoints.insert
while i < len(workpoints):
p1 = workpoints[i - 1]
p2 = workpoints[i]
d = distance(p1, p2)
if D + d >= interval:
qx = p1[0] + ((interval - D) / d) * (p2[0] - p1[0])
qy = p1[1] + ((interval - D) / d) * (p2[1] - p1[1])
q = Vector(qx, qy)
new_append(q)
work_insert(i, q) # q is the next i
newpoints_len += 1
workpoints_len += 1
D = 0.0
else:
D += d
i += 1
# rounding error; insert the last point
if newpoints_len < n:
new_append(points[-1])
return newpoints
def indicative_angle(points):
cx, cy = centroid(points)
return atan2(cy - points[0][1], cx - points[0][0])
def rotate_by(points, radians):
# Rotate points around centroid
cx, cy = centroid(points)
cos = math_cos(radians)
sin = math_sin(radians)
newpoints = []
newpoints_append = newpoints.append
for i in xrange(0, len(points)):
qx = (points[i][0] - cx) * cos - (points[i][1] - cy) * sin + cx
qy = (points[i][0] - cx) * sin + (points[i][1] - cy) * cos + cy
newpoints_append(Vector(qx, qy))
return newpoints
def scale_dim(points, size, oneDratio):
bbox_x, bbox_y, bbox_w, bbox_h = bounding_box(points)
if bbox_h == 0 or bbox_w == 0:
raise MultistrokeError('scale_dim() called with invalid points')
# 1D or 2D gesture test
uniformly = min(bbox_w / bbox_h, bbox_h / bbox_w) <= oneDratio
if uniformly:
qx_size = size / max(bbox_w, bbox_h)
qy_size = size / max(bbox_w, bbox_h)
else:
qx_size = size / bbox_w
qy_size = size / bbox_h
newpoints = []
newpoints_append = newpoints.append
for p in points:
qx = p[0] * qx_size
qy = p[1] * qy_size
newpoints_append(Vector(qx, qy))
return newpoints
def translate_to(points, pt):
# Translate points around centroid
cx, cy = centroid(points)
ptx, pty = pt
newpoints = []
for p in points:
qx = p[0] + ptx - cx
qy = p[1] + pty - cy
newpoints.append(Vector(qx, qy))
return newpoints
def vectorize(points, use_bounded_rotation_invariance):
# Helper function for the Protractor algorithm
cos = 1.0
sin = 0.0
if use_bounded_rotation_invariance:
ang = atan2(points[0][1], points[0][0])
bo = (pi / 4.) * floor((ang + pi / 8.) / (pi / 4.))
cos = math_cos(bo - ang)
sin = math_sin(bo - ang)
sum = 0.0
vector = []
vector_len = 0
vector_append = vector.append
for px, py in points:
newx = px * cos - py * sin
newy = py * cos + px * sin
vector_append(newx)
vector_append(newy)
vector_len += 2
sum += newx ** 2 + newy ** 2
magnitude = sqrt(sum)
for i in xrange(0, vector_len):
vector[i] /= magnitude
return vector
def centroid(points):
x = 0.0
y = 0.0
points_len = len(points)
for i in xrange(0, points_len):
x += points[i][0]
y += points[i][1]
x /= points_len
y /= points_len
return Vector(x, y)
def bounding_box(points):
minx = float('infinity')
miny = float('infinity')
maxx = float('-infinity')
maxy = float('-infinity')
for px, py in points:
if px < minx:
minx = px
if px > maxx:
maxx = px
if py < miny:
miny = py
if py > maxy:
maxy = py
return (minx, miny, maxx - minx, maxy - miny)
def path_length(points):
d = 0.0
for i in xrange(1, len(points)):
d += distance(points[i - 1], points[i])
return d
def distance(p1, p2):
dx = p2[0] - p1[0]
dy = p2[1] - p1[1]
return sqrt(dx ** 2 + dy ** 2)
def start_unit_vector(points, index):
i = int(index)
vx, vy = points[i][0] - points[0][0], points[i][1] - points[0][1]
length = sqrt(vx ** 2 + vy ** 2)
return Vector(vx / length, vy / length)
|