/usr/lib/python3-escript-mpi/esys/downunder/seismic.py is in python3-escript-mpi 5.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | ##############################################################################
#
# Copyright (c) 2003-2017 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2017 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
__all__ = ['SimpleSEGYWriter', 'Ricker', 'WaveBase', 'SonicWave', 'VTIWave',
'HTIWave', 'createAbsorbtionLayerFunction', 'createAbsorbtionLayerFunction',
'SonicHTIWave' , "TTIWave"]
from math import pi
import numpy as np
import sys
import time
from esys.escript import *
import esys.escript.unitsSI as U
from esys.escript.linearPDEs import LinearSinglePDE, LinearPDESystem, WavePDE, SolverOptions
OBSPY_AVAILABLE = False
try:
from obspy import Trace, Stream, UTCDateTime
try:
# new interface
from obspy.io.segy.segy import SEGYTraceHeader, SEGYBinaryFileHeader
except:
from obspy.segy.segy import SEGYTraceHeader, SEGYBinaryFileHeader
from obspy.core import AttribDict
OBSPY_AVAILABLE = True
except:
pass
class Wavelet(object):
"""
place holder for source wavelet
"""
pass
class Ricker(Wavelet):
"""
The Ricker Wavelet w=f(t)
"""
def __init__(self, f_dom=40, t_dom=None):
"""
Sets up a Ricker wavelet wih dominant frequence `f_dom` and
center at time `t_dom`. If `t_dom` is not given an estimate
for suitable `t_dom` is calculated so f(0)~0.
:note: maximum frequence is about 2 x the dominant frequence.
"""
drop=18
self.__f=f_dom
self.__f_max=sqrt(7)*f_dom
self.__s=pi*self.__f
if t_dom == None:
t_dom=sqrt(drop)/self.__s
self.__t0=t_dom
def getCenter(self):
"""
Return value of wavelet center
"""
return self.__t0
def getTimeScale(self):
"""
Returns the time scale which is the inverse of the largest
frequence with a significant spectral component.
"""
return 1/self.__f_max
def getValue(self, t):
"""
get value of wavelet at time `t`
"""
e2=(self.__s*(t-self.__t0))**2
return (1-2*e2)*exp(-e2)
def getVelocity(self, t):
"""
get the velocity f'(t) at time `t`
"""
e2=(self.__s*(t-self.__t0))**2
return (-3+2*e2)*exp(-e2)*2*self.__s**2*(t-self.__t0)
def getAcceleration(self, t):
"""
get the acceleration f''(t) at time `t`
"""
e2=(self.__s*(t-self.__t0))**2
return 2*self.__s**2*(-4*e2**2 + 12*e2 - 3)*exp(-e2)
class SimpleSEGYWriter(object):
"""
A simple writer for 2D and 3D seismic lines, in particular for synthetic data
Typical usage::
from esys.escript import unitsSI as U
sw=SimpleSEGYWriter([0.,100*U.m,200*U,m,300.], source=200*U.m, sampling_interval=4*U.msec)
while n < 10:
sw.addRecord([i*2., i*0.67, i**2, -i*7])
sw.write('example.segy')
:note: the writer uses `obspy`
"""
COORDINATE_SCALE = 1000.
def __init__(self, receiver_group=None, source=0., sampling_interval=4*U.msec, text="some seimic data"):
"""
initalize writer
:param receiver_group: list of receiver coordinates (in meters). For the 2D case a list of floats is given, for the 3D case a list of coordinate tuples
are given
:param source: coordinates of the source (in meters). For the 2D case a single floats is given, for the 3D case a coordinate tuples
:param sampling_interval: sample rate in seconds
:param text: a text for the header file (e.g a description)
"""
if isinstance(source, float) or isinstance(source, int) :
DIM=1
source = (source, 0.)
elif hasattr(source, '__len__'):
DIM=len(source)
if DIM == 1:
source = (source[0], 0.)
elif DIM==2:
source = (source[0], source[1] )
else:
raise ValueError("Only 1D or 2D arrays accepted.")
else:
raise TypeError("illegal source type.")
if receiver_group== None:
if DIM == 1:
receiver_group=[0.]
else:
receiver_group=[(0.,0.)]
if isinstance(receiver_group, float) or isinstance(receiver_group, int) :
if DIM == 1:
rg = [ (receiver_group, 0. ) ]
else:
raise TypeError("illegal receiver_group type.")
elif hasattr(receiver_group, '__len__'):
if DIM == 1:
rg = [(c,0) for c in receiver_group]
else:
rg = [(c[0],c[1]) for c in receiver_group]
else:
raise TypeError("illegal receiver_group type.")
self.__source=source
self.__receiver_group=rg
self.__text=text
self.__trace = [ [] for i in self.__receiver_group ]
self.__sampling_interval = sampling_interval
def addRecord(self, record):
"""
Adds a record to the traces. A time difference of sample_interval between two records is assumed.
The record mast be a list of as many values as given receivers or a float if a single receiver is used.
:param record: list of tracks to be added to the record.
"""
if not len(self.__receiver_group) == len(record):
raise ValueError("expected number of records is %s but %s given."%(len(self.__receiver_group), len(record)))
if len(self.__receiver_group) == 1:
if isinstance(self.__receiver_group, float) or isinstance(self.__receiver_group, int):
self.__trace[0].append(record)
else:
self.__trace[0].append(record[0])
else:
for i in range(len(record)):
self.__trace[i].append(record[i])
def getSamplingInterval(self):
"""
returns the sampling interval in seconds.
"""
return self.__sampling_interval
def obspy_available(self):
"""
for checking if the obspy module is available
"""
return OBSPY_AVAILABLE
def write(self, filename):
"""
writes to segy file
:param filename: file name
:note: the function uses the `obspy` module.
"""
if not OBSPY_AVAILABLE:
raise RuntimeError("This feature (SimpleSEGYWriter.write())"+\
" depends on obspy, which is not installed, see "+\
"https://github.com/obspy/obspy for install guide")
if getMPISizeWorld() > 1:
raise RuntimeError("Writing segy files with multiple ranks is"+\
" not yet supported.")
stream=Stream()
for i in range(len(self.__receiver_group)):
trace = Trace(data=np.array(self.__trace[i], dtype='float32'))
# Attributes in trace.stats will overwrite everything in
# trace.stats.segy.trace_header (in Hz)
trace.stats.sampling_rate = 1./self.getSamplingInterval()
#trace.stats.starttime = UTCDateTime(2011,11,11,0,0,0)
if not hasattr(trace.stats, 'segy.trace_header'):
trace.stats.segy = {}
trace.stats.segy.trace_header = SEGYTraceHeader()
trace.stats.segy.trace_header.trace_identification_code=1
trace.stats.segy.trace_header.trace_sequence_number_within_line = i + 1
trace.stats.segy.trace_header.scalar_to_be_applied_to_all_coordinates = -int(self.COORDINATE_SCALE)
trace.stats.segy.trace_header.coordinate_units=1
trace.stats.segy.trace_header.source_coordinate_x=int(self.__source[0] * self.COORDINATE_SCALE)
trace.stats.segy.trace_header.source_coordinate_y=int(self.__source[1] * self.COORDINATE_SCALE)
trace.stats.segy.trace_header.group_coordinate_x=int(self.__receiver_group[i][0] * self.COORDINATE_SCALE)
trace.stats.segy.trace_header.group_coordinate_y=int(self.__receiver_group[i][1] * self.COORDINATE_SCALE)
# Add trace to stream
stream.append(trace)
# A SEGY file has file wide headers. This can be attached to the stream
# object. If these are not set, they will be autocreated with default
# values.
stream.stats = AttribDict()
stream.stats.textual_file_header = 'C.. '+self.__text+'\nC.. with esys.escript.downunder r%s\nC.. %s'%(getVersion(),time.asctime())
stream.stats.binary_file_header = SEGYBinaryFileHeader()
if getMPIRankWorld()<1:
stream.write(filename, format="SEGY", data_encoding=1,byteorder=sys.byteorder)
class WaveBase(object):
"""
Base for wave propagation using the Verlet scheme.
``u_tt = A(t,u), u(t=t0)=u0, u_t(t=t0)=v0``
with a given acceleration force as function of time.
a_n=A(t_{n-1})
v_n=v_{n-1} + dt * a_n
u_n=u_{n-1} + dt * v_n
"""
def __init__(self, dt, u0, v0, t0=0.):
"""
set up the wave base
:param dt: time step size (need to be sufficiently small)
:param u0: initial value
:param v0: initial velocity
:param t0: initial time
"""
self.u=u0
self.v=v0
self.t=t0
self.n=0
self.t_last=t0
self.__dt=dt
def getTimeStepSize(self):
return self.__dt
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time `t` and solution `u` at time `t`
: note: this function needs to be overwritten by a particular wave problem
"""
pass
def update(self, t):
"""
returns the solution for the next time marker t which needs to greater than the time marker from the
previous call.
"""
if not self.t_last <= t:
raise ValueError("You can not move backward in time.")
dt = self.getTimeStepSize()
# apply Verlet scheme until
while self.t < t:
a=self._getAcceleration(self.t, self.u)
self.v += dt * a
self.u += dt * self.v
self.t += dt
self.n += 1
# now we work backwards
self.t_last=t
return t, self.u + self.v * (t-self.t)
def createAbsorbtionLayerFunction(x, absorption_zone=300*U.m,
absorption_cut=1.e-2, top_absorption=False, top_absorbation=None):
print("WARNING: createAbsorbtionLayerFunction(): function is deprecated, use createAbsorptionLayerFunction")
def createAbsorptionLayerFunction(x, absorption_zone=300*U.m,
absorption_cut=1.e-2, top_absorption=False, top_absorbation=None):
"""
Creates a distribution which is one in the interior of the domain of `x`
and is falling down to the value 'absorption_cut' over a margin of thickness 'absorption_zone'
toward each boundary except the top of the domain.
:param x: location of points in the domain
:type x: `Data`
:param absorption_zone: thickness of the absorption zone
:param absorption_cut: value of decay function on domain boundary
:return: function on 'x' which is one in the iterior and decays to almost zero over a margin
toward the boundary.
"""
if top_absorbation is not None:
print("WARNING: createAbsorptionLayerFunction(): top_absorbation is deprecated, use top_absorption")
if top_absorption is False:
top_absorption = top_absorbation
if absorption_zone is None or absorption_zone == 0:
return 1
dom=x.getDomain()
bb=boundingBox(dom)
DIM=dom.getDim()
decay=-log(absorption_cut)/absorption_zone**2
f=1
for i in range(DIM):
x_i=x[i]
x_l=x_i-(bb[i][0]+absorption_zone)
m_l=whereNegative(x_l)
f=f*( (exp(-decay*(x_l*m_l)**2)-1) * m_l+1 )
if top_absorption or not DIM-1 == i:
x_r=(bb[i][1]-absorption_zone)-x_i
m_r=whereNegative(x_r)
f=f*( (exp(-decay*(x_r*m_r)**2)-1) * m_r+1 )
return f
class SonicWave(WaveBase):
"""
Solving the sonic wave equation
`p_tt = (v_p**2 * p_i)_i + f(t) * delta_s` where (p-) velocity v_p.
f(t) is wavelet acting at a point source term at positon s
"""
def __init__(self, domain, v_p, wavelet, source_tag, dt=None, p0=None, p0_t=None, absorption_zone=300*U.m, absorption_cut=1e-2, lumping=True):
"""
initialize the sonic wave solver
:param domain: domain of the problem
:type domain: `Domain`
:param v_p: p-velocity field
:type v_p: `Scalar`
:param wavelet: wavelet to describe the time evolution of source term
:type wavelet: `Wavelet`
:param source_tag: tag of the source location
:type source_tag: 'str' or 'int'
:param dt: time step size. If not present a suitable time step size is calculated.
:param p0: initial solution. If not present zero is used.
:param p0_t: initial solution change rate. If not present zero is used.
:param absorption_zone: thickness of absorption zone
:param absorption_cut: boundary value of absorption decay factor
:param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
"""
f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)
v_p=v_p*f
if p0 == None:
p0=Scalar(0.,Solution(domain))
else:
p0=interpolate(p0, Solution(domain ))
if p0_t == None:
p0_t=Scalar(0.,Solution(domain))
else:
p0_t=interpolate(p0_t, Solution(domain ))
if dt == None:
dt=min(inf((1./5.)*domain.getSize()/v_p), wavelet.getTimeScale())
super(SonicWave, self).__init__( dt, u0=p0, v0=p0_t, t0=0.)
self.__wavelet=wavelet
self.__mypde=LinearSinglePDE(domain)
if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
self.__mypde.setSymmetryOn()
self.__mypde.setValue(D=1./v_p**2)
self.__source_tag=source_tag
self.__r=Scalar(0., DiracDeltaFunctions(self.__mypde.getDomain()))
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time t and solution u at time t
"""
self.__r.setTaggedValue(self.__source_tag, self.__wavelet.getValue(t))
self.__mypde.setValue(X=-grad(u,Function(self.__mypde.getDomain())), y_dirac= self.__r)
return self.__mypde.getSolution()
class VTIWave(WaveBase):
"""
Solving the VTI wave equation
:note: In case of a two dimensional domain the second spatial dimenion is depth.
"""
def __init__(self, domain, v_p, v_s, wavelet, source_tag,
source_vector = [0.,0.,1.], eps=0., gamma=0., delta=0., rho=1.,
dt=None, u0=None, v0=None, absorption_zone=None,
absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False):
"""
initialize the VTI wave solver
:param domain: domain of the problem
:type domain: `Domain`
:param v_p: vertical p-velocity field
:type v_p: `Scalar`
:param v_s: vertical s-velocity field
:type v_s: `Scalar`
:param wavelet: wavelet to describe the time evolution of source term
:type wavelet: `Wavelet`
:param source_tag: tag of the source location
:type source_tag: 'str' or 'int'
:param source_vector: source orientation vector
:param eps: first Thompsen parameter
:param delta: second Thompsen parameter
:param gamma: third Thompsen parameter
:param rho: density
:param dt: time step size. If not present a suitable time step size is calculated.
:param u0: initial solution. If not present zero is used.
:param v0: initial solution change rate. If not present zero is used.
:param absorption_zone: thickness of absorption zone
:param absorption_cut: boundary value of absorption decay factor
:param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
:param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
:type disable_fast_assemblers: `boolean`
"""
DIM=domain.getDim()
self.fastAssembler = hasattr(domain, "createAssembler") and not disable_fast_assemblers
f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)
f = interpolate(f, Function(domain))
v_p=v_p*f
v_s=v_s*f
if u0 == None:
u0=Vector(0.,Solution(domain))
else:
u0=interpolate(p0, Solution(domain ))
if v0 == None:
v0=Vector(0.,Solution(domain))
else:
v0=interpolate(v0, Solution(domain ))
if dt == None:
dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())
super(VTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)
self.__wavelet=wavelet
self.c33=v_p**2 * rho
self.c44=v_s**2 * rho
self.c11=(1+2*eps) * self.c33
self.c66=(1+2*gamma) * self.c44
self.c13=sqrt(2*self.c33*(self.c33-self.c44) * delta + (self.c33-self.c44)**2)-self.c44
self.c12=self.c11-2*self.c66
if self.fastAssembler:
C = [("c11", self.c11),
("c12", self.c12), ("c13", self.c13), ("c33", self.c33),
("c44", self.c44), ("c66", self.c66)]
if "speckley" in domain.getDescription().lower():
C = [(n, interpolate(d, ReducedFunction(domain))) for n,d in C]
self.__mypde=WavePDE(domain, C)
else:
self.__mypde=LinearPDESystem(domain)
self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))
if lumping:
self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
self.__mypde.setSymmetryOn()
self.__mypde.setValue(D=rho*kronecker(DIM))
self.__source_tag=source_tag
if DIM ==2 :
source_vector= [source_vector[0],source_vector[2]]
self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
self.__r.setTaggedValue(self.__source_tag, source_vector)
def setQ(self,q):
"""
sets the PDE q value
:param q: the value to set
"""
self.__mypde.setValue(q=q)
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time `t` and solution `u` at time `t`
"""
du = grad(u)
if not self.fastAssembler:
sigma=self.__mypde.getCoefficient('X')
if self.__mypde.getDim() == 3:
e11=du[0,0]
e22=du[1,1]
e33=du[2,2]
sigma[0,0]=self.c11*e11+self.c12*e22+self.c13*e33
sigma[1,1]=self.c12*e11+self.c11*e22+self.c13*e33
sigma[2,2]=self.c13*(e11+e22)+self.c33*e33
s=self.c44*(du[2,1]+du[1,2])
sigma[1,2]=s
sigma[2,1]=s
s=self.c44*(du[2,0]+du[0,2])
sigma[0,2]=s
sigma[2,0]=s
s=self.c66*(du[0,1]+du[1,0])
sigma[0,1]=s
sigma[1,0]=s
else:
e11=du[0,0]
e22=du[1,1]
sigma[0,0]=self.c11*e11+self.c13*e22
sigma[1,1]=self.c13*e11+self.c33*e22
s=self.c44*(du[1,0]+du[0,1])
sigma[0,1]=s
sigma[1,0]=s
self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
else:
self.__mypde.setValue(du=du, y_dirac= self.__r * self.__wavelet.getValue(t))
return self.__mypde.getSolution()
class HTIWave(WaveBase):
"""
Solving the HTI wave equation (along the x_0 axis)
:note: In case of a two dimensional domain a horizontal domain is considered, i.e. the depth component is dropped.
"""
def __init__(self, domain, v_p, v_s, wavelet, source_tag,
source_vector = [1.,0.,0.], eps=0., gamma=0., delta=0., rho=1.,
dt=None, u0=None, v0=None, absorption_zone=None,
absorption_cut=1e-2, lumping=True, disable_fast_assemblers=False):
"""
initialize the VTI wave solver
:param domain: domain of the problem
:type domain: `Domain`
:param v_p: vertical p-velocity field
:type v_p: `Scalar`
:param v_s: vertical s-velocity field
:type v_s: `Scalar`
:param wavelet: wavelet to describe the time evolution of source term
:type wavelet: `Wavelet`
:param source_tag: tag of the source location
:type source_tag: 'str' or 'int'
:param source_vector: source orientation vector
:param eps: first Thompsen parameter
:param delta: second Thompsen parameter
:param gamma: third Thompsen parameter
:param rho: density
:param dt: time step size. If not present a suitable time step size is calculated.
:param u0: initial solution. If not present zero is used.
:param v0: initial solution change rate. If not present zero is used.
:param absorption_zone: thickness of absorption zone
:param absorption_cut: boundary value of absorption decay factor
:param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
:param disable_fast_assemblers: if True, forces use of slower and more general PDE assemblers
"""
DIM=domain.getDim()
self.fastAssembler = hasattr(domain, "createAssembler") and not disable_fast_assemblers
f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)
v_p=v_p*f
v_s=v_s*f
if u0 == None:
u0=Vector(0.,Solution(domain))
else:
u0=interpolate(p0, Solution(domain ))
if v0 == None:
v0=Vector(0.,Solution(domain))
else:
v0=interpolate(v0, Solution(domain ))
if dt == None:
dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())
super(HTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)
self.__wavelet=wavelet
self.c33 = v_p**2 * rho
self.c44 = v_s**2 * rho
self.c11 = (1+2*eps) * self.c33
self.c66 = (1+2*gamma) * self.c44
self.c13 = sqrt(2*self.c33*(self.c33-self.c44) * delta + (self.c33-self.c44)**2)-self.c44
self.c23 = self.c33-2*self.c66
if self.fastAssembler:
C = [("c11", self.c11),
("c23", self.c23), ("c13", self.c13), ("c33", self.c33),
("c44", self.c44), ("c66", self.c66)]
if "speckley" in domain.getDescription().lower():
C = [(n, interpolate(d, ReducedFunction(domain))) for n,d in C]
self.__mypde=WavePDE(domain, C)
else:
self.__mypde=LinearPDESystem(domain)
self.__mypde.setValue(X=self.__mypde.createCoefficient('X'))
if lumping:
self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
self.__mypde.setSymmetryOn()
self.__mypde.setValue(D=rho*kronecker(DIM))
self.__source_tag=source_tag
if DIM == 2:
source_vector= [source_vector[0],source_vector[2]]
self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
self.__r.setTaggedValue(self.__source_tag, source_vector)
def setQ(self,q):
"""
sets the PDE q value
:param q: the value to set
"""
self.__mypde.setValue(q=q)
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time `t` and solution `u` at time `t`
"""
du = grad(u)
if self.fastAssembler:
self.__mypde.setValue(du=du, y_dirac= self.__r * self.__wavelet.getValue(t))
else:
sigma=self.__mypde.getCoefficient('X')
if self.__mypde.getDim() == 3:
e11=du[0,0]
e22=du[1,1]
e33=du[2,2]
sigma[0,0]=self.c11*e11+self.c13*(e22+e33)
sigma[1,1]=self.c13*e11+self.c33*e22+self.c23*e33
sigma[2,2]=self.c13*e11+self.c23*e22+self.c33*e33
s=self.c44*(du[2,1]+du[1,2])
sigma[1,2]=s
sigma[2,1]=s
s=self.c66*(du[2,0]+du[0,2])
sigma[0,2]=s
sigma[2,0]=s
s=self.c66*(du[0,1]+du[1,0])
sigma[0,1]=s
sigma[1,0]=s
else:
e11=du[0,0]
e22=du[1,1]
sigma[0,0]=self.c11*e11+self.c13*e22
sigma[1,1]=self.c13*e11+self.c33*e22
s=self.c66*(du[1,0]+du[0,1])
sigma[0,1]=s
sigma[1,0]=s
self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
return self.__mypde.getSolution()
class TTIWave(WaveBase):
"""
Solving the 2D TTI wave equation with
`sigma_xx= c11*e_xx + c13*e_zz + c15*e_xz`
`sigma_zz= c13*e_xx + c33*e_zz + c35*e_xz`
`sigma_xz= c15*e_xx + c35*e_zz + c55*e_xz`
the coefficients `c11`, `c13`, etc are calculated from the tompsen parameters `eps`, `delta` and the tilt `theta`
:note: currently only the 2D case is supported.
"""
def __init__(self, domain, v_p, v_s, wavelet, source_tag,
source_vector = [0.,1.], eps=0., delta=0., theta=0., rho=1.,
dt=None, u0=None, v0=None, absorption_zone=300*U.m,
absorption_cut=1e-2, lumping=True):
"""
initialize the TTI wave solver
:param domain: domain of the problem
:type domain: `Domain`
:param v_p: vertical p-velocity field
:type v_p: `Scalar`
:param v_s: vertical s-velocity field
:type v_s: `Scalar`
:param wavelet: wavelet to describe the time evolution of source term
:type wavelet: `Wavelet`
:param source_tag: tag of the source location
:type source_tag: 'str' or 'int'
:param source_vector: source orientation vector
:param eps: first Thompsen parameter
:param delta: second Thompsen parameter
:param theta: tilting (in Rad)
:param rho: density
:param dt: time step size. If not present a suitable time step size is calculated.
:param u0: initial solution. If not present zero is used.
:param v0: initial solution change rate. If not present zero is used.
:param absorption_zone: thickness of absorption zone
:param absorption_cut: boundary value of absorption decay factor
:param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
"""
DIM=domain.getDim()
if not DIM == 2:
raise ValueError("Only 2D is supported.")
f=createAbsorptionLayerFunction(Function(domain).getX(), absorption_zone, absorption_cut)
v_p=v_p*f
v_s=v_s*f
if u0 == None:
u0=Vector(0.,Solution(domain))
else:
u0=interpolate(p0, Solution(domain ))
if v0 == None:
v0=Vector(0.,Solution(domain))
else:
v0=interpolate(v0, Solution(domain ))
if dt == None:
dt=min((1./5.)*min(inf(domain.getSize()/v_p), inf(domain.getSize()/v_s)), wavelet.getTimeScale())
super(TTIWave, self).__init__( dt, u0=u0, v0=v0, t0=0.)
self.__wavelet=wavelet
self.__mypde=LinearPDESystem(domain)
if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
self.__mypde.setSymmetryOn()
self.__mypde.setValue(D=rho*kronecker(DIM), X=self.__mypde.createCoefficient('X'))
self.__source_tag=source_tag
self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
self.__r.setTaggedValue(self.__source_tag, source_vector)
c0_33=v_p**2 * rho
c0_66=v_s**2 * rho
c0_11=(1+2*eps) * c0_33
c0_13=sqrt(2*c0_33*(c0_33-c0_66) * delta + (c0_33-c0_66)**2)-c0_66
self.c11= c0_11*cos(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*sin(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
self.c13= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + c0_13*sin(theta)**4 + c0_13*cos(theta)**4 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + 4*c0_66*cos(theta)**4 - 4*c0_66*cos(theta)**2
self.c16= (-2*c0_11*cos(theta)**2 - 4*c0_13*sin(theta)**2 + 2*c0_13 + 2*c0_33*sin(theta)**2 - 8*c0_66*sin(theta)**2 + 4*c0_66)*sin(theta)*cos(theta)/2
self.c33= c0_11*sin(theta)**4 - 2*c0_13*cos(theta)**4 + 2*c0_13*cos(theta)**2 + c0_33*cos(theta)**4 - 4*c0_66*cos(theta)**4 + 4*c0_66*cos(theta)**2
self.c36= (2*c0_11*cos(theta)**2 - 2*c0_11 + 4*c0_13*sin(theta)**2 - 2*c0_13 + 2*c0_33*cos(theta)**2 + 8*c0_66*sin(theta)**2 - 4*c0_66)*sin(theta)*cos(theta)/2
self.c66= -c0_11*cos(theta)**4 + c0_11*cos(theta)**2 + 2*c0_13*cos(theta)**4 - 2*c0_13*cos(theta)**2 - c0_33*cos(theta)**4 + c0_33*cos(theta)**2 + c0_66*sin(theta)**4 + 3*c0_66*cos(theta)**4 - 2*c0_66*cos(theta)**2
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time `t` and solution `u` at time `t`
"""
du = grad(u)
sigma=self.__mypde.getCoefficient('X')
e_xx=du[0,0]
e_zz=du[1,1]
e_xz=du[0,1]+du[1,0]
sigma[0,0]= self.c11 * e_xx + self.c13 * e_zz + self.c16 * e_xz
sigma[1,1]= self.c13 * e_xx + self.c33 * e_zz + self.c36 * e_xz
sigma_xz = self.c16 * e_xx + self.c36 * e_zz + self.c66 * e_xz
sigma[0,1]=sigma_xz
sigma[1,0]=sigma_xz
self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
return self.__mypde.getSolution()
class SonicHTIWave(WaveBase):
"""
Solving the HTI wave equation (along the x_0 axis) with azimuth (rotation around verticle axis)
under the assumption of zero shear wave velocities
The unknowns are the transversal (along x_0) and vertial stress (Q, P)
:note: In case of a two dimensional domain the second spatial dimenion is depth.
"""
def __init__(self, domain, v_p, wavelet, source_tag, source_vector = [1.,0.], eps=0., delta=0., azimuth=0.,
dt=None, p0=None, v0=None, absorption_zone=300*U.m, absorption_cut=1e-2, lumping=True):
"""
initialize the HTI wave solver
:param domain: domain of the problem
:type domain: `Doamin`
:param v_p: vertical p-velocity field
:type v_p: `Scalar`
:param v_s: vertical s-velocity field
:type v_s: `Scalar`
:param wavelet: wavelet to describe the time evolution of source term
:type wavelet: `Wavelet`
:param source_tag: tag of the source location
:type source_tag: 'str' or 'int'
:param source_vector: source orientation vector
:param eps: first Thompsen parameter
:param azimuth: azimuth (rotation around verticle axis)
:param gamma: third Thompsen parameter
:param rho: density
:param dt: time step size. If not present a suitable time step size is calculated.
:param p0: initial solution (Q(t=0), P(t=0)). If not present zero is used.
:param v0: initial solution change rate. If not present zero is used.
:param absorption_zone: thickness of absorption zone
:param absorption_cut: boundary value of absorption decay factor
:param lumping: if True mass matrix lumping is being used. This is accelerates the computing but introduces some diffusion.
"""
DIM=domain.getDim()
f=createAbsorptionLayerFunction(v_p.getFunctionSpace().getX(), absorption_zone, absorption_cut)
self.v2_p=v_p**2
self.v2_t=self.v2_p*sqrt(1+2*delta)
self.v2_n=self.v2_p*(1+2*eps)
if p0 == None:
p0=Data(0.,(2,),Solution(domain))
else:
p0=interpolate(p0, Solution(domain ))
if v0 == None:
v0=Data(0.,(2,),Solution(domain))
else:
v0=interpolate(v0, Solution(domain ))
if dt == None:
dt=min(min(inf(domain.getSize()/sqrt(self.v2_p)), inf(domain.getSize()/sqrt(self.v2_t)), inf(domain.getSize()/sqrt(self.v2_n))) , wavelet.getTimeScale())*0.2
super(SonicHTIWave, self).__init__( dt, u0=p0, v0=v0, t0=0.)
self.__wavelet=wavelet
self.__mypde=LinearPDESystem(domain)
if lumping: self.__mypde.getSolverOptions().setSolverMethod(SolverOptions.HRZ_LUMPING)
self.__mypde.setSymmetryOn()
self.__mypde.setValue(D=kronecker(2), X=self.__mypde.createCoefficient('X'))
self.__source_tag=source_tag
self.__r=Vector(0, DiracDeltaFunctions(self.__mypde.getDomain()))
self.__r.setTaggedValue(self.__source_tag, source_vector)
def _getAcceleration(self, t, u):
"""
returns the acceleraton for time `t` and solution `u` at time `t`
"""
dQ = grad(u[0])[0]
dP = grad(u[1])[1:]
sigma=self.__mypde.getCoefficient('X')
sigma[0,0] = self.v2_n*dQ
sigma[0,1:] = self.v2_t*dP
sigma[1,0] = self.v2_t*dQ
sigma[1,1:] = self.v2_p*dP
self.__mypde.setValue(X=-sigma, y_dirac= self.__r * self.__wavelet.getValue(t))
return self.__mypde.getSolution()
|