/usr/lib/python3-escript-mpi/esys/downunder/minimizers.py is in python3-escript-mpi 5.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | ##############################################################################
#
# Copyright (c) 2003-2017 by The University of Queensland
# http://www.uq.edu.au
#
# Primary Business: Queensland, Australia
# Licensed under the Apache License, version 2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Development until 2012 by Earth Systems Science Computational Center (ESSCC)
# Development 2012-2013 by School of Earth Sciences
# Development from 2014 by Centre for Geoscience Computing (GeoComp)
#
##############################################################################
"""Generic minimization algorithms"""
from __future__ import print_function, division
__copyright__="""Copyright (c) 2003-2017 by The University of Queensland
http://www.uq.edu.au
Primary Business: Queensland, Australia"""
__license__="""Licensed under the Apache License, version 2.0
http://www.apache.org/licenses/LICENSE-2.0"""
__url__="https://launchpad.net/escript-finley"
__all__ = ['MinimizerException', 'MinimizerIterationIncurableBreakDown',\
'MinimizerMaxIterReached' , 'AbstractMinimizer', 'MinimizerLBFGS',
'MinimizerBFGS', 'MinimizerNLCG']
import logging
import numpy as np
try:
from esys.escript import Lsup, sqrt, EPSILON
except:
Lsup=lambda x: np.amax(abs(x))
sqrt=np.sqrt
EPSILON=1e-18
lslogger=logging.getLogger('inv.minimizer.linesearch')
zoomlogger=logging.getLogger('inv.minimizer.linesearch.zoom')
class MinimizerException(Exception):
"""
This is a generic exception thrown by a minimizer.
"""
pass
class MinimizerMaxIterReached(MinimizerException):
"""
Exception thrown if the maximum number of iteration steps is reached.
"""
pass
class MinimizerIterationIncurableBreakDown(MinimizerException):
"""
Exception thrown if the iteration scheme encountered an incurable
breakdown.
"""
pass
def _zoom(phi, gradphi, phiargs, alpha_lo, alpha_hi, phi_lo, phi_hi, c1, c2,
phi0, gphi0, IMAX=25):
"""
Helper function for `line_search` below which tries to tighten the range
alpha_lo...alpha_hi. See Chapter 3 of 'Numerical Optimization' by
J. Nocedal for an explanation.
"""
i=0
while True:
alpha=alpha_lo+.5*(alpha_hi-alpha_lo) # should use interpolation...
args_a=phiargs(alpha)
phi_a=phi(alpha, *args_a)
zoomlogger.debug("iteration %d, alpha=%e, phi(alpha)=%e"%(i,alpha,phi_a))
if phi_a > phi0+c1*alpha*gphi0 or phi_a >= phi_lo:
alpha_hi=alpha
else:
gphi_a=gradphi(alpha, *args_a)
zoomlogger.debug("\tgrad(phi(alpha))=%e"%(gphi_a))
if np.abs(gphi_a) <= -c2*gphi0:
break
if gphi_a*(alpha_hi-alpha_lo) >= 0:
alpha_hi = alpha_lo
alpha_lo=alpha
phi_lo=phi_a
i+=1
if i>IMAX:
gphi_a=None
break
return alpha, phi_a, gphi_a
def line_search(f, x, p, g_Jx, Jx, alpha=1.0, alpha_truncationax=50.0,
c1=1e-4, c2=0.9, IMAX=15):
"""
Line search method that satisfies the strong Wolfe conditions.
See Chapter 3 of 'Numerical Optimization' by J. Nocedal for an explanation.
:param f: callable objective function f(x)
:param x: start value for the line search
:param p: search direction
:param g_Jx: value for the gradient of f at x
:param Jx: value of f(x)
:param alpha: initial step length. If g_Jx is properly scaled alpha=1 is a
reasonable starting value.
:param alpha_truncationax: algorithm terminates if alpha reaches this value
:param c1: value for Armijo condition (see reference)
:param c2: value for curvature condition (see reference)
:param IMAX: maximum number of iterations to perform
"""
# this stores the latest gradf(x+a*p) which is returned
g_Jx_new=[g_Jx]
def phi(a, *args):
""" phi(a):=f(x+a*p) """
return f(x+a*p, *args)
def gradphi(a, *args):
g_Jx_new[0]=f.getGradient(x+a*p, *args)
return f.getDualProduct(p, g_Jx_new[0])
def phiargs(a):
try:
args=f.getArguments(x+a*p)
except:
args=()
return args
old_alpha=0.
if Jx is None:
args0=phiargs(0.)
phi0=phi(0., *args0)
else:
phi0=Jx
lslogger.debug("phi(0)=%e"%(phi0))
gphi0=f.getDualProduct(p, g_Jx) #gradphi(0., *args0)
lslogger.debug("grad phi(0)=%e"%(gphi0))
old_phi_a=phi0
phi_a=phi0
i=1
while i<IMAX and alpha>0. and alpha<alpha_truncationax:
args_a=phiargs(alpha)
phi_a=phi(alpha, *args_a)
lslogger.debug("iteration %d, alpha=%e, phi(alpha)=%e"%(i,alpha,phi_a))
if (phi_a > phi0+c1*alpha*gphi0) or ((phi_a>=old_phi_a) and (i>1)):
alpha, phi_a, gphi_a = _zoom(phi, gradphi, phiargs, old_alpha, alpha, old_phi_a, phi_a, c1, c2, phi0, gphi0)
break
gphi_a=gradphi(alpha, *args_a)
if np.abs(gphi_a) <= -c2*gphi0:
break
if gphi_a >= 0:
alpha, phi_a, gphi_a = _zoom(phi, gradphi, phiargs, alpha, old_alpha, phi_a, old_phi_a, c1, c2, phi0, gphi0)
break
old_alpha=alpha
# the factor is arbitrary as long as there is sufficient increase
alpha=2.*alpha
old_phi_a=phi_a
i+=1
return alpha, phi_a, g_Jx_new[0]
##############################################################################
class AbstractMinimizer(object):
"""
Base class for function minimization methods.
"""
def __init__(self, J=None, m_tol=1e-4, J_tol=None, imax=300):
"""
Initializes a new minimizer for a given cost function.
:param J: the cost function to be minimized
:type J: `CostFunction`
"""
self.setCostFunction(J)
self._m_tol = m_tol
self._J_tol = J_tol
self._imax = imax
self._result = None
self._callback = None
self.logger = logging.getLogger('inv.%s'%self.__class__.__name__)
self.setTolerance()
def setCostFunction(self, J):
"""
set the cost function to be minimized
:param J: the cost function to be minimized
:type J: `CostFunction`
"""
self.__J=J
def getCostFunction(self):
"""
return the cost function to be minimized
:rtype: `CostFunction`
"""
return self.__J
def setTolerance(self, m_tol=1e-4, J_tol=None):
"""
Sets the tolerance for the stopping criterion. The minimizer stops
when an appropriate norm is less than `m_tol`.
"""
self._m_tol = m_tol
self._J_tol = J_tol
def setMaxIterations(self, imax):
"""
Sets the maximum number of iterations before the minimizer terminates.
"""
self._imax = imax
def setCallback(self, callback):
"""
Sets a callback function to be called after every iteration.
It is up to the specific implementation what arguments are passed
to the callback. Subclasses should at least pass the current
iteration number k, the current estimate x, and possibly f(x),
grad f(x), and the current error.
"""
if callback is not None and not callable(callback):
raise TypeError("Callback function not callable.")
self._callback = callback
def _doCallback(self, **args):
if self._callback is not None:
self._callback(**args)
def getResult(self):
"""
Returns the result of the minimization.
"""
return self._result
def getOptions(self):
"""
Returns a dictionary of minimizer-specific options.
"""
return {}
def setOptions(self, **opts):
"""
Sets minimizer-specific options. For a list of possible options see
`getOptions()`.
"""
raise NotImplementedError
def run(self, x0):
"""
Executes the minimization algorithm for *f* starting with the initial
guess ``x0``.
:return: the result of the minimization
"""
raise NotImplementedError
def logSummary(self):
"""
Outputs a summary of the completed minimization process to the logger.
"""
if hasattr(self.getCostFunction(), "Value_calls"):
self.logger.info("Number of cost function evaluations: %d"%self.getCostFunction().Value_calls)
self.logger.info("Number of gradient evaluations: %d"%self.getCostFunction().Gradient_calls)
self.logger.info("Number of inner product evaluations: %d"%self.getCostFunction().DualProduct_calls)
self.logger.info("Number of argument evaluations: %d"%self.getCostFunction().Arguments_calls)
self.logger.info("Number of norm evaluations: %d"%self.getCostFunction().Norm_calls)
##############################################################################
class MinimizerLBFGS(AbstractMinimizer):
"""
Minimizer that uses the limited-memory Broyden-Fletcher-Goldfarb-Shanno
method.
"""
# History size
_truncation = 30
# Initial Hessian multiplier
_initial_H = 1
# Restart after this many iteration steps
_restart = 60
def getOptions(self):
return {'truncation':self._truncation,'initialHessian':self._initial_H, 'restart':self._restart}
def setOptions(self, **opts):
self.logger.debug("Setting options: %s"%(str(opts)))
for o in opts:
if o=='historySize' or o=='truncation':
self._truncation=opts[o]
elif o=='initialHessian':
self._initial_H=opts[o]
elif o=='restart':
self._restart=opts[o]
else:
raise KeyError("Invalid option '%s'"%o)
def run(self, x):
"""
The callback function is called with the following arguments:
k - iteration number
x - current estimate
Jx - value of cost function at x
g_Jx - gradient of cost function at x
norm_dJ - |Jx_k - Jx_{k-1}| (only if J_tol is set)
norm_dx - ||x_k - x_{k-1}|| (only if m_tol is set)
:param x: Level set function representing our initial guess
:type x: `Data`
:return: Level set function representing the solution
:rtype: `Data`
"""
if self.getCostFunction().provides_inverse_Hessian_approximation:
self.getCostFunction().updateHessian()
invH_scale = None
else:
invH_scale = self._initial_H
# start the iteration:
n_iter = 0
n_last_break_down=-1
non_curable_break_down = False
converged = False
args=self.getCostFunction().getArguments(x)
g_Jx=self.getCostFunction().getGradient(x, *args)
# equivalent to getValue() for Downunder CostFunctions
Jx=self.getCostFunction()(x, *args)
Jx_0=Jx
cbargs = {'k':n_iter, 'x':x, 'Jx':Jx, 'g_Jx':g_Jx}
if self._J_tol:
cbargs.update(norm_dJ=None)
if self._m_tol:
cbargs.update(norm_dx=None)
self._doCallback(**cbargs)
while not converged and not non_curable_break_down and n_iter < self._imax:
k=0
break_down = False
s_and_y=[]
# initial step length for line search
alpha=1.0
while not converged and not break_down and k < self._restart and n_iter < self._imax:
#self.logger.info("\033[1;31miteration %d\033[1;30m"%n_iter)
self.logger.info("********** iteration %3d **********"%n_iter)
self.logger.info("\tJ(x) = %s"%Jx)
#self.logger.debug("\tgrad f(x) = %s"%g_Jx)
if invH_scale:
self.logger.debug("\tH = %s"%invH_scale)
# determine search direction
p = -self._twoLoop(invH_scale, g_Jx, s_and_y, x, *args)
# determine new step length using the last one as initial value
# however, avoid using too small steps for too long.
# FIXME: This is a bit specific to esys.downunder in that the
# inverse Hessian approximation is not scaled properly (only
# the regularization term is used at the moment)...
if invH_scale is None:
if alpha <= 0.5:
alpha=2*alpha
else:
# reset alpha for the case that the cost function does not
# provide an approximation of inverse H
alpha=1.0
alpha, Jx_new, g_Jx_new = line_search(self.getCostFunction(), x, p, g_Jx, Jx, alpha)
# this function returns a scaling alpha for the search
# direction as well as the cost function evaluation and
# gradient for the new solution approximation x_new=x+alpha*p
self.logger.debug("\tSearch direction scaling alpha=%e"%alpha)
# execute the step
delta_x = alpha*p
x_new = x + delta_x
converged = True
if self._J_tol:
dJ = abs(Jx_new-Jx)
JJtol = self._J_tol * abs(Jx_new-Jx_0)
flag = dJ <= JJtol
if self.logger.isEnabledFor(logging.DEBUG):
if flag:
self.logger.debug("Cost function has converged: dJ=%e, J*J_tol=%e"%(dJ,JJtol))
else:
self.logger.debug("Cost function checked: dJ=%e, J*J_tol=%e"%(dJ,JJtol))
cbargs.update(norm_dJ=dJ)
converged = converged and flag
if self._m_tol:
norm_x = self.getCostFunction().getNorm(x_new)
norm_dx = self.getCostFunction().getNorm(delta_x)
flag = norm_dx <= self._m_tol * norm_x
if self.logger.isEnabledFor(logging.DEBUG):
if flag:
self.logger.debug("Solution has converged: dx=%e, x*m_tol=%e"%(norm_dx, norm_x*self._m_tol))
else:
self.logger.debug("Solution checked: dx=%e, x*m_tol=%e"%(norm_dx, norm_x*self._m_tol))
cbargs.update(norm_dx=norm_dx)
converged = converged and flag
x=x_new
if converged:
self.logger.info("********** iteration %3d **********"%(n_iter+1,))
self.logger.info("\tJ(x) = %s"%Jx_new)
break
# unfortunately there is more work to do!
if g_Jx_new is None:
args=self.getCostFunction().getArguments(x_new)
g_Jx_new=self.getCostFunction().getGradient(x_new, args)
delta_g=g_Jx_new-g_Jx
rho=self.getCostFunction().getDualProduct(delta_x, delta_g)
if abs(rho)>0:
s_and_y.append((delta_x,delta_g, rho ))
else:
break_down=True
self.getCostFunction().updateHessian()
g_Jx=g_Jx_new
Jx=Jx_new
k+=1
n_iter+=1
cbargs.update(k=n_iter, x=x, Jx=Jx, g_Jx=g_Jx)
self._doCallback(**cbargs)
# delete oldest vector pair
if k>self._truncation: s_and_y.pop(0)
if not self.getCostFunction().provides_inverse_Hessian_approximation and not break_down:
# set the new scaling factor (approximation of inverse Hessian)
denom=self.getCostFunction().getDualProduct(delta_g, delta_g)
if denom > 0:
invH_scale=self.getCostFunction().getDualProduct(delta_x,delta_g)/denom
else:
invH_scale=self._initial_H
self.logger.debug("** Break down in H update. Resetting to initial value %s."%self._initial_H)
# case handling for inner iteration:
if break_down:
if n_iter == n_last_break_down+1:
non_curable_break_down = True
self.logger.debug("** Incurable break down detected in step %d."%n_iter)
else:
n_last_break_down = n_iter
self.logger.debug("** Break down detected in step %d. Iteration is restarted."%n_iter)
if not k < self._restart:
self.logger.debug("Iteration is restarted after %d steps."%n_iter)
# case handling for inner iteration:
self._result=x
if n_iter >= self._imax:
self.logger.warn(">>>>>>>>>> Maximum number of iterations reached! <<<<<<<<<<")
raise MinimizerMaxIterReached("Gave up after %d steps."%n_iter)
elif non_curable_break_down:
self.logger.warn(">>>>>>>>>> Incurable breakdown! <<<<<<<<<<")
raise MinimizerIterationIncurableBreakDown("Gave up after %d steps."%n_iter)
self.logger.info("Success after %d iterations!"%n_iter)
return self._result
def _twoLoop(self, invH_scale, g_Jx, s_and_y, x, *args):
"""
Helper for the L-BFGS method.
See 'Numerical Optimization' by J. Nocedal for an explanation.
"""
q=g_Jx
alpha=[]
for s,y, rho in reversed(s_and_y):
a=self.getCostFunction().getDualProduct(s, q)/rho
alpha.append(a)
q=q-a*y
if self.getCostFunction().provides_inverse_Hessian_approximation:
r = self.getCostFunction().getInverseHessianApproximation(x, q, *args)
else:
r = invH_scale * q
for s,y,rho in s_and_y:
beta = self.getCostFunction().getDualProduct(r, y)/rho
a = alpha.pop()
r = r + s * (a-beta)
return r
##############################################################################
class MinimizerBFGS(AbstractMinimizer):
"""
Minimizer that uses the Broyden-Fletcher-Goldfarb-Shanno method.
"""
# Initial Hessian multiplier
_initial_H = 1
def getOptions(self):
return {'initialHessian':self._initial_H}
def setOptions(self, **opts):
for o in opts:
if o=='initialHessian':
self._initial_H=opts[o]
else:
raise KeyError("Invalid option '%s'"%o)
def run(self, x):
"""
The callback function is called with the following arguments:
k - iteration number
x - current estimate
Jx - value of cost function at x
g_Jx - gradient of cost function at x
gnorm - norm of g_Jx (stopping criterion)
"""
args=self.getCostFunction().getArguments(x)
g_Jx=self.getCostFunction().getGradient(x, *args)
Jx=self.getCostFunction()(x, *args)
k=0
try:
n=len(x)
except:
n=x.getNumberOfDataPoints()
I=np.eye(n)
H=self._initial_H*I
gnorm=Lsup(g_Jx)
self._doCallback(k=k, x=x, Jx=Jx, g_Jx=g_Jx, gnorm=gnorm)
while gnorm > self._m_tol and k < self._imax:
self.logger.debug("iteration %d, gnorm=%e"%(k,gnorm))
# determine search direction
d=-self.getCostFunction().getDualProduct(H, g_Jx)
self.logger.debug("H = %s"%H)
self.logger.debug("grad f(x) = %s"%g_Jx)
self.logger.debug("d = %s"%d)
self.logger.debug("x = %s"%x)
# determine step length
alpha, Jx, g_Jx_new = line_search(self.getCostFunction(), x, d, g_Jx, Jx)
self.logger.debug("alpha=%e"%alpha)
# execute the step
x_new=x+alpha*d
delta_x=x_new-x
x=x_new
if g_Jx_new is None:
g_Jx_new=self.getCostFunction().getGradient(x_new)
delta_g=g_Jx_new-g_Jx
g_Jx=g_Jx_new
k+=1
gnorm=Lsup(g_Jx)
self._doCallback(k=k, x=x, Jx=Jx, g_Jx=g_Jx, gnorm=gnorm)
self._result=x
if (gnorm<=self._m_tol): break
# update Hessian
denom=self.getCostFunction().getDualProduct(delta_x, delta_g)
if denom < EPSILON * gnorm:
denom=1e-5
self.logger.debug("Break down in H update. Resetting.")
rho=1./denom
self.logger.debug("rho=%e"%rho)
A=I-rho*delta_x[:,None]*delta_g[None,:]
AT=I-rho*delta_g[:,None]*delta_x[None,:]
H=self.getCostFunction().getDualProduct(A, self.getCostFunction().getDualProduct(H,AT)) + rho*delta_x[:,None]*delta_x[None,:]
if k >= self._imax:
self.logger.warn(">>>>>>>>>> Maximum number of iterations reached! <<<<<<<<<<")
raise MinimizerMaxIterReached("Gave up after %d steps."%k)
self.logger.info("Success after %d iterations! Final gnorm=%e"%(k,gnorm))
return self._result
##############################################################################
class MinimizerNLCG(AbstractMinimizer):
"""
Minimizer that uses the nonlinear conjugate gradient method
(Fletcher-Reeves variant).
"""
def run(self, x):
"""
The callback function is called with the following arguments:
k - iteration number
x - current estimate
Jx - value of cost function at x
g_Jx - gradient of cost function at x
gnorm - norm of g_Jx (stopping criterion)
"""
i=0
k=0
args=self.getCostFunction().getArguments(x)
r=-self.getCostFunction().getGradient(x, *args)
Jx=self.getCostFunction()(x, *args)
d=r
delta=self.getCostFunction().getDualProduct(r,r)
delta0=delta
gnorm=Lsup(r)
self._doCallback(k=i, x=x, Jx=Jx, g_Jx=-r, gnorm=gnorm)
while i < self._imax and gnorm > self._m_tol:
self.logger.debug("iteration %d"%i)
self.logger.debug("grad f(x) = %s"%(-r))
self.logger.debug("d = %s"%d)
self.logger.debug("x = %s"%x)
alpha, Jx, g_Jx_new = line_search(self.getCostFunction(), x, d, -r, Jx, c2=0.4)
self.logger.debug("alpha=%e"%(alpha))
x=x+alpha*d
r=-self.getCostFunction().getGradient(x) if g_Jx_new is None else -g_Jx_new
delta_o=delta
delta=self.getCostFunction().getDualProduct(r,r)
beta=delta/delta_o
d=r+beta*d
k=k+1
try:
lenx=len(x)
except:
lenx=x.getNumberOfDataPoints()
if k == lenx or self.getCostFunction().getDualProduct(r,d) <= 0:
d=r
k=0
i+=1
gnorm=Lsup(r)
self._doCallback(k=i, x=x, Jx=Jx, g_Jx=g_Jx_new, gnorm=gnorm)
self._result=x
if i >= self._imax:
self.logger.warn(">>>>>>>>>> Maximum number of iterations reached! <<<<<<<<<<")
raise MinimizerMaxIterReached("Gave up after %d steps."%i)
self.logger.info("Success after %d iterations! Final delta=%e"%(i,delta))
return self._result
if __name__=="__main__":
# Example usage with function 'rosen' (minimum=[1,1,...1]):
from scipy.optimize import rosen, rosen_der
from esys.downunder import MeteredCostFunction
import sys
N=10
x0=np.array([4.]*N) # initial guess
class RosenFunc(MeteredCostFunction):
def __init__(self):
super(RosenFunc, self).__init__()
self.provides_inverse_Hessian_approximation=False
def _getDualProduct(self, f0, f1):
return np.dot(f0, f1)
def _getValue(self, x, *args):
return rosen(x)
def _getGradient(self, x, *args):
return rosen_der(x)
def _getNorm(self,x):
return Lsup(x)
f=RosenFunc()
m=None
if len(sys.argv)>1:
method=sys.argv[1].lower()
if method=='nlcg':
m=MinimizerNLCG(f)
elif method=='bfgs':
m=MinimizerBFGS(f)
if m is None:
# default
m=MinimizerLBFGS(f)
#m.setOptions(historySize=10000)
logging.basicConfig(format='[%(funcName)s] \033[1;30m%(message)s\033[0m', level=logging.DEBUG)
m.setTolerance(m_tol=1e-5)
m.setMaxIterations(600)
m.run(x0)
m.logSummary()
print("\tLsup(result)=%.8f"%np.amax(abs(m.getResult())))
#from scipy.optimize import fmin_cg
#print("scipy ref=%.8f"%np.amax(abs(fmin_cg(rosen, x0, rosen_der, maxiter=10000))))
|