This file is indexed.

/usr/lib/python3/dist-packages/cpl/dfs.py is in python3-cpl 0.7.2-1build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import sys
try: # pragma: no cover
    from astropy.io import fits
except ImportError:
    import pyfits as fits

import cpl

class ProcessingInfo(object):
    '''Support for reading input files and parameters from the FITS
    header of a CPL processed file.

    This is done through the FITS headers that were written by the DFS function
    called within the processing recipe.

    .. attribute:: name 

       Recipe name

    .. attribute:: version 

       Recipe version string

    .. attribute::  pipeline

       Pipeline name

    .. attribute:: cpl_version
    
       CPL version string

    .. attribute:: tag

       Tag name

    .. attribute:: calib

       Calibration frames from a FITS file processed with CPL.
       The result of this function may directly set as :attr:`cpl.Recipe.calib`
       attribute::
    
         import cpl
         myrecipe = cpl.Recipe('muse_bias')
         myrecipe.calib = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').calib

       .. note::

          This will not work properly for files that had
          :class:`astropy.io.fits.HDUList` inputs since they have assigned a
          temporary file name only.

    .. attribute:: raw

       Raw (input) frames

       .. note::

          This will not work properly for files that had
          :class:`astropy.io.fits.HDUList` inputs since they have assigned a
          temporary file name only.

    .. attribute:: param

       Processing parameters.
       The result of this function may directly set as :attr:`cpl.Recipe.param`
       attribute::
    
         import cpl
         myrecipe = cpl.Recipe('muse_bias')
         myrecipe.param = cpl.dfs.ProcessingInfo('MASTER_BIAS_0.fits').param

    .. attribute:: md5sum

       MD5 sum of the data portions of the output file (header keyword 
       'DATAMD5').

    .. attribute:: md5sums

       MD5 sums of the input and calibration files. :class:`dict` with the
       file name as key and the corresponding MD5 sum as value.

       .. note::

          Due to a design decision in CPL, the raw input files are not
          accompanied with the MD5 sum.
    '''

    def __init__(self, source, recno = -1):
        '''
        :param source: Object pointing to the result file header
        :type source: :class:`str` or :class:`astropy.io.fits.HDUList`
                      or :class:`astropy.io.fits.PrimaryHDU` or 
                      :class:`astropy.io.fits.Header`
        :param recno: Record number. Optional. If not given, the last record
                      (with the highest record number) is used.
        :type recno: :class:`int`
        '''
        if isinstance(source, str):
            header = fits.open(source)[0].header
        elif isinstance(source, (fits.HDUList, list)):
            header = source[0].header
        elif isinstance(source, fits.PrimaryHDU):
            header = source.header
        elif isinstance(source, (fits.Header, dict)):
            header = source
        else:
            raise ValueError('Cannot assign type {0} to header'.format(
                    source.__class__.__name__))
        
        if recno < 0:
            for reccnt in range(1, 2**16):
                if 'HIERARCH ESO PRO REC{0} ID'.format(reccnt) not in header:
                    break
            recno += reccnt
        self.name = header['HIERARCH ESO PRO REC{0} ID'.format(recno)]
        self.product = header['HIERARCH ESO PRO CATG']
        self.orig_filename = header['PIPEFILE']
        pipe_id = header.get('HIERARCH ESO PRO REC{0} PIPE ID'.format(recno))
        if pipe_id:
            self.pipeline, version = pipe_id.split('/')
            num_version = 0
            for i in version.split('.'):
                num_version = num_version * 100 + int(i)
            self.version = (num_version, version)
        else:
            self.pipeline =  None
            self.version = None
        self.cpl_version = header.get('HIERARCH ESO PRO REC{0} DRS ID'.format(recno))
        self.md5sum = header.get('DATAMD5')
        self.md5sums = {}
        self.calib = ProcessingInfo._get_rec_keys(header, recno, 'CAL', 'CATG', 'NAME')
        for cat, md5 in ProcessingInfo._get_rec_keys(header, recno, 'CAL', 'CATG',
                                                     'DATAMD5').items():
            if isinstance(md5, list):
                for i, m in enumerate(md5):
                    if m is not None:
                        self.md5sums[self.calib[cat][i]] = m
            elif md5 is not None:
                self.md5sums[self.calib[cat]] = md5
        raw = ProcessingInfo._get_rec_keys(header, recno, 'RAW', 'CATG', 'NAME')
        if raw:
            self.tag = list(raw.keys())[0]
            self.raw = raw[self.tag]
            md5 = ProcessingInfo._get_rec_keys(header, recno, 'RAW', 'CATG',
                                               'DATAMD5')[self.tag]
            if isinstance(md5, list):
                for i, m in enumerate(md5):
                    if m is not None: 
                        self.md5sums[self.raw[i]] = m
            elif md5 is not None:
                self.md5sums[self.raw] = md5
        else:
            self.tag = None
            self.raw = None
            self.input = None
        param = ProcessingInfo._get_rec_keys(header, recno, 'PARAM', 'NAME', 'VALUE')
        self.param = dict()
        for k,v in param.items():
            self.param[k] = ProcessingInfo._best_type(v)
            
    def create_recipe(self):
        '''Create a recipe and configure it with the parameters, calibration frames,
        and the input tag. The recipe version will be the latest available one.
        '''
        recipe = cpl.Recipe(self.name)
        recipe.param = self.param
        recipe.calib = self.calib
        recipe.tag = self.tag
        return recipe

    def create_script(self, scriptfile = sys.stdout):
        '''Create a sample script that creates the recipe, configures it with
        the parameters, calibration frames and input tags, and finally
        starts the recipe.
        '''
        if isinstance(scriptfile, str):
            scriptfile = file(scriptfile, mode='w')
        scriptfile.write('import cpl\n\n')
        scriptfile.write('# Recipe: {0}.{1}, Version {2}, CPL version {3}\n'.format(
                self.pipeline, self.name, self.version[1], self.cpl_version))
        scriptfile.write('{0} = cpl.Recipe({1}, version = {2})\n'.format(
                self.name, repr(self.name), repr(self.version[0])))
        scriptfile.write('\n# Parameters:\n')
        for k,v in self.param.items():
            scriptfile.write('{0}.param.{1} = {2}\n'.format(self.name, k, repr(v)))
        if self.calib:
            scriptfile.write('\n# Calibration frames:\n')
        for k,v in self.calib.items():
            scriptfile.write('{0}.calib.{1} = {2}\n'.format(self.name, k, repr(v)))
        scriptfile.write('\n# Process input frames:\n')
        scriptfile.write('{0}.tag = {1}\n'.format(self.name, repr(self.tag)))
        scriptfile.write('res = {0}({1})\n'.format(self.name, repr(self.raw)))
#        scriptfile.write('{0} = res.{1}\n'.format(self.product.lower(), self.product))
#        scriptfile.write('{0}.writeto({1})\n'.format(self.product.lower(),
#                                                     repr(self.orig_filename)))

    def __str__(self):
        s = 'Recipe: {0}, Version {1}, CPL version {2}\n'.format(
            self.name, self.version, self.cpl_version)
        s += 'Parameters:\n'
        for k,v in self.param.items():
            s += ' {0}.{1}.{2} = {3}\n'.format(self.pipeline, self.name, k, v)
        if self.calib:
            s += 'Calibration frames:\n'
        for k,v in self.calib.items():
            if isinstance(v, (str, unicode)):
                s += ' {0} {1}\n'.format(v,k)
            else:
                m = max(len(n) for n in v)
                for n in v:
                    s += ' {0:<{width}} {1}\n'.format(n, m, width = m)
        if self.raw is not None:
            s += 'Input frames:\n'
            if isinstance(self.raw, (str, unicode)):
                s += ' {0} {1}\n'.format(self.raw, self.tag)
            else:
                m = max(len(n) for n in self.raw)
                for n in self.raw:
                    s += ' {0:<{width}} {1}\n'.format(n, self.tag, width = m)
        return s

    def printinfo(self):
        '''Print the recipe information to standard output.
        '''
        print(str(self))

    @staticmethod
    def _get_rec_keys(header, recno, key, name, value):
        '''Get a dictionary of key/value pairs from the DFS section of the
        header.

        :param key: Common keyword for the value. Usually 'PARAM' for
                    parameters, 'RAW' for raw frames, and 'CAL' for
                    calibration frames.
        :type key: :class:`str`
        :param recno: Record number.
        :type recno: :class:`int`
        :param name: Header keyword (last part) for the name of each key
        :type name: :class:`str`
        :param value: Header keyword (last part) for the value of each key
        :type name: :class:`str`

        When the header

          HIERARCH ESO PRO REC1 PARAM1 NAME = 'nifu'
          HIERARCH ESO PRO REC1 PARAM1 VALUE = '1'
          HIERARCH ESO PRO REC1 PARAM2 NAME = 'combine'
          HIERARCH ESO PRO REC1 PARAM2 VALUE = 'median'

        is called with

          ProcessingInfo._get_rec_keys(1, 'PARAM', 'NAME', 'VALUE')

        the returned dictionary will contain the keys

          res['nifu'] = '1'
          res['combine'] = 'median'
        '''
        res = dict()
        for i in range(1, 2**16):
            try:
                prefix = 'HIERARCH ESO PRO REC{0} {1}{2}'.format(recno, key, i)
                k = header['{0} {1}'.format(prefix, name)]
                fn = header.get('{0} {1}'.format(prefix, value))
                if k not in  res:
                    res[k] = fn
                elif isinstance(res[k], list):
                    res[k].append(fn)
                else:
                    res[k] = [ res[k], fn ]
            except KeyError:
                break
        return res

    @staticmethod
    def _best_type(value):
        '''Convert the value to the best applicable type: :class:`int`,
        :class:`float`, :class:`bool` or :class`str`.

        :param value: Value to convert.
        :type value: :class:`str`
        '''
        for t in int, float:
            try:
                return t(value)
            except ValueError:
                pass
        return {'true':True, 'false':False}.get(value, value)

    @staticmethod
    def list(source):
        '''Get a list of all `ProcessingInfo` objects in the FITS header. The
        list is sorted by the execution order.

        :param source: Object pointing to the result file header
        :type source: :class:`str` or :class:`astropy.io.fits.HDUList`
                      or :class:`astropy.io.fits.PrimaryHDU` or
                      :class:`astropy.io.fits.Header`
        '''
        pi = []
        for i in range(1, 2**16):
            try:
                pi.append(ProcessingInfo(source, i))
            except KeyError:
                break
        return pi

if __name__ == '__main__':
    for arg in sys.argv[1:]:
        print('{0}\nfile: {1}'.format('-' * 72, arg))
        pi = cpl.dfs.ProcessingInfo(arg)
        pi.printinfo()