This file is indexed.

/usr/lib/python3/dist-packages/amp/utilities.py is in python3-amp 0.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
#!/usr/bin/env python

import numpy as np
import hashlib
import time
import os
import sys
import copy
import math
import random
import signal
import tarfile
import traceback
from datetime import datetime
from getpass import getuser
from ase import io as aseio
from ase.db import connect
from ase.calculators.calculator import PropertyNotImplementedError
try:
    import cPickle as pickle    # Python2
except ImportError:
    import pickle               # Python3


# Parallel processing ########################################################

def assign_cores(cores, log=None):
    """Tries to guess cores from environment.

    If fed a log object, will write its progress.
    """
    log = Logger(None) if log is None else log

    def fail(q, traceback_text=None):
        msg = ('Auto core detection is either not set up or not working for'
               ' your version of %s. You are invited to submit a patch to '
               'return a dictionary of the form {nodename: ncores} for this'
               ' batching system. The environment contents were dumped to '
               'the log file, as well as any traceback that caused the '
               'error.')
        log(msg % q)
        log('Environment dump:')
        for key, value in os.environ.items():
            log('%s: %s' % (key, value))
        if traceback_text:
            log('\n' + '='*70 + '\nTraceback of last error encountered:')
            log(traceback_text)
        raise NotImplementedError(msg % q)

    def success(q, cores, log):
        log('Parallel configuration determined from environment for %s:' % q)
        for key, value in cores.items():
            log('  %s: %i' % (key, value))

    if cores is not None:
        q = '<user-specified>'
        if cores == 1:
            log('Serial operation on one core specified.')
            return cores
        else:
            try:
                cores = int(cores)
            except TypeError:
                cores = cores
                success(q, cores, log)
                return cores
            else:
                cores = {'localhost': cores}
                success(q, cores, log)
                return cores

    if 'SLURM_NODELIST' in os.environ.keys():
        q = 'SLURM'
        try:
            nnodes = int(os.environ['SLURM_NNODES'])
            taskspernode = int(os.environ['SLURM_NTASKS_PER_NODE'])
            if nnodes == 1:
                cores = {'localhost': taskspernode}
            else:
                nodes = os.environ['SLURM_NODELIST']
                if '[' in nodes:
                    # Formatted funny like 'node[572,578]'.
                    prename, numbers = nodes.split('[')
                    numbers = numbers[:-1].split(',')
                    nodes = [prename + _ for _ in numbers]
                else:
                    nodes = nodes.split(',')
                cores = {node: taskspernode for node in nodes}
        except:
            # Get the traceback to log it.
            fail(q, traceback_text=traceback.format_exc())
    elif 'PBS_NODEFILE' in os.environ.keys():
        fail(q='PBS')
    elif 'LOADL_PROCESSOR_LIST' in os.environ.keys():
        fail(q='LOADL')
    elif 'PE_HOSTFILE' in os.environ.keys():
        q = 'SGE'
        try:
            hostfile = os.getenv('PE_HOSTFILE')
            cores = {}
            with open(hostfile) as f:
                for i, istr in enumerate(f):
                    hostname, nc = istr.split()[0:2]
                    nc = int(nc)
                    cores[hostname] = nc
        except:
            # Get the traceback to log it.
            fail(q, traceback_text=traceback.format_exc())
    else:
        import multiprocessing
        ncores = multiprocessing.cpu_count()
        cores = {'localhost': ncores}
        log('No queuing system detected; single machine assumed.')
        q = '<single machine>'
    success(q, cores, log)
    return cores


class MessageDictionary:
    """Standard container for all messages (typically requests, via
    zmq.context.socket.send_pyobj) sent from the workers to the master.

    This returns a simple dictionary. This is roughly email format.
    Initialize with process id (e.g., 'from'). Call with subject and data
    (body).
    """

    def __init__(self, process_id):
        self._process_id = process_id

    def __call__(self, subject, data=None):
        d = {'id': self._process_id,
             'subject': subject,
             'data': data}
        return d


def make_sublists(masterlist, n):
    """Randomly divides the masterlist into n sublists of roughly
    equal size.

    The intended use is to divide a keylist and assign
    keys to each task in parallel processing. This also destroys
    the masterlist (to save some memory).
    """
    masterlist = list(masterlist)
    np.random.shuffle(masterlist)
    N = len(masterlist)
    sublist_lengths = [
        N // n if _ >= (N % n) else N // n + 1 for _ in range(n)]
    sublists = []
    for sublist_length in sublist_lengths:
        sublists.append([masterlist.pop() for _ in range(sublist_length)])
    return sublists


def setup_parallel(parallel, workercommand, log):
    """Starts the worker processes and the master to control them.

    This makes an SSH connection to each node (including the one the master
    process runs on), then creates the specified number of processes on each
    node through its SSH connection. Then sets up ZMQ for efficienty
    communication between the worker processes and the master process.

    Uses the parallel dictionary as defined in amp.Amp. log is an Amp logger.
    module is the name of the module to be called, which is usually
    given by self.calc.__module, etc.
    workercommand is stub of the command used to start the servers,
    typically like "python -m amp.descriptor.gaussian". Appended to
    this will be " <pid> <serversocket> &" where <pid> is the unique ID
    assigned to each process and <serversocket> is the address of the
    server, like 'node321:34292'.

    Returns
    -------
    server : (a ZMQ socket)
        The ssh connections (pxssh instances; if these objects are destroyed
        pxssh will close the sessions)

        the pid_count, which is the total number of workers started. Each
        worker can be communicated directly through its PID, an integer
        between 0 and pid_count
    """
    import zmq
    from socket import gethostname

    log(' Parallel processing.')
    serverhostname = gethostname()

    # Establish server session.
    context = zmq.Context()
    server = context.socket(zmq.REP)
    port = server.bind_to_random_port('tcp://*')
    serversocket = '%s:%s' % (serverhostname, port)
    log(' Established server at %s.' % serversocket)

    workercommand += ' %s ' + serversocket

    log(' Establishing worker sessions.')
    connections = []
    pid_count = 0
    for workerhostname, nprocesses in parallel['cores'].items():
        pids = range(pid_count, pid_count + nprocesses)
        pid_count += nprocesses
        connections.append(start_workers(pids,
                                         workerhostname,
                                         workercommand,
                                         log,
                                         parallel['envcommand']))

    return server, connections, pid_count


def start_workers(process_ids, workerhostname, workercommand, log,
                  envcommand):
    """A function to start a new SSH session and establish processes on
    that session.
    """
    if workerhostname != 'localhost':
        workercommand += ' &'
        log(' Starting non-local connections.')
        pxssh = importer('pxssh')
        ssh = pxssh.pxssh()
        ssh.login(workerhostname, getuser())
        if envcommand is not None:
            log('Environment command: %s' % envcommand)
            ssh.sendline(envcommand)
            ssh.readline()
        for process_id in process_ids:
            ssh.sendline(workercommand % process_id)
            ssh.expect('<amp-connect>')
            ssh.expect('<stderr>')
            log('  Session %i (%s): %s' %
                (process_id, workerhostname, ssh.before.strip()))
        return ssh
    import pexpect
    log(' Starting local connections.')
    children = []
    for process_id in process_ids:
        child = pexpect.spawn(workercommand % process_id)
        child.expect('<amp-connect>')
        child.expect('<stderr>')
        log('  Session %i (%s): %s' %
            (process_id, workerhostname, child.before.strip()))
        children.append(child)
    return children


# Data and logging ###########################################################


class FileDatabase:
    """Using a database file, such as shelve or sqlitedict, that can handle
    multiple processes writing to the file is hard.

    Therefore, we take the stupid approach of having each database entry be
    a separate file. This class behaves essentially like shelve, but saves each
    dictionary entry as a plain pickle file within the directory, with the
    filename corresponding to the dictionary key (which must be a string).

    Like shelve, this also keeps an internal (memory dictionary) representation
    of the variables that have been accessed.

    Also includes an archive feature, where files are instead added to a file
    called 'archive.tar.gz' to save disk space. If an entry exists in both the
    loose and archive formats, the loose is taken to be the new (correct)
    value.
    """

    def __init__(self, filename):
        """Open the filename at specified location. flag is ignored; this
        format is always capable of both reading and writing."""
        if not filename.endswith(os.extsep + 'ampdb'):
            filename += os.extsep + 'ampdb'
        self.path = filename
        self.loosepath = os.path.join(self.path, 'loose')
        self.tarpath = os.path.join(self.path, 'archive.tar.gz')
        if not os.path.exists(self.path):
            os.mkdir(self.path)
            os.mkdir(self.loosepath)
        self._memdict = {}  # Items already accessed; stored in memory.

    @classmethod
    def open(Cls, filename, flag=None):
        """Open present for compatibility with shelve. flag is ignored; this
        format is always capable of both reading and writing.
        """
        return Cls(filename=filename)

    def close(self):
        """Only present for compatibility with shelve.
        """
        return

    def keys(self):
        """Return list of keys, both of in-memory and out-of-memory
        items.
        """
        keys = os.listdir(self.loosepath)
        if os.path.exists(self.tarpath):
            with tarfile.open(self.tarpath) as tf:
                keys = list(set(keys + tf.getnames()))
        return keys

    def values(self):
        """Return list of values, both of in-memory and out-of-memory
        items. This moves all out-of-memory items into memory.
        """
        keys = self.keys()
        return [self[key] for key in keys]

    def __len__(self):
        return len(self.keys())

    def __setitem__(self, key, value):
        self._memdict[key] = value
        path = os.path.join(self.loosepath, str(key))
        if os.path.exists(path):
            with open(path, 'r') as f:
                if f.read() == pickle.dumps(value):
                    return  # Nothing to update.
        with open(path, 'wb') as f:
            pickle.dump(value, f)

    def __getitem__(self, key):
        if key in self._memdict:
            return self._memdict[key]
        keypath = os.path.join(self.loosepath, key)
        if os.path.exists(keypath):
            with open(keypath, 'rb') as f:
                return pickle.load(f)
        elif os.path.exists(self.tarpath):
            with tarfile.open(self.tarpath) as tf:
                return pickle.load(tf.extractfile(key))
        else:
            raise KeyError(str(key))

    def update(self, newitems):
        for key, value in newitems.items():
            self.__setitem__(key, value)

    def archive(self):
        """Cleans up to save disk space and reduce huge number of files.

        That is, puts all files into an archive.  Compresses all files in
        <path>/loose and places them in <path>/archive.tar.gz.  If archive
        exists, appends/modifies.
        """
        loosefiles = os.listdir(self.loosepath)
        print('Contains %i loose entries.' % len(loosefiles))
        if len(loosefiles) == 0:
            print(' -> No action taken.')
            return
        if os.path.exists(self.tarpath):
            with tarfile.open(self.tarpath) as tf:
                names = [_ for _ in tf.getnames() if _ not in
                         os.listdir(self.loosepath)]
                for name in names:
                    tf.extract(member=name, path=self.loosepath)
        loosefiles = os.listdir(self.loosepath)
        print('Compressing %i entries.' % len(loosefiles))
        with tarfile.open(self.tarpath, 'w:gz') as tf:
            for file in loosefiles:
                tf.add(name=os.path.join(self.loosepath, file),
                       arcname=file)
        print('Cleaning up: removing %i files.' % len(loosefiles))
        for file in loosefiles:
            os.remove(os.path.join(self.loosepath, file))


class Data:
    """Serves as a container (dictionary-like) for (key, value) pairs that
    also serves to calculate them.

    Works by default with python's shelve module, but something that is built
    to share the same commands as shelve will work fine; just specify this in
    dbinstance.

    Designed to hold things like neighborlists, which have a hash, value
    format.

    This will work like a dictionary in that items can be accessed with
    data[key], but other advanced dictionary functions should be accessed with
    through the .d attribute:

    >>> data = Data(...)
    >>> data.open()
    >>> keys = data.d.keys()
    >>> values = data.d.values()
    """

    def __init__(self, filename, db=FileDatabase, calculator=None):
        self.calc = calculator
        self.db = db
        self.filename = filename
        self.d = None

    def calculate_items(self, images, parallel, log=None):
        """Calculates the data value with 'calculator' for the specified
        images.

        images is a dictionary, and the same keys will be used for the current
        database.
        """
        if log is None:
            log = Logger(None)
        if self.d is not None:
            self.d.close()
            self.d = None
        log(' Data stored in file %s.' % self.filename)
        d = self.db.open(self.filename, 'r')
        calcs_needed = list(set(images.keys()).difference(d.keys()))
        dblength = len(d)
        d.close()
        log(' File exists with %i total images, %i of which are needed.' %
            (dblength, len(images) - len(calcs_needed)))
        log(' %i new calculations needed.' % len(calcs_needed))
        if len(calcs_needed) == 0:
            return
        if parallel['cores'] == 1:
            d = self.db.open(self.filename, 'c')
            for key in calcs_needed:
                d[key] = self.calc.calculate(images[key], key)
            d.close()  # Necessary to get out of write mode and unlock?
            log(' Calculated %i new images.' % len(calcs_needed))
        else:
            python = sys.executable
            workercommand = '%s -m %s' % (python, self.calc.__module__)
            server, connections, n_pids = setup_parallel(parallel,
                                                         workercommand, log)

            globals = self.calc.globals
            keyed = self.calc.keyed

            keys = make_sublists(calcs_needed, n_pids)
            results = {}

            # All incoming requests will be dictionaries with three keys.
            # d['id']: process id number, assigned when process created above.
            # d['subject']: what the message is asking for / telling you
            # d['data']: optional data passed from the worker.

            active = 0  # count of processes actively calculating
            log(' Parallel calculations starting...', tic='parallel')
            active = n_pids  # currently active workers
            while True:
                message = server.recv_pyobj()
                if message['subject'] == '<purpose>':
                    server.send_pyobj(self.calc.parallel_command)
                elif message['subject'] == '<request>':
                    request = message['data']  # Variable name.
                    if request == 'images':
                        server.send_pyobj({k: images[k] for k in
                                           keys[int(message['id'])]})
                    elif request in keyed:
                        server.send_pyobj({k: keyed[request][k] for k in
                                           keys[int(message['id'])]})
                    else:
                        server.send_pyobj(globals[request])
                elif message['subject'] == '<result>':
                    result = message['data']
                    server.send_string('meaningless reply')
                    active -= 1
                    log('  Process %s returned %i results.' %
                        (message['id'], len(result)))
                    results.update(result)
                elif message['subject'] == '<info>':
                    server.send_string('meaningless reply')
                if active == 0:
                    break
            log('  %i new results.' % len(results))
            log(' ...parallel calculations finished.', toc='parallel')
            log(' Adding new results to database.')
            d = self.db.open(self.filename, 'c')
            d.update(results)
            d.close()  # Necessary to get out of write mode and unlock?

        self.d = None

    def __getitem__(self, key):
        self.open()
        return self.d[key]

    def close(self):
        """Safely close the database.
        """
        if self.d:
            self.d.close()
        self.d = None

    def open(self, mode='r'):
        """Open the database connection with mode specified.
        """
        if self.d is None:
            self.d = self.db.open(self.filename, mode)

    def __del__(self):
        self.close()


class Logger:

    """Logger that can also deliver timing information.

    Parameters
    ----------
    file : str
        File object or path to the file to write to.  Or set to None for
        a logger that does nothing.
    """

    def __init__(self, file):
        if file is None:
            self.file = None
            return
        if isinstance(file, str):
            self.filename = file
            file = open(file, 'a')
        self.file = file
        self.tics = {}

    def tic(self, label=None):
        """Start a timer.

        Parameters
        ----------
        label : str
            Label for managing multiple timers.
        """
        if self.file is None:
            return
        if label:
            self.tics[label] = time.time()
        else:
            self._tic = time.time()

    def __call__(self, message, toc=None, tic=False):
        """Writes message to the log file.

        Parameters
        ---------
        message : str
            Message to be written.
        toc : bool or str
            If toc=True or toc=label, it will append timing information in
            minutes to the timer.
        tic : bool or str
            If tic=True or tic=label, will start the generic timer or a timer
            associated with label. Equivalent to self.tic(label).
        """
        if self.file is None:
            return
        dt = ''
        if toc:
            if toc is True:
                tic = self._tic
            else:
                tic = self.tics[toc]
            dt = (time.time() - tic) / 60.
            dt = ' %.1f min.' % dt
        if self.file.closed:
            self.file = open(self.filename, 'a')
        self.file.write(message + dt + '\n')
        self.file.flush()
        if tic:
            if tic is True:
                self.tic()
            else:
                self.tic(label=tic)


def make_filename(label, base_filename):
    """Creates a filename from the label and the base_filename which should be
    a string.

    Returns None if label is None; that is, it only saves output if a label is
    specified.

    Parameters
    ----------
    label : str
        Prefix.
    base_filename : str
        Basic name of the file.
    """

    if label is None:
        return None
    if not label:
        filename = base_filename
    else:
        filename = os.path.join(label + base_filename)

    return filename


# Images and hashing #########################################################

def get_hash(atoms):
    """Creates a unique signature for a particular ASE atoms object.

    This is used to check whether an image has been seen before. This is just
    an md5 hash of a string representation of the atoms object.

    Parameters
    ----------
    atoms : ASE dict
        ASE atoms object.

    Returns
    -------
        Hash string key of 'atoms'.
    """
    string = str(atoms.pbc)
    for number in atoms.cell.flatten():
        string += '%.15f' % number
    string += str(atoms.get_atomic_numbers())
    for number in atoms.get_positions().flatten():
        string += '%.15f' % number

    md5 = hashlib.md5(string.encode('utf-8'))
    hash = md5.hexdigest()
    return hash


def hash_images(images, log=None, ordered=False):
    """ Converts input images -- which may be a list, a trajectory file, or
    a database -- into a dictionary indexed by their hashes.

    Returns this dictionary. If ordered is True, returns an OrderedDict. When
    duplicate images are encountered (based on encountering an identical hash),
    a warning is written to the logfile. The number of duplicates of each image
    can be accessed by examinging dict_images.metadata['duplicates'], where
    dict_images is the returned dictionary.
    """
    if log is None:
        log = Logger(None)
    if images is None:
        return
    elif hasattr(images, 'keys'):
        log(' %i unique images after hashing.' % len(images))
        return images  # Apparently already hashed.
    else:
        # Need to be hashed, and possibly read from file.
        if isinstance(images, str):
            log('Attempting to read images from file %s.' %
                images)
            extension = os.path.splitext(images)[1]
            from ase import io
            if extension == '.traj':
                images = io.Trajectory(images, 'r')
            elif extension == '.db':
                images = [row.toatoms() for row in
                          connect(images, 'db').select(None)]

        # images converted to dictionary form; key is hash of image.
        log('Hashing images...', tic='hash')
        dict_images = MetaDict()
        dict_images.metadata['duplicates'] = {}
        dup = dict_images.metadata['duplicates']
        if ordered is True:
            from collections import OrderedDict
            dict_images = OrderedDict()
        for image in images:
            hash = get_hash(image)
            if hash in dict_images.keys():
                log('Warning: Duplicate image (based on identical hash).'
                    ' Was this expected? Hash: %s' % hash)
                if hash in dup.keys():
                    dup[hash] += 1
                else:
                    dup[hash] = 2
            dict_images[hash] = image
        log(' %i unique images after hashing.' % len(dict_images))
        log('...hashing completed.', toc='hash')
        return dict_images


def check_images(images, forces):
    """Checks that all images have energies, and optionally forces,
    calculated, so that they can be used for training. Raises a
    MissingDataError if any are missing."""
    missing_energies, missing_forces = 0, 0
    for index, image in enumerate(images.values()):
        try:
            image.get_potential_energy()
        except PropertyNotImplementedError:
            missing_energies += 1
        if forces is True:
            try:
                image.get_forces()
            except PropertyNotImplementedError:
                missing_forces += 1
    if missing_energies + missing_forces == 0:
        return
    msg = ''
    if missing_energies > 0:
        msg += 'Missing energy in {} image(s).'.format(missing_energies)
    if missing_forces > 0:
        msg += ' Missing forces in {} image(s).'.format(missing_forces)
    raise MissingDataError(msg)


def randomize_images(images, fraction=0.8):
    """Randomly assigns 'fraction' of the images to a training set and (1
    - 'fraction') to a test set. Returns two lists of ASE images.

    Parameters
    ----------
    images : list or str
        List of ASE atoms objects in ASE format. This can also be the path to
        an ASE trajectory (.traj) or database (.db) file.
    fraction : float
        Portion of train_images to all images.

    Returns
    -------
    train_images, test_images : list
        Lists of train and test images.
    """
    file_opened = False
    if type(images) == str:
        extension = os.path.splitext(images)[1]
        if extension == '.traj':
            images = aseio.Trajectory(images, 'r')
        elif extension == '.db':
            images = aseio.read(images)
        file_opened = True

    trainingsize = int(fraction * len(images))
    testsize = len(images) - trainingsize
    testindices = []
    while len(testindices) < testsize:
        next = np.random.randint(len(images))
        if next not in testindices:
            testindices.append(next)
    testindices.sort()
    trainindices = [index for index in range(len(images)) if index not in
                    testindices]
    train_images = [images[index] for index in trainindices]
    test_images = [images[index] for index in testindices]
    if file_opened:
        images.close()
    return train_images, test_images

# Custom exceptions ##########################################################


class ConvergenceOccurred(Exception):
    """ Kludge to decide when scipy's optimizers are complete.
    """
    pass


class TrainingConvergenceError(Exception):
    """Error to be raised if training does not converge.
    """
    pass


class MissingDataError(Exception):
    """Error to be raised if any images are missing key data,
    like energy or forces."""
    pass


# Miscellaneous ##############################################################

def string2dict(text):
    """Converts a string into a dictionary.

    Basically just calls `eval` on it, but supplies words like OrderedDict and
    matrix.
    """
    try:
        dictionary = eval(text)
    except NameError:
        from collections import OrderedDict
        from numpy import array, matrix
        dictionary = eval(text)
    return dictionary


def now(with_utc=False):
    """
    Returns
    -------
        String of current time.
    """
    local = datetime.now().isoformat().split('.')[0]
    utc = datetime.utcnow().isoformat().split('.')[0]
    if with_utc:
        return '%s (%s UTC)' % (local, utc)
    else:
        return local


logo = """
   oo      o       o   oooooo
  o  o     oo     oo   o     o
 o    o    o o   o o   o     o
o      o   o  o o  o   o     o
oooooooo   o   o   o   oooooo
o      o   o       o   o
o      o   o       o   o
o      o   o       o   o
"""


def importer(name):
    """Handles strange import cases, like pxssh which might show
    up in eithr the package pexpect or pxssh.
    """

    if name == 'pxssh':
        try:
            import pxssh
        except ImportError:
            try:
                from pexpect import pxssh
            except ImportError:
                raise ImportError('pxssh not found!')
        return pxssh
    elif name == 'NeighborList':
        try:
            from ase.neighborlist import NeighborList
        except ImportError:
            # We're on ASE 3.10 or older
            from ase.calculators.neighborlist import NeighborList
        return NeighborList


# Amp Simulated Annealer ######################################################


class Annealer(object):

    """
    Inspired by the simulated annealing implementation of
    Richard J. Wagner <wagnerr@umich.edu> and
    Matthew T. Perry <perrygeo@gmail.com> at
    https://github.com/perrygeo/simanneal.

    Performs simulated annealing by calling functions to calculate loss and
    make moves on a state.  The temperature schedule for annealing may be
    provided manually or estimated automatically.

    Can be used by something like:

    >>> from amp import Amp
    >>> from amp.descriptor.gaussian import Gaussian
    >>> from amp.model.neuralnetwork import NeuralNetwork
    >>> calc = Amp(descriptor=Gaussian(), model=NeuralNetwork())

    which will initialize tha calc object as usual, and then

    >>> from amp.utilities import Annealer
    >>> Annealer(calc=calc, images=images)

    which will perform simulated annealing global search in parameters space,
    and finally

    >>> calc.train(images=images)

    for gradient descent optimization.
    """

    Tmax = 20.0             # Max (starting) temperature
    Tmin = 2.5              # Min (ending) temperature
    steps = 10000           # Number of iterations
    updates = steps / 200   # Number of updates (an update prints to log)
    copy_strategy = 'copy'
    user_exit = False
    save_state_on_exit = False

    def __init__(self, calc, images,
                 Tmax=None, Tmin=None, steps=None, updates=None):
        if Tmax is not None:
            self.Tmax = Tmax
        if Tmin is not None:
            self.Tmin = Tmin
        if steps is not None:
            self.steps = steps
        if updates is not None:
            self.updates = updates
        self.calc = calc

        self.calc._log('\nAmp simulated annealer started. ' + now() + '\n')
        self.calc._log('Descriptor: %s' %
                       self.calc.descriptor.__class__.__name__)
        self.calc._log('Model: %s' % self.calc.model.__class__.__name__)

        images = hash_images(images, log=self.calc._log)

        self.calc._log('\nDescriptor\n==========')
        # Derivatives of fingerprints need to be calculated if train_forces is
        # True.
        calculate_derivatives = True
        self.calc.descriptor.calculate_fingerprints(
            images=images,
            parallel=self.calc._parallel,
            log=self.calc._log,
            calculate_derivatives=calculate_derivatives)
        # Setting up calc.model.vector()
        self.calc.model.fit(trainingimages=images,
                            descriptor=self.calc.descriptor,
                            log=self.calc._log,
                            parallel=self.calc._parallel,
                            only_setup=True,)
        # Truning off ConvergenceOccured exception and log_losses
        initial_raise_ConvergenceOccurred = \
            self.calc.model.lossfunction.raise_ConvergenceOccurred
        initial_log_losses = self.calc.model.lossfunction.log_losses
        self.calc.model.lossfunction.log_losses = False
        self.calc.model.lossfunction.raise_ConvergenceOccurred = False
        initial_state = self.calc.model.vector.copy()
        self.state = self.copy_state(initial_state)

        signal.signal(signal.SIGINT, self.set_user_exit)
        self.calc._log('\nAnnealing\n=========\n')
        bestState, bestLoss = self.anneal()
        # Taking the best state
        self.calc.model.vector = np.array(bestState)
        # Returning back the changed arguments
        self.calc.model.lossfunction.log_losses = initial_log_losses
        self.calc.model.lossfunction.raise_ConvergenceOccurred = \
            initial_raise_ConvergenceOccurred
        # cleaning up sessions
        self.calc.model.lossfunction._step = 0
        self.calc.model.lossfunction._cleanup()
        calc = self.calc

    @staticmethod
    def round_figures(x, n):
        """Returns x rounded to n significant figures."""
        return round(x, int(n - math.ceil(math.log10(abs(x)))))

    @staticmethod
    def time_string(seconds):
        """Returns time in seconds as a string formatted HHHH:MM:SS."""
        s = int(round(seconds))  # round to nearest second
        h, s = divmod(s, 3600)   # get hours and remainder
        m, s = divmod(s, 60)     # split remainder into minutes and seconds
        return '%4i:%02i:%02i' % (h, m, s)

    def save_state(self, fname=None):
        """Saves state
        """
        if not fname:
            date = datetime.datetime.now().isoformat().split(".")[0]
            fname = date + "_loss_" + str(self.get_loss()) + ".state"
        print("Saving state to: %s" % fname)
        with open(fname, "w") as fh:
            pickle.dump(self.state, fh)

    def move(self, state):
        """Create a state change
        """
        move_step = np.random.rand(len(state)) * 2. - 1.
        move_step *= 0.0005
        for _ in range(len(state)):
            state[_] = state[_] * (1 + move_step[_])
        return state

    def get_loss(self, state):
        """Calculate state's loss
        """
        lossfxn = \
            self.calc.model.lossfunction.get_loss(np.array(state),
                                                  lossprime=False,)['loss']
        return lossfxn

    def set_user_exit(self, signum, frame):
        """Raises the user_exit flag, further iterations are stopped
        """
        self.user_exit = True

    def set_schedule(self, schedule):
        """Takes the output from `auto` and sets the attributes
        """
        self.Tmax = schedule['tmax']
        self.Tmin = schedule['tmin']
        self.steps = int(schedule['steps'])

    def copy_state(self, state):
        """Returns an exact copy of the provided state Implemented according to
        self.copy_strategy, one of

        * deepcopy : use copy.deepcopy (slow but reliable)
        * slice: use list slices (faster but only works if state is list-like)
        * method: use the state's copy() method
        """
        if self.copy_strategy == 'deepcopy':
            return copy.deepcopy(state)
        elif self.copy_strategy == 'slice':
            return state[:]
        elif self.copy_strategy == 'copy':
            return state.copy()

    def update(self, step, T, L, acceptance, improvement):
        """Prints the current temperature, loss, acceptance rate, improvement
        rate, elapsed time, and remaining time.

        The acceptance rate indicates the percentage of moves since the last
        update that were accepted by the Metropolis algorithm.  It includes
        moves that decreased the loss, moves that left the loss unchanged, and
        moves that increased the loss yet were reached by thermal excitation.

        The improvement rate indicates the percentage of moves since the last
        update that strictly decreased the loss.  At high temperatures it will
        include both moves that improved the overall state and moves that
        simply undid previously accepted moves that increased the loss by
        thermal excititation.  At low temperatures it will tend toward zero as
        the moves that can decrease the loss are exhausted and moves that would
        increase the loss are no longer thermally accessible.
        """

        elapsed = time.time() - self.start
        if step == 0:
            self.calc._log('\n')
            header = ' %5s %12s %12s %7s %7s %10s %10s'
            self.calc._log(header % ('Step', 'Temperature', 'Loss (SSD)',
                                     'Accept', 'Improve', 'Elapsed',
                                     'Remaining'))
            self.calc._log(header % ('=' * 5, '=' * 12, '=' * 12,
                                     '=' * 7, '=' * 7, '=' * 10,
                                     '=' * 10,))
            self.calc._log(
                    ' %5i %12.2e %12.4e                   %s            '
                    % (step, T, L, self.time_string(elapsed)))
        else:
            remain = (self.steps - step) * (elapsed / step)
            self.calc._log(' %5i %12.2e %12.4e %7.2f%% %7.2f%% %s %s' %
                           (step, T, L,
                            100.0 * acceptance, 100.0 * improvement,
                            self.time_string(elapsed),
                            self.time_string(remain)))

    def anneal(self):
        """Minimizes the loss of a system by simulated annealing.

        Parameters
        ---------
        state
            An initial arrangement of the system

        Returns
        -------
        state, loss
            The best state and loss found.
        """
        step = 0
        self.start = time.time()

        # Precompute factor for exponential cooling from Tmax to Tmin
        if self.Tmin <= 0.0:
            raise Exception('Exponential cooling requires a minimum "\
                "temperature greater than zero.')
        Tfactor = -math.log(self.Tmax / self.Tmin)

        # Note initial state
        T = self.Tmax
        L = self.get_loss(self.state)
        prevState = self.copy_state(self.state)
        prevLoss = L
        bestState = self.copy_state(self.state)
        bestLoss = L
        trials, accepts, improves = 0, 0, 0
        if self.updates > 0:
            updateWavelength = self.steps / self.updates
            self.update(step, T, L, None, None)

        # Attempt moves to new states
        while step < (self.steps - 1) and not self.user_exit:
            step += 1
            T = self.Tmax * math.exp(Tfactor * step / self.steps)
            self.state = self.move(self.state)
            L = self.get_loss(self.state)
            dL = L - prevLoss
            trials += 1
            if dL > 0.0 and math.exp(-dL / T) < random.random():
                # Restore previous state
                self.state = self.copy_state(prevState)
                L = prevLoss
            else:
                # Accept new state and compare to best state
                accepts += 1
                if dL < 0.0:
                    improves += 1
                prevState = self.copy_state(self.state)
                prevLoss = L
                if L < bestLoss:
                    bestState = self.copy_state(self.state)
                    bestLoss = L
            if self.updates > 1:
                if step // updateWavelength > (step - 1) // updateWavelength:
                    self.update(
                        step, T, L, accepts / trials, improves / trials)
                    trials, accepts, improves = 0, 0, 0

        # line break after progress output
        print('')

        self.state = self.copy_state(bestState)
        if self.save_state_on_exit:
            self.save_state()
        # Return best state and loss
        return bestState, bestLoss

    def auto(self, minutes, steps=2000):
        """Minimizes the loss of a system by simulated annealing with automatic
        selection of the temperature schedule.

        Keyword arguments:
        state -- an initial arrangement of the system
        minutes -- time to spend annealing (after exploring temperatures)
        steps -- number of steps to spend on each stage of exploration

        Returns the best state and loss found.
        """

        def run(T, steps):
            """Anneals a system at constant temperature and returns the state,
            loss, rate of acceptance, and rate of improvement.
            """
            L = self.get_loss()
            prevState = self.copy_state(self.state)
            prevLoss = L
            accepts, improves = 0, 0
            for step in range(steps):
                self.move()
                L = self.get_loss()
                dL = L - prevLoss
                if dL > 0.0 and math.exp(-dL / T) < random.random():
                    self.state = self.copy_state(prevState)
                    L = prevLoss
                else:
                    accepts += 1
                    if dL < 0.0:
                        improves += 1
                    prevState = self.copy_state(self.state)
                    prevLoss = L
            return L, float(accepts) / steps, float(improves) / steps

        step = 0
        self.start = time.time()

        # Attempting automatic simulated anneal...
        # Find an initial guess for temperature
        T = 0.0
        L = self.get_loss()
        self.update(step, T, L, None, None)
        while T == 0.0:
            step += 1
            self.move()
            T = abs(self.get_loss() - L)

        # Search for Tmax - a temperature that gives 98% acceptance
        L, acceptance, improvement = run(T, steps)

        step += steps
        while acceptance > 0.98:
            T = self.round_figures(T / 1.5, 2)
            L, acceptance, improvement = run(T, steps)
            step += steps
            self.update(step, T, L, acceptance, improvement)
        while acceptance < 0.98:
            T = self.round_figures(T * 1.5, 2)
            L, acceptance, improvement = run(T, steps)
            step += steps
            self.update(step, T, L, acceptance, improvement)
        Tmax = T

        # Search for Tmin - a temperature that gives 0% improvement
        while improvement > 0.0:
            T = self.round_figures(T / 1.5, 2)
            L, acceptance, improvement = run(T, steps)
            step += steps
            self.update(step, T, L, acceptance, improvement)
        Tmin = T

        # Calculate anneal duration
        elapsed = time.time() - self.start
        duration = self.round_figures(int(60.0 * minutes * step / elapsed), 2)

        print('')  # New line after auto() output
        # Don't perform anneal, just return params
        return {'tmax': Tmax, 'tmin': Tmin, 'steps': duration}


class MetaDict(dict):
    """Dictionary that can also store metadata. Useful for images dictionary
    so that images can still be iterated by keys.
    """
    metadata = {}