This file is indexed.

/usr/lib/python2.7/dist-packages/z3util.py is in python-z3 4.4.1-0.3build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
############################################
# Copyright (c) 2012 Microsoft Corporation
# 
# Z3 Python interface
#
# Authors: Leonardo de Moura (leonardo)
#          ThanhVu (Vu) Nguyen <tnguyen@cs.unm.edu>
############################################
"""
Usage:  
import common_z3 as CM_Z3
"""

from z3 import *

def vset(seq, idfun=None, as_list=True):
    # This functions preserves the order of arguments while removing duplicates. 
    # This function is from https://code.google.com/p/common-python-vu/source/browse/vu_common.py
    # (Thanhu's personal code). It has been copied here to avoid a dependency on vu_common.py.
    """
    order preserving

    >>> vset([[11,2],1, [10,['9',1]],2, 1, [11,2],[3,3],[10,99],1,[10,['9',1]]],idfun=repr)
    [[11, 2], 1, [10, ['9', 1]], 2, [3, 3], [10, 99]]
    """
 
    def _uniq_normal(seq):
        d_ = {}
        for s in seq:
            if s not in d_:
                d_[s] = None
                yield s
 
    def _uniq_idfun(seq,idfun):
        d_ = {}
        for s in seq:
            h_ = idfun(s)
            if h_ not in d_:
                d_[h_] = None
                yield s
 
    if idfun is None:
        res = _uniq_normal(seq)
    else: 
        res = _uniq_idfun(seq,idfun)
 
    return list(res) if as_list else res 


def get_z3_version(as_str=False):
    major = ctypes.c_uint(0)
    minor = ctypes.c_uint(0)
    build = ctypes.c_uint(0)
    rev   = ctypes.c_uint(0)
    Z3_get_version(major,minor,build,rev)
    rs = map(int,(major.value,minor.value,build.value,rev.value))
    if as_str:
        return "{}.{}.{}.{}".format(*rs)
    else:
        return rs


def ehash(v):
    """
    Returns a 'stronger' hash value than the default hash() method.
    The result from hash() is not enough to distinguish between 2 
    z3 expressions in some cases.
    
    Note: the following doctests will fail with Python 2.x as the
    default formatting doesn't match that of 3.x.
    >>> x1 = Bool('x'); x2 = Bool('x'); x3 = Int('x')
    >>> print(x1.hash(),x2.hash(),x3.hash()) #BAD: all same hash values
    783810685 783810685 783810685
    >>> print(ehash(x1), ehash(x2), ehash(x3))
    x_783810685_1 x_783810685_1 x_783810685_2
    
    """
    if __debug__:
        assert is_expr(v)

    return "{}_{}_{}".format(str(v),v.hash(),v.sort_kind())


"""
In Z3, variables are called *uninterpreted* consts and 
variables are *interpreted* consts.
"""

def is_expr_var(v):
    """
    EXAMPLES:

    >>> is_expr_var(Int('7'))
    True
    >>> is_expr_var(IntVal('7'))
    False
    >>> is_expr_var(Bool('y'))
    True
    >>> is_expr_var(Int('x') + 7 == Int('y'))
    False
    >>> LOnOff, (On,Off) = EnumSort("LOnOff",['On','Off'])
    >>> Block,Reset,SafetyInjection=Consts("Block Reset SafetyInjection",LOnOff)
    >>> is_expr_var(LOnOff)
    False
    >>> is_expr_var(On)
    False
    >>> is_expr_var(Block)
    True
    >>> is_expr_var(SafetyInjection)
    True
    """

    return is_const(v) and v.decl().kind()==Z3_OP_UNINTERPRETED

def is_expr_val(v):
    """
    EXAMPLES:

    >>> is_expr_val(Int('7'))
    False
    >>> is_expr_val(IntVal('7'))
    True
    >>> is_expr_val(Bool('y'))
    False
    >>> is_expr_val(Int('x') + 7 == Int('y'))
    False
    >>> LOnOff, (On,Off) = EnumSort("LOnOff",['On','Off'])
    >>> Block,Reset,SafetyInjection=Consts("Block Reset SafetyInjection",LOnOff)
    >>> is_expr_val(LOnOff)
    False
    >>> is_expr_val(On)
    True
    >>> is_expr_val(Block)
    False
    >>> is_expr_val(SafetyInjection)
    False
    """        
    return is_const(v) and v.decl().kind()!=Z3_OP_UNINTERPRETED




def get_vars(f,rs=[]):
    """
    >>> x,y = Ints('x y')
    >>> a,b = Bools('a b')
    >>> get_vars(Implies(And(x+y==0,x*2==10),Or(a,Implies(a,b==False))))
    [x, y, a, b]

    """
    if __debug__:
        assert is_expr(f)

    if is_const(f):
        if is_expr_val(f):
            return rs
        else:  #variable
            return vset(rs + [f],str)

    else:
        for f_ in f.children():
            rs = get_vars(f_,rs)

        return vset(rs,str)



def mk_var(name,vsort):
    if vsort.kind() == Z3_INT_SORT:
        v = Int(name)
    elif vsort.kind() == Z3_REAL_SORT:
        v = Real(name)
    elif vsort.kind() == Z3_BOOL_SORT:
        v = Bool(name)
    elif vsort.kind() == Z3_DATATYPE_SORT:
        v = Const(name,vsort)

    else:
        assert False, 'Cannot handle this sort (s: %sid: %d)'\
            %(vsort,vsort.kind())

    return v



def prove(claim,assume=None,verbose=0):
    """
    >>> r,m = prove(BoolVal(True),verbose=0); r,model_str(m,as_str=False)
    (True, None)

    #infinite counter example when proving contradiction
    >>> r,m = prove(BoolVal(False)); r,model_str(m,as_str=False)
    (False, [])

    >>> x,y,z=Bools('x y z')
    >>> r,m = prove(And(x,Not(x))); r,model_str(m,as_str=True)
    (False, '[]')

    >>> r,m = prove(True,assume=And(x,Not(x)),verbose=0)
    Traceback (most recent call last):
    ...
    AssertionError: Assumption is alway False!

    >>> r,m = prove(Implies(x,x),assume=y,verbose=2); r,model_str(m,as_str=False)
    assume: 
    y
    claim: 
    Implies(x, x)
    to_prove: 
    Implies(y, Implies(x, x))
    (True, None)

    >>> r,m = prove(And(x,True),assume=y,verbose=0); r,model_str(m,as_str=False)
    (False, [(x, False), (y, True)])

    >>> r,m = prove(And(x,y),assume=y,verbose=0)
    >>> print(r)
    False
    >>> print(model_str(m,as_str=True))
    x = False
    y = True

    >>> a,b = Ints('a b')
    >>> r,m = prove(a**b == b**a,assume=None,verbose=0)
    E: cannot solve !
    >>> r is None and m is None
    True

    """

    if __debug__:
        assert not assume or is_expr(assume)


    to_prove = claim
    if assume:
        if __debug__:
            is_proved,_ = prove(Not(assume))

            def _f():
                emsg = "Assumption is alway False!"
                if verbose >= 2:
                    emsg = "{}\n{}".format(assume,emsg)
                return emsg

            assert is_proved==False, _f()

        to_prove = Implies(assume,to_prove)



    if verbose >= 2:
        print('assume: ')
        print(assume)
        print('claim: ')
        print(claim)
        print('to_prove: ')
        print(to_prove)

    f = Not(to_prove)

    models = get_models(f,k=1)
    if models is None: #unknown
        print('E: cannot solve !')
        return None, None
    elif models == False: #unsat
        return True,None   
    else: #sat
        if __debug__:
            assert isinstance(models,list)

        if models:
            return False, models[0] #the first counterexample
        else:
            return False, []  #infinite counterexample,models
        

def get_models(f,k):
    """
    Returns the first k models satisfiying f.
    If f is not satisfiable, returns False.
    If f cannot be solved, returns None
    If f is satisfiable, returns the first k models
    Note that if f is a tautology, e.g.\ True, then the result is []
    
    Based on http://stackoverflow.com/questions/11867611/z3py-checking-all-solutions-for-equation

    EXAMPLES:
    >>> x, y = Ints('x y')
    >>> len(get_models(And(0<=x,x <= 4),k=11))
    5
    >>> get_models(And(0<=x**y,x <= 1),k=2) is None
    True
    >>> get_models(And(0<=x,x <= -1),k=2)
    False
    >>> len(get_models(x+y==7,5))
    5
    >>> len(get_models(And(x<=5,x>=1),7))
    5
    >>> get_models(And(x<=0,x>=5),7)
    False

    >>> x = Bool('x')
    >>> get_models(And(x,Not(x)),k=1)
    False
    >>> get_models(Implies(x,x),k=1)
    []
    >>> get_models(BoolVal(True),k=1)
    []



    """

    if __debug__:
        assert is_expr(f)
        assert k>=1
    


    s = Solver()
    s.add(f)

    models = []
    i = 0
    while s.check() == sat and i < k:
        i = i + 1

        m = s.model()

        if not m: #if m == []
            break

        models.append(m)


        #create new constraint to block the current model
        block = Not(And([v() == m[v] for v in m]))
        s.add(block)

    
    if s.check() == unknown:
        return None
    elif s.check() == unsat and i==0:
        return False
    else:
        return models

def is_tautology(claim,verbose=0):
    """
    >>> is_tautology(Implies(Bool('x'),Bool('x')))
    True

    >>> is_tautology(Implies(Bool('x'),Bool('y')))
    False

    >>> is_tautology(BoolVal(True))
    True

    >>> is_tautology(BoolVal(False))
    False

    """
    return prove(claim=claim,assume=None,verbose=verbose)[0]


def is_contradiction(claim,verbose=0):
    """
    >>> x,y=Bools('x y')
    >>> is_contradiction(BoolVal(False))
    True
    
    >>> is_contradiction(BoolVal(True))
    False
    
    >>> is_contradiction(x)
    False
    
    >>> is_contradiction(Implies(x,y))
    False
    
    >>> is_contradiction(Implies(x,x))
    False
    
    >>> is_contradiction(And(x,Not(x)))
    True
    """

    return prove(claim=Not(claim),assume=None,verbose=verbose)[0]


def exact_one_model(f):
    """
    return True if f has exactly 1 model, False otherwise.
    
    EXAMPLES:

    >>> x, y = Ints('x y')
    >>> exact_one_model(And(0<=x**y,x <= 0))
    False

    >>> exact_one_model(And(0<=x,x <= 0))
    True

    >>> exact_one_model(And(0<=x,x <= 1))
    False

    >>> exact_one_model(And(0<=x,x <= -1))
    False
    """

    models = get_models(f,k=2)
    if isinstance(models,list):
        return len(models)==1
    else:
        return False
        
    

def myBinOp(op,*L):
    """
    >>> myAnd(*[Bool('x'),Bool('y')])
    And(x, y)
    
    >>> myAnd(*[Bool('x'),None])
    x
    
    >>> myAnd(*[Bool('x')])
    x
    
    >>> myAnd(*[])
    
    >>> myAnd(Bool('x'),Bool('y'))
    And(x, y)
    
    >>> myAnd(*[Bool('x'),Bool('y')])
    And(x, y)

    >>> myAnd([Bool('x'),Bool('y')])
    And(x, y)

    >>> myAnd((Bool('x'),Bool('y')))
    And(x, y)
    
    >>> myAnd(*[Bool('x'),Bool('y'),True])
    Traceback (most recent call last):
    ...
    AssertionError
    """

    if __debug__:
        assert op == Z3_OP_OR or op == Z3_OP_AND or op == Z3_OP_IMPLIES
    
    if len(L)==1 and (isinstance(L[0],list) or isinstance(L[0],tuple)):
        L = L[0]

    if __debug__:
        assert all(not isinstance(l,bool) for l in L)

    L = [l for l in L if is_expr(l)]
    if L:
        if len(L)==1:
            return L[0]
        else:
            if op ==  Z3_OP_OR:
                return Or(L)
            elif op == Z3_OP_AND:
                return And(L)
            else:   #IMPLIES
                return Implies(L[0],L[1])
    else:
        return None


def myAnd(*L): return myBinOp(Z3_OP_AND,*L)
def myOr(*L): return myBinOp(Z3_OP_OR,*L)
def myImplies(a,b):return myBinOp(Z3_OP_IMPLIES,[a,b])
    


Iff = lambda f: And(Implies(f[0],f[1]),Implies(f[1],f[0]))



def model_str(m,as_str=True):
    """
    Returned a 'sorted' model (so that it's easier to see)
    The model is sorted by its key, 
    e.g. if the model is y = 3 , x = 10, then the result is 
    x = 10, y = 3

    EXAMPLES:
    see doctest exampels from function prove() 

    """
    if __debug__:
        assert m is None or m == [] or isinstance(m,ModelRef)

    if m :
        vs = [(v,m[v]) for v in m]
        vs = sorted(vs,key=lambda a,_: str(a))
        if as_str:
            return '\n'.join(['{} = {}'.format(k,v) for (k,v) in vs])
        else:
            return vs
    else:
        return str(m) if as_str else m