This file is indexed.

/usr/lib/python2.7/dist-packages/pysparse/sparseMatrix.py is in python-sparse 1.1.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python

## -*-Pyth-*-
 # ###################################################################
 #  FiPy - Python-based finite volume PDE solver
 # 
 #  FILE: "sparseMatrix.py"
 #                                    created: 11/10/03 {3:15:38 PM} 
 #                                last update: 1/3/07 {3:03:32 PM} 
 #  Author: Jonathan Guyer <guyer@nist.gov>
 #  Author: Daniel Wheeler <daniel.wheeler@nist.gov>
 #  Author: James Warren   <jwarren@nist.gov>
 #  Author: Maxsim Gibiansky <maxsim.gibiansky@nist.gov>
 #    mail: NIST
 #     www: http://www.ctcms.nist.gov/fipy/
 #  
 # ========================================================================
 # This software was developed at the National Institute of Standards
 # and Technology by employees of the Federal Government in the course
 # of their official duties.  Pursuant to title 17 Section 105 of the
 # United States Code this software is not subject to copyright
 # protection and is in the public domain.  FiPy is an experimental
 # system.  NIST assumes no responsibility whatsoever for its use by
 # other parties, and makes no guarantees, expressed or implied, about
 # its quality, reliability, or any other characteristic.  We would
 # appreciate acknowledgement if the software is used.
 # 
 # This software can be redistributed and/or modified freely
 # provided that any derivative works bear some notice that they are
 # derived from it, and any modified versions bear some notice that
 # they have been modified.
 # ========================================================================
 #  
 #  Description: 
 # 
 #  History
 # 
 #  modified   by  rev reason
 #  ---------- --- --- -----------
 #  2003-11-10 JEG 1.0 original
 #  2006-06-12 MLG 1.0 made abstract
 # ###################################################################
 ##

__docformat__ = 'restructuredtext'

import numpy

class SparseMatrix:
    
    """
    .. attention:: This class is abstract. Always create one of its subclasses.
    """

    def __init__(self, size=None, bandwidth=0, matrix=None, sizeHint=None):
        pass

    __array_priority__ = 100.0    

    def getMatrix(self):
        pass

    def __array_wrap(self, arr, context=None):
        if context is None:
            return arr
        else: 
            return NotImplemented
    
    def copy(self):
        pass
        
    def __getitem__(self, index):
        pass
        
    def __str__(self):
        s = ""
        cellWidth = 11
        shape = self.getShape()
        for i in range(shape[0]):
            for j in range(shape[1]):
                v = self[i,j]
                if v == 0:
                    s += "---".center(cellWidth)
                else:
                    exp = numpy.log(abs(v))
                    if abs(exp) <= 4:
                        if exp < 0:
                            s += ("%9.6f" % v).ljust(cellWidth)
                        else:
                            s += ("%9.*f" % (6,v)).ljust(cellWidth)
                    else:
                        s += ("%9.2e" % v).ljust(cellWidth)
            s += "\n"
        return s[:-1]
            
    def __repr__(self):
        return repr(self.matrix)
        
    def __setitem__(self, index, value):
        pass
        
    def __add__(self, other):
        pass
        
    __radd__ = __add__

    def __iadd__(self, other):
        pass

    def __sub__(self, other):
        pass

    # Ask about this rsub
    def __rsub__(self, other):
        return -(__sub__(self, other))
        
        
    def __isub__(self, other):
        pass
        
    def __mul__(self, other):
        pass
            
    def __rmul__(self, other):
        pass
            
    def __neg__(self):
        return self * -1
        
    def __pos__(self):
        return self
        
##     def __eq__(self,other):
## 	return self.matrix.__eq__(other._getMatrix())

    def getShape(self):
        pass
        
##     def transpose(self):
##         pass

    def put(self, vector, id1, id2):
        pass

    def putDiagonal(self, vector):
        pass

    def take(self, id1, id2):
        pass

    def takeDiagonal(self):
        pass

    def addAt(self, vector, id1, id2):
        pass

    def addAtDiagonal(self, vector):
        pass

    def getNumpyArray(self):
        pass

    def exportMmf(self, filename):
        pass
        
##     def __array__(self):
##      shape = self._getShape()
##      indices = numpy.indices(shape)
##         numMatrix = self.take(indices[0].ravel(), indices[1].ravel())
##      return numpy.reshape(numMatrix, shape)