/usr/lib/python2.7/dist-packages/rasterio/warp.py is in python-rasterio 0.36.0-2build5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | """Raster warping and reprojection."""
from __future__ import absolute_import
from __future__ import division
from math import ceil
import warnings
from affine import Affine
import numpy as np
from rasterio._base import _transform
from rasterio._warp import (
    _transform_geom, _reproject, _calculate_default_transform)
from rasterio.enums import Resampling
from rasterio.env import ensure_env
from rasterio.transform import guard_transform
RESAMPLING = Resampling
warnings.warn(
    "RESAMPLING is deprecated, use Resampling instead.", DeprecationWarning)
@ensure_env
def transform(src_crs, dst_crs, xs, ys, zs=None):
    """Transform vectors from source to target coordinate reference system.
    Transform vectors of x, y and optionally z from source
    coordinate reference system into target.
    Parameters
    ------------
    src_crs: CRS or dict
        Source coordinate reference system, as a rasterio CRS object.
        Example: CRS({'init': 'EPSG:4326'})
    dst_crs: CRS or dict
        Target coordinate reference system.
    xs: array_like
        Contains x values.  Will be cast to double floating point values.
    ys:  array_like
        Contains y values.
    zs: array_like, optional
        Contains z values.  Assumed to be all 0 if absent.
    Returns
    ---------
    out: tuple of array_like, (xs, ys, [zs])
    Tuple of x, y, and optionally z vectors, transformed into the target
    coordinate reference system.
    """
    return _transform(src_crs, dst_crs, xs, ys, zs)
@ensure_env
def transform_geom(
        src_crs,
        dst_crs,
        geom,
        antimeridian_cutting=False,
        antimeridian_offset=10.0,
        precision=-1):
    """Transform geometry from source coordinate reference system into target.
    Parameters
    ------------
    src_crs: CRS or dict
        Source coordinate reference system, in rasterio dict format.
        Example: CRS({'init': 'EPSG:4326'})
    dst_crs: CRS or dict
        Target coordinate reference system.
    geom: GeoJSON like dict object
    antimeridian_cutting: bool, optional
        If True, cut geometries at the antimeridian, otherwise geometries will
        not be cut (default).
    antimeridian_offset: float
        Offset from the antimeridian in degrees (default: 10) within which
        any geometries will be split.
    precision: float
        If >= 0, geometry coordinates will be rounded to this number of decimal
        places after the transform operation, otherwise original coordinate
        values will be preserved (default).
    Returns
    ---------
    out: GeoJSON like dict object
        Transformed geometry in GeoJSON dict format
    """
    return _transform_geom(
        src_crs,
        dst_crs,
        geom,
        antimeridian_cutting,
        antimeridian_offset,
        precision)
@ensure_env
def transform_bounds(
        src_crs,
        dst_crs,
        left,
        bottom,
        right,
        top,
        densify_pts=21):
    """Transform bounds from src_crs to dst_crs.
    Optionally densifying the edges (to account for nonlinear transformations
    along these edges) and extracting the outermost bounds.
    Note: this does not account for the antimeridian.
    Parameters
    ----------
    src_crs: CRS or dict
        Source coordinate reference system, in rasterio dict format.
        Example: CRS({'init': 'EPSG:4326'})
    dst_crs: CRS or dict
        Target coordinate reference system.
    left, bottom, right, top: float
        Bounding coordinates in src_crs, from the bounds property of a raster.
    densify_pts: uint, optional
        Number of points to add to each edge to account for nonlinear
        edges produced by the transform process.  Large numbers will produce
        worse performance.  Default: 21 (gdal default).
    Returns
    -------
    left, bottom, right, top: float
        Outermost coordinates in target coordinate reference system.
    """
    if densify_pts < 0:
        raise ValueError('densify parameter must be >= 0')
    in_xs = []
    in_ys = []
    if densify_pts > 0:
        densify_factor = 1.0 / float(densify_pts + 1)
        # Add points along outer edges.
        for x in (left, right):
            in_xs.extend([x] * (densify_pts + 2))
            in_ys.extend(
                bottom + np.arange(0, densify_pts + 2, dtype=np.float32) *
                ((top - bottom) * densify_factor)
            )
        for y in (bottom, top):
            in_xs.extend(
                left + np.arange(1, densify_pts + 1, dtype=np.float32) *
                ((right - left) * densify_factor)
            )
            in_ys.extend([y] * densify_pts)
    else:
        in_xs = [left, left, right, right]
        in_ys = [bottom, top, bottom, top]
    xs, ys = transform(src_crs, dst_crs, in_xs, in_ys)
    return (min(xs), min(ys), max(xs), max(ys))
@ensure_env
def reproject(
        source,
        destination,
        src_transform=None,
        src_crs=None,
        src_nodata=None,
        dst_transform=None,
        dst_crs=None,
        dst_nodata=None,
        resampling=Resampling.nearest,
        **kwargs):
    """
    Reproject a source raster to a destination raster.
    If the source and destination are ndarrays, coordinate reference
    system definitions and affine transformation parameters are required
    for reprojection.
    If the source and destination are rasterio Bands, shorthand for
    bands of datasets on disk, the coordinate reference systems and
    transforms will be read from the appropriate datasets.
    Parameters
    ------------
    source: ndarray or rasterio Band
        Source raster.
    destination: ndarray or rasterio Band
        Target raster.
    src_transform: affine transform object, optional
        Source affine transformation.  Required if source and destination
        are ndarrays.  Will be derived from source if it is a rasterio Band.
    src_crs: CRS or dict, optional
        Source coordinate reference system, in rasterio dict format.
        Required if source and destination are ndarrays.
        Will be derived from source if it is a rasterio Band.
        Example: CRS({'init': 'EPSG:4326'})
    src_nodata: int or float, optional
        The source nodata value.  Pixels with this value will not be used
        for interpolation.  If not set, it will be default to the
        nodata value of the source image if a masked ndarray or rasterio band,
        if available.  Must be provided if dst_nodata is not None.
    dst_transform: affine transform object, optional
        Target affine transformation.  Required if source and destination
        are ndarrays.  Will be derived from target if it is a rasterio Band.
    dst_crs: CRS or dict, optional
        Target coordinate reference system.  Required if source and destination
        are ndarrays.  Will be derived from target if it is a rasterio Band.
    dst_nodata: int or float, optional
        The nodata value used to initialize the destination; it will remain
        in all areas not covered by the reprojected source.  Defaults to the
        nodata value of the destination image (if set), the value of
        src_nodata, or 0 (GDAL default).
    resampling: int
        Resampling method to use.  One of the following:
            Resampling.nearest,
            Resampling.bilinear,
            Resampling.cubic,
            Resampling.cubic_spline,
            Resampling.lanczos,
            Resampling.average,
            Resampling.mode
    kwargs:  dict, optional
        Additional arguments passed to transformation function.
    Returns
    ---------
    out: None
        Output is written to destination.
    """
    # Resampling guard.
    try:
        Resampling(resampling)
        if resampling == 7:
            raise ValueError
    except ValueError:
        raise ValueError(
            "resampling must be one of: {0}".format(", ".join(
                ['Resampling.{0}'.format(k) for k in
                 Resampling.__members__.keys() if k != 'gauss'])))
    # If working with identity transform, assume it is crs-less data
    # and that translating the matrix very slightly will avoid #674
    eps = 1e-100
    if src_transform and guard_transform(src_transform).is_identity:
        src_transform = src_transform.translation(eps, eps)
    if dst_transform and guard_transform(dst_transform).is_identity:
        dst_transform = dst_transform.translation(eps, eps)
    if src_transform:
        src_transform = guard_transform(src_transform).to_gdal()
    if dst_transform:
        dst_transform = guard_transform(dst_transform).to_gdal()
    # Passing None can cause segfault, use empty dict
    if src_crs is None:
        src_crs = {}
    if dst_crs is None:
        dst_crs = {}
    _reproject(
        source,
        destination,
        src_transform,
        src_crs,
        src_nodata,
        dst_transform,
        dst_crs,
        dst_nodata,
        resampling,
        **kwargs)
@ensure_env
def calculate_default_transform(
        src_crs,
        dst_crs,
        width,
        height,
        left,
        bottom,
        right,
        top,
        resolution=None):
    """Calculate parameters for reproject function.
    Transforms bounds to destination coordinate system, calculates resolution
    if not provided, and returns destination transform and dimensions.
    Intended to be used to calculate parameters for reproject function.
    Destination transform is anchored from the left, top coordinate.
    Destination width and height (and resolution if not provided), are
    calculated using GDAL's method for suggest warp output.
    Parameters
    ----------
    src_crs: CRS or dict
        Source coordinate reference system, in rasterio dict format.
        Example: CRS({'init': 'EPSG:4326'})
    dst_crs: CRS or dict
        Target coordinate reference system.
    width: int
        Source raster width.
    height: int
        Source raster height.
    left, bottom, right, top: float
        Bounding coordinates in src_crs, from the bounds property of a raster.
    resolution: tuple (x resolution, y resolution) or float, optional
        Target resolution, in units of target coordinate reference system.
    Returns
    -------
    tuple of destination affine transform, width, and height
    Note
    ----
    Should be called within a rasterio.Env() context
    Some behavior of this function is determined by the
    CHECK_WITH_INVERT_PROJ environment variable
        YES: constrain output raster to extents that can be inverted
             avoids visual artifacts and coordinate discontinuties.
        NO:  reproject coordinates beyond valid bound limits
    """
    dst_affine, dst_width, dst_height = _calculate_default_transform(
        src_crs, dst_crs,
        width, height,
        left, bottom, right, top)
    # If resolution is specified, Keep upper-left anchored
    # adjust the transform resolutions
    # adjust the width/height by the ratio of estimated:specified res (ceil'd)
    if resolution:
        # resolutions argument into tuple
        try:
            res = (float(resolution), float(resolution))
        except TypeError:
            res = (resolution[0], resolution[0]) \
                if len(resolution) == 1 else resolution[0:2]
        # Assume yres is provided as positive,
        # needs to be negative for north-up affine
        xres = res[0]
        yres = -res[1]
        xratio = dst_affine.a / xres
        yratio = dst_affine.e / yres
        dst_affine = Affine(xres, dst_affine.b, dst_affine.c,
                            dst_affine.d, yres, dst_affine.f)
        dst_width = ceil(dst_width * xratio)
        dst_height = ceil(dst_height * yratio)
    return dst_affine, dst_width, dst_height
 |