/usr/lib/python2.7/dist-packages/pyopencl/tools.py is in python-pyopencl 2017.2.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 | """Various helpful bits and pieces without much of a common theme."""
from __future__ import division, absolute_import
__copyright__ = "Copyright (C) 2010 Andreas Kloeckner"
__license__ = """
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
"""
import six
from six.moves import zip, intern
import numpy as np
from decorator import decorator
import pyopencl as cl
from pytools import memoize, memoize_method
from pyopencl.cffi_cl import _lib
from pytools.persistent_dict import KeyBuilder as KeyBuilderBase
import re
from pyopencl.compyte.dtypes import ( # noqa
get_or_register_dtype, TypeNameNotKnown,
register_dtype, dtype_to_ctype)
def _register_types():
from pyopencl.compyte.dtypes import (
TYPE_REGISTRY, fill_registry_with_opencl_c_types)
fill_registry_with_opencl_c_types(TYPE_REGISTRY)
get_or_register_dtype("cfloat_t", np.complex64)
get_or_register_dtype("cdouble_t", np.complex128)
_register_types()
# {{{ imported names
bitlog2 = _lib.bitlog2
from pyopencl.mempool import ( # noqa
PooledBuffer, DeferredAllocator, ImmediateAllocator, MemoryPool)
# }}}
# {{{ first-arg caches
_first_arg_dependent_caches = []
@decorator
def first_arg_dependent_memoize(func, cl_object, *args):
"""Provides memoization for a function. Typically used to cache
things that get created inside a :class:`pyopencl.Context`, e.g. programs
and kernels. Assumes that the first argument of the decorated function is
an OpenCL object that might go away, such as a :class:`pyopencl.Context` or
a :class:`pyopencl.CommandQueue`, and based on which we might want to clear
the cache.
.. versionadded:: 2011.2
"""
try:
ctx_dict = func._pyopencl_first_arg_dep_memoize_dic
except AttributeError:
# FIXME: This may keep contexts alive longer than desired.
# But I guess since the memory in them is freed, who cares.
ctx_dict = func._pyopencl_first_arg_dep_memoize_dic = {}
_first_arg_dependent_caches.append(ctx_dict)
try:
return ctx_dict[cl_object][args]
except KeyError:
arg_dict = ctx_dict.setdefault(cl_object, {})
result = func(cl_object, *args)
arg_dict[args] = result
return result
context_dependent_memoize = first_arg_dependent_memoize
def first_arg_dependent_memoize_nested(nested_func):
"""Provides memoization for nested functions. Typically used to cache
things that get created inside a :class:`pyopencl.Context`, e.g. programs
and kernels. Assumes that the first argument of the decorated function is
an OpenCL object that might go away, such as a :class:`pyopencl.Context` or
a :class:`pyopencl.CommandQueue`, and will therefore respond to
:func:`clear_first_arg_caches`.
.. versionadded:: 2013.1
Requires Python 2.5 or newer.
"""
from functools import wraps
cache_dict_name = intern("_memoize_inner_dic_%s_%s_%d"
% (nested_func.__name__, nested_func.__code__.co_filename,
nested_func.__code__.co_firstlineno))
from inspect import currentframe
# prevent ref cycle
try:
caller_frame = currentframe().f_back
cache_context = caller_frame.f_globals[
caller_frame.f_code.co_name]
finally:
#del caller_frame
pass
try:
cache_dict = getattr(cache_context, cache_dict_name)
except AttributeError:
cache_dict = {}
_first_arg_dependent_caches.append(cache_dict)
setattr(cache_context, cache_dict_name, cache_dict)
@wraps(nested_func)
def new_nested_func(cl_object, *args):
try:
return cache_dict[cl_object][args]
except KeyError:
arg_dict = cache_dict.setdefault(cl_object, {})
result = nested_func(cl_object, *args)
arg_dict[args] = result
return result
return new_nested_func
def clear_first_arg_caches():
"""Empties all first-argument-dependent memoization caches. Also releases
all held reference contexts. If it is important to you that the
program detaches from its context, you might need to call this
function to free all remaining references to your context.
.. versionadded:: 2011.2
"""
for cache in _first_arg_dependent_caches:
cache.clear()
import atexit
atexit.register(clear_first_arg_caches)
# }}}
def get_test_platforms_and_devices(plat_dev_string=None):
"""Parse a string of the form 'PYOPENCL_TEST=0:0,1;intel:i5'.
:return: list of tuples (platform, [device, device, ...])
"""
if plat_dev_string is None:
import os
plat_dev_string = os.environ.get("PYOPENCL_TEST", None)
def find_cl_obj(objs, identifier):
try:
num = int(identifier)
except Exception:
pass
else:
return objs[num]
found = False
for obj in objs:
if identifier.lower() in (obj.name + ' ' + obj.vendor).lower():
return obj
if not found:
raise RuntimeError("object '%s' not found" % identifier)
if plat_dev_string:
result = []
for entry in plat_dev_string.split(";"):
lhsrhs = entry.split(":")
if len(lhsrhs) == 1:
platform = find_cl_obj(cl.get_platforms(), lhsrhs[0])
result.append((platform, platform.get_devices()))
elif len(lhsrhs) != 2:
raise RuntimeError("invalid syntax of PYOPENCL_TEST")
else:
plat_str, dev_strs = lhsrhs
platform = find_cl_obj(cl.get_platforms(), plat_str)
devs = platform.get_devices()
result.append(
(platform,
[find_cl_obj(devs, dev_id)
for dev_id in dev_strs.split(",")]))
return result
else:
return [
(platform, platform.get_devices())
for platform in cl.get_platforms()]
def pytest_generate_tests_for_pyopencl(metafunc):
class ContextFactory:
def __init__(self, device):
self.device = device
def __call__(self):
# Get rid of leftovers from past tests.
# CL implementations are surprisingly limited in how many
# simultaneous contexts they allow...
clear_first_arg_caches()
from gc import collect
collect()
return cl.Context([self.device])
def __str__(self):
# Don't show address, so that parallel test collection works
return ("<context factory for <pyopencl.Device '%s' on '%s'>" %
(self.device.name.strip(),
self.device.platform.name.strip()))
test_plat_and_dev = get_test_platforms_and_devices()
if ("device" in metafunc.funcargnames
or "ctx_factory" in metafunc.funcargnames
or "ctx_getter" in metafunc.funcargnames):
arg_dict = {}
for platform, plat_devs in test_plat_and_dev:
if "platform" in metafunc.funcargnames:
arg_dict["platform"] = platform
for device in plat_devs:
if "device" in metafunc.funcargnames:
arg_dict["device"] = device
if "ctx_factory" in metafunc.funcargnames:
arg_dict["ctx_factory"] = ContextFactory(device)
if "ctx_getter" in metafunc.funcargnames:
from warnings import warn
warn("The 'ctx_getter' arg is deprecated in "
"favor of 'ctx_factory'.",
DeprecationWarning)
arg_dict["ctx_getter"] = ContextFactory(device)
metafunc.addcall(funcargs=arg_dict.copy(),
id=", ".join("%s=%s" % (arg, value)
for arg, value in six.iteritems(arg_dict)))
elif "platform" in metafunc.funcargnames:
for platform, plat_devs in test_plat_and_dev:
metafunc.addcall(
funcargs=dict(platform=platform),
id=str(platform))
# {{{ C argument lists
class Argument(object):
pass
class DtypedArgument(Argument):
def __init__(self, dtype, name):
self.dtype = np.dtype(dtype)
self.name = name
def __repr__(self):
return "%s(%r, %s)" % (
self.__class__.__name__,
self.name,
self.dtype)
class VectorArg(DtypedArgument):
def __init__(self, dtype, name, with_offset=False):
DtypedArgument.__init__(self, dtype, name)
self.with_offset = with_offset
def declarator(self):
if self.with_offset:
# Two underscores -> less likelihood of a name clash.
return "__global %s *%s__base, long %s__offset" % (
dtype_to_ctype(self.dtype), self.name, self.name)
else:
result = "__global %s *%s" % (dtype_to_ctype(self.dtype), self.name)
return result
class ScalarArg(DtypedArgument):
def declarator(self):
return "%s %s" % (dtype_to_ctype(self.dtype), self.name)
class OtherArg(Argument):
def __init__(self, declarator, name):
self.decl = declarator
self.name = name
def declarator(self):
return self.decl
def parse_c_arg(c_arg, with_offset=False):
for aspace in ["__local", "__constant"]:
if aspace in c_arg:
raise RuntimeError("cannot deal with local or constant "
"OpenCL address spaces in C argument lists ")
c_arg = c_arg.replace("__global", "")
if with_offset:
def vec_arg_factory(dtype, name):
return VectorArg(dtype, name, with_offset=True)
else:
vec_arg_factory = VectorArg
from pyopencl.compyte.dtypes import parse_c_arg_backend
return parse_c_arg_backend(c_arg, ScalarArg, vec_arg_factory)
def parse_arg_list(arguments, with_offset=False):
"""Parse a list of kernel arguments. *arguments* may be a comma-separate
list of C declarators in a string, a list of strings representing C
declarators, or :class:`Argument` objects.
"""
if isinstance(arguments, str):
arguments = arguments.split(",")
def parse_single_arg(obj):
if isinstance(obj, str):
from pyopencl.tools import parse_c_arg
return parse_c_arg(obj, with_offset=with_offset)
else:
return obj
return [parse_single_arg(arg) for arg in arguments]
def get_arg_list_scalar_arg_dtypes(arg_types):
result = []
for arg_type in arg_types:
if isinstance(arg_type, ScalarArg):
result.append(arg_type.dtype)
elif isinstance(arg_type, VectorArg):
result.append(None)
if arg_type.with_offset:
result.append(np.int64)
else:
raise RuntimeError("arg type not understood: %s" % type(arg_type))
return result
def get_arg_offset_adjuster_code(arg_types):
result = []
for arg_type in arg_types:
if isinstance(arg_type, VectorArg) and arg_type.with_offset:
result.append("__global %(type)s *%(name)s = "
"(__global %(type)s *) "
"((__global char *) %(name)s__base + %(name)s__offset);"
% dict(
type=dtype_to_ctype(arg_type.dtype),
name=arg_type.name))
return "\n".join(result)
# }}}
def get_gl_sharing_context_properties():
ctx_props = cl.context_properties
from OpenGL import platform as gl_platform
props = []
import sys
if sys.platform in ["linux", "linux2"]:
from OpenGL import GLX
props.append(
(ctx_props.GL_CONTEXT_KHR, gl_platform.GetCurrentContext()))
props.append(
(ctx_props.GLX_DISPLAY_KHR,
GLX.glXGetCurrentDisplay()))
elif sys.platform == "win32":
from OpenGL import WGL
props.append(
(ctx_props.GL_CONTEXT_KHR, gl_platform.GetCurrentContext()))
props.append(
(ctx_props.WGL_HDC_KHR,
WGL.wglGetCurrentDC()))
elif sys.platform == "darwin":
props.append(
(ctx_props.CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
cl.get_apple_cgl_share_group()))
else:
raise NotImplementedError("platform '%s' not yet supported"
% sys.platform)
return props
class _CDeclList:
def __init__(self, device):
self.device = device
self.declared_dtypes = set()
self.declarations = []
self.saw_double = False
self.saw_complex = False
def add_dtype(self, dtype):
dtype = np.dtype(dtype)
if dtype in [np.float64 or np.complex128]:
self.saw_double = True
if dtype.kind == "c":
self.saw_complex = True
if dtype.kind != "V":
return
if dtype in self.declared_dtypes:
return
import pyopencl.cltypes
if dtype in pyopencl.cltypes.vec_type_to_scalar_and_count:
return
for name, field_data in sorted(six.iteritems(dtype.fields)):
field_dtype, offset = field_data[:2]
self.add_dtype(field_dtype)
_, cdecl = match_dtype_to_c_struct(
self.device, dtype_to_ctype(dtype), dtype)
self.declarations.append(cdecl)
self.declared_dtypes.add(dtype)
def visit_arguments(self, arguments):
for arg in arguments:
dtype = arg.dtype
if dtype in [np.float64 or np.complex128]:
self.saw_double = True
if dtype.kind == "c":
self.saw_complex = True
def get_declarations(self):
result = "\n\n".join(self.declarations)
if self.saw_complex:
result = (
"#include <pyopencl-complex.h>\n\n"
+ result)
if self.saw_double:
result = (
"""
#if __OPENCL_C_VERSION__ < 120
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#endif
#define PYOPENCL_DEFINE_CDOUBLE
"""
+ result)
return result
@memoize
def match_dtype_to_c_struct(device, name, dtype, context=None):
"""Return a tuple `(dtype, c_decl)` such that the C struct declaration
in `c_decl` and the structure :class:`numpy.dtype` instance `dtype`
have the same memory layout.
Note that *dtype* may be modified from the value that was passed in,
for example to insert padding.
(As a remark on implementation, this routine runs a small kernel on
the given *device* to ensure that :mod:`numpy` and C offsets and
sizes match.)
.. versionadded: 2013.1
This example explains the use of this function::
>>> import numpy as np
>>> import pyopencl as cl
>>> import pyopencl.tools
>>> ctx = cl.create_some_context()
>>> dtype = np.dtype([("id", np.uint32), ("value", np.float32)])
>>> dtype, c_decl = pyopencl.tools.match_dtype_to_c_struct(
... ctx.devices[0], 'id_val', dtype)
>>> print c_decl
typedef struct {
unsigned id;
float value;
} id_val;
>>> print dtype
[('id', '<u4'), ('value', '<f4')]
>>> cl.tools.get_or_register_dtype('id_val', dtype)
As this example shows, it is important to call
:func:`get_or_register_dtype` on the modified `dtype` returned by this
function, not the original one.
"""
fields = sorted(six.iteritems(dtype.fields),
key=lambda name_dtype_offset: name_dtype_offset[1][1])
c_fields = []
for field_name, dtype_and_offset in fields:
field_dtype, offset = dtype_and_offset[:2]
c_fields.append(" %s %s;" % (dtype_to_ctype(field_dtype), field_name))
c_decl = "typedef struct {\n%s\n} %s;\n\n" % (
"\n".join(c_fields),
name)
cdl = _CDeclList(device)
for field_name, dtype_and_offset in fields:
field_dtype, offset = dtype_and_offset[:2]
cdl.add_dtype(field_dtype)
pre_decls = cdl.get_declarations()
offset_code = "\n".join(
"result[%d] = pycl_offsetof(%s, %s);" % (i+1, name, field_name)
for i, (field_name, _) in enumerate(fields))
src = r"""
#define pycl_offsetof(st, m) \
((uint) ((__local char *) &(dummy.m) \
- (__local char *)&dummy ))
%(pre_decls)s
%(my_decl)s
__kernel void get_size_and_offsets(__global uint *result)
{
result[0] = sizeof(%(my_type)s);
__local %(my_type)s dummy;
%(offset_code)s
}
""" % dict(
pre_decls=pre_decls,
my_decl=c_decl,
my_type=name,
offset_code=offset_code)
if context is None:
context = cl.Context([device])
queue = cl.CommandQueue(context)
prg = cl.Program(context, src)
knl = prg.build(devices=[device]).get_size_and_offsets
import pyopencl.array # noqa
result_buf = cl.array.empty(queue, 1+len(fields), np.uint32)
knl(queue, (1,), (1,), result_buf.data)
queue.finish()
size_and_offsets = result_buf.get()
size = int(size_and_offsets[0])
from pytools import any
offsets = size_and_offsets[1:]
if any(ofs >= size for ofs in offsets):
# offsets not plausible
if dtype.itemsize == size:
# If sizes match, use numpy's idea of the offsets.
offsets = [dtype_and_offset[1]
for field_name, dtype_and_offset in fields]
else:
raise RuntimeError(
"OpenCL compiler reported offsetof() past sizeof() "
"for struct layout on '%s'. "
"This makes no sense, and it's usually indicates a "
"compiler bug. "
"Refusing to discover struct layout." % device)
result_buf.data.release()
del knl
del prg
del queue
del context
try:
dtype_arg_dict = {
'names': [field_name
for field_name, (field_dtype, offset) in fields],
'formats': [field_dtype
for field_name, (field_dtype, offset) in fields],
'offsets': [int(x) for x in offsets],
'itemsize': int(size_and_offsets[0]),
}
dtype = np.dtype(dtype_arg_dict)
if dtype.itemsize != size_and_offsets[0]:
# "Old" versions of numpy (1.6.x?) silently ignore "itemsize". Boo.
dtype_arg_dict["names"].append("_pycl_size_fixer")
dtype_arg_dict["formats"].append(np.uint8)
dtype_arg_dict["offsets"].append(int(size_and_offsets[0])-1)
dtype = np.dtype(dtype_arg_dict)
except NotImplementedError:
def calc_field_type():
total_size = 0
padding_count = 0
for offset, (field_name, (field_dtype, _)) in zip(offsets, fields):
if offset > total_size:
padding_count += 1
yield ('__pycl_padding%d' % padding_count,
'V%d' % offset - total_size)
yield field_name, field_dtype
total_size = field_dtype.itemsize + offset
dtype = np.dtype(list(calc_field_type()))
assert dtype.itemsize == size_and_offsets[0]
return dtype, c_decl
@memoize
def dtype_to_c_struct(device, dtype):
if dtype.fields is None:
return ""
import pyopencl.cltypes
if dtype in pyopencl.cltypes.vec_type_to_scalar_and_count:
# Vector types are built-in. Don't try to redeclare those.
return ""
matched_dtype, c_decl = match_dtype_to_c_struct(
device, dtype_to_ctype(dtype), dtype)
def dtypes_match():
result = len(dtype.fields) == len(matched_dtype.fields)
for name, val in six.iteritems(dtype.fields):
result = result and matched_dtype.fields[name] == val
return result
assert dtypes_match()
return c_decl
# {{{ code generation/templating helper
def _process_code_for_macro(code):
code = code.replace("//CL//", "\n")
if "//" in code:
raise RuntimeError("end-of-line comments ('//') may not be used in "
"code snippets")
return code.replace("\n", " \\\n")
class _SimpleTextTemplate:
def __init__(self, txt):
self.txt = txt
def render(self, context):
return self.txt
class _PrintfTextTemplate:
def __init__(self, txt):
self.txt = txt
def render(self, context):
return self.txt % context
class _MakoTextTemplate:
def __init__(self, txt):
from mako.template import Template
self.template = Template(txt, strict_undefined=True)
def render(self, context):
return self.template.render(**context)
class _ArgumentPlaceholder:
"""A placeholder for subclasses of :class:`DtypedArgument`. This is needed
because the concrete dtype of the argument is not known at template
creation time--it may be a type alias that will only be filled in
at run time. These types take the place of these proto-arguments until
all types are known.
See also :class:`_TemplateRenderer.render_arg`.
"""
def __init__(self, typename, name, **extra_kwargs):
self.typename = typename
self.name = name
self.extra_kwargs = extra_kwargs
class _VectorArgPlaceholder(_ArgumentPlaceholder):
target_class = VectorArg
class _ScalarArgPlaceholder(_ArgumentPlaceholder):
target_class = ScalarArg
class _TemplateRenderer(object):
def __init__(self, template, type_aliases, var_values, context=None,
options=[]):
self.template = template
self.type_aliases = dict(type_aliases)
self.var_dict = dict(var_values)
for name in self.var_dict:
if name.startswith("macro_"):
self.var_dict[name] = _process_code_for_macro(
self.var_dict[name])
self.context = context
self.options = options
def __call__(self, txt):
if txt is None:
return txt
result = self.template.get_text_template(txt).render(self.var_dict)
return str(result)
def get_rendered_kernel(self, txt, kernel_name):
prg = cl.Program(self.context, self(txt)).build(self.options)
kernel_name_prefix = self.var_dict.get("kernel_name_prefix")
if kernel_name_prefix is not None:
kernel_name = kernel_name_prefix+kernel_name
return getattr(prg, kernel_name)
def parse_type(self, typename):
if isinstance(typename, str):
try:
return self.type_aliases[typename]
except KeyError:
from pyopencl.compyte.dtypes import NAME_TO_DTYPE
return NAME_TO_DTYPE[typename]
else:
return np.dtype(typename)
def render_arg(self, arg_placeholder):
return arg_placeholder.target_class(
self.parse_type(arg_placeholder.typename),
arg_placeholder.name,
**arg_placeholder.extra_kwargs)
_C_COMMENT_FINDER = re.compile(r"/\*.*?\*/")
def render_argument_list(self, *arg_lists, **kwargs):
with_offset = kwargs.pop("with_offset", False)
if kwargs:
raise TypeError("unrecognized kwargs: " + ", ".join(kwargs))
all_args = []
for arg_list in arg_lists:
if isinstance(arg_list, str):
arg_list = str(
self.template
.get_text_template(arg_list).render(self.var_dict))
arg_list = self._C_COMMENT_FINDER.sub("", arg_list)
arg_list = arg_list.replace("\n", " ")
all_args.extend(arg_list.split(","))
else:
all_args.extend(arg_list)
if with_offset:
def vec_arg_factory(typename, name):
return _VectorArgPlaceholder(typename, name, with_offset=True)
else:
vec_arg_factory = _VectorArgPlaceholder
from pyopencl.compyte.dtypes import parse_c_arg_backend
parsed_args = []
for arg in all_args:
if isinstance(arg, str):
arg = arg.strip()
if not arg:
continue
ph = parse_c_arg_backend(arg,
_ScalarArgPlaceholder, vec_arg_factory,
name_to_dtype=lambda x: x)
parsed_arg = self.render_arg(ph)
elif isinstance(arg, Argument):
parsed_arg = arg
elif isinstance(arg, tuple):
parsed_arg = ScalarArg(self.parse_type(arg[0]), arg[1])
parsed_args.append(parsed_arg)
return parsed_args
def get_type_decl_preamble(self, device, decl_type_names, arguments=None):
cdl = _CDeclList(device)
for typename in decl_type_names:
cdl.add_dtype(self.parse_type(typename))
if arguments is not None:
cdl.visit_arguments(arguments)
for _, tv in sorted(six.iteritems(self.type_aliases)):
cdl.add_dtype(tv)
type_alias_decls = [
"typedef %s %s;" % (dtype_to_ctype(val), name)
for name, val in sorted(six.iteritems(self.type_aliases))
]
return cdl.get_declarations() + "\n" + "\n".join(type_alias_decls)
class KernelTemplateBase(object):
def __init__(self, template_processor=None):
self.template_processor = template_processor
self.build_cache = {}
_first_arg_dependent_caches.append(self.build_cache)
def get_preamble(self):
pass
_TEMPLATE_PROCESSOR_PATTERN = re.compile(r"^//CL(?::([a-zA-Z0-9_]+))?//")
@memoize_method
def get_text_template(self, txt):
proc_match = self._TEMPLATE_PROCESSOR_PATTERN.match(txt)
tpl_processor = None
if proc_match is not None:
tpl_processor = proc_match.group(1)
# chop off //CL// mark
txt = txt[len(proc_match.group(0)):]
if tpl_processor is None:
tpl_processor = self.template_processor
if tpl_processor is None or tpl_processor == "none":
return _SimpleTextTemplate(txt)
elif tpl_processor == "printf":
return _PrintfTextTemplate(txt)
elif tpl_processor == "mako":
return _MakoTextTemplate(txt)
else:
raise RuntimeError(
"unknown template processor '%s'" % proc_match.group(1))
def get_renderer(self, type_aliases, var_values, context=None, options=[]):
return _TemplateRenderer(self, type_aliases, var_values)
def build(self, context, *args, **kwargs):
"""Provide caching for an :meth:`build_inner`."""
cache_key = (context, args, tuple(sorted(six.iteritems(kwargs))))
try:
return self.build_cache[cache_key]
except KeyError:
result = self.build_inner(context, *args, **kwargs)
self.build_cache[cache_key] = result
return result
# }}}
# {{{ array_module
class _CLFakeArrayModule:
def __init__(self, queue):
self.queue = queue
@property
def ndarray(self):
from pyopencl.array import Array
return Array
def dot(self, x, y):
from pyopencl.array import dot
return dot(x, y, queue=self.queue).get()
def vdot(self, x, y):
from pyopencl.array import vdot
return vdot(x, y, queue=self.queue).get()
def empty(self, shape, dtype, order="C"):
from pyopencl.array import empty
return empty(self.queue, shape, dtype, order=order)
def hstack(self, arrays):
from pyopencl.array import hstack
return hstack(arrays, self.queue)
def array_module(a):
if isinstance(a, np.ndarray):
return np
else:
from pyopencl.array import Array
if isinstance(a, Array):
return _CLFakeArrayModule(a.queue)
else:
raise TypeError("array type not understood: %s" % type(a))
# }}}
def is_spirv(s):
spirv_magic = b"\x07\x23\x02\x03"
return (
isinstance(s, six.binary_type)
and (
s[:4] == spirv_magic
or s[:4] == spirv_magic[::-1]))
# {{{ numpy key types builder
class _NumpyTypesKeyBuilder(KeyBuilderBase):
def update_for_type(self, key_hash, key):
if issubclass(key, np.generic):
self.update_for_str(key_hash, key.__name__)
return
raise TypeError("unsupported type for persistent hash keying: %s"
% type(key))
# }}}
# vim: foldmethod=marker
|