This file is indexed.

/usr/lib/python2.7/dist-packages/numba/compiler.py is in python-numba 0.34.0-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
from __future__ import print_function, division, absolute_import

import os
import inspect
from contextlib import contextmanager
from collections import namedtuple, defaultdict
from pprint import pprint
import sys
import warnings
import traceback
import threading
from .tracing import trace, event

from numba import (bytecode, interpreter, funcdesc, postproc,
                   typing, typeinfer, lowering, objmode, utils, config,
                   errors, types, ir, types, rewrites, transforms)
from numba.targets import cpu, callconv
from numba.annotations import type_annotations
from numba.parfor import ParforPass
from numba.inline_closurecall import InlineClosureCallPass


# Lock for the preventing multiple compiler execution
lock_compiler = threading.RLock()


class Flags(utils.ConfigOptions):
    # These options are all false by default, but the defaults are
    # different with the @jit decorator (see targets.options.TargetOptions).

    OPTIONS = {
        # Enable loop-lifting
        'enable_looplift': False,
        # Enable pyobject mode (in general)
        'enable_pyobject': False,
        # Enable pyobject mode inside lifted loops
        'enable_pyobject_looplift': False,
        # Force pyobject mode inside the whole function
        'force_pyobject': False,
        # Release GIL inside the native function
        'release_gil': False,
        'no_compile': False,
        'debuginfo': False,
        'boundcheck': False,
        'forceinline': False,
        'no_cpython_wrapper': False,
        'auto_parallel': False,
        'nrt': False,
        'no_rewrites': False,
        'error_model': 'python',
        'fastmath': False,
    }


DEFAULT_FLAGS = Flags()
DEFAULT_FLAGS.set('nrt')


CR_FIELDS = ["typing_context",
             "target_context",
             "entry_point",
             "typing_error",
             "type_annotation",
             "signature",
             "objectmode",
             "lifted",
             "fndesc",
             "interpmode",
             "library",
             "call_helper",
             "environment",
             "has_dynamic_globals"]


class CompileResult(namedtuple("_CompileResult", CR_FIELDS)):
    __slots__ = ()

    def _reduce(self):
        """
        Reduce a CompileResult to picklable components.
        """
        libdata = self.library.serialize_using_object_code()
        # Make it (un)picklable efficiently
        typeann = str(self.type_annotation)
        fndesc = self.fndesc
        # Those don't need to be pickled and may fail
        fndesc.typemap = fndesc.calltypes = None

        return (libdata, self.fndesc, self.environment, self.signature,
                self.objectmode, self.interpmode, self.lifted, typeann)

    @classmethod
    def _rebuild(cls, target_context, libdata, fndesc, env,
                 signature, objectmode, interpmode, lifted, typeann):
        library = target_context.codegen().unserialize_library(libdata)
        cfunc = target_context.get_executable(library, fndesc, env)
        cr = cls(target_context=target_context,
                 typing_context=target_context.typing_context,
                 library=library,
                 environment=env,
                 entry_point=cfunc,
                 fndesc=fndesc,
                 type_annotation=typeann,
                 signature=signature,
                 objectmode=objectmode,
                 interpmode=interpmode,
                 lifted=lifted,
                 typing_error=None,
                 call_helper=None,
                 has_dynamic_globals=False,  # by definition
                 )
        return cr


_LowerResult = namedtuple("_LowerResult", [
    "fndesc",
    "call_helper",
    "cfunc",
    "env",
    "has_dynamic_globals",
])


def compile_result(**kws):
    keys = set(kws.keys())
    fieldset = set(CR_FIELDS)
    badnames = keys - fieldset
    if badnames:
        raise NameError(*badnames)
    missing = fieldset - keys
    for k in missing:
        kws[k] = None
    # Avoid keeping alive traceback variables
    if sys.version_info >= (3,):
        err = kws['typing_error']
        if err is not None:
            kws['typing_error'] = err.with_traceback(None)
    return CompileResult(**kws)


def compile_isolated(func, args, return_type=None, flags=DEFAULT_FLAGS,
                     locals={}):
    """
    Compile the function in an isolated environment (typing and target context).
    Good for testing.
    """
    from .targets.registry import cpu_target
    typingctx = typing.Context()
    targetctx = cpu.CPUContext(typingctx)
    # Register the contexts in case for nested @jit or @overload calls
    with cpu_target.nested_context(typingctx, targetctx):
        return compile_extra(typingctx, targetctx, func, args, return_type,
                             flags, locals)


def run_frontend(func):
    """
    Run the compiler frontend over the given Python function, and return
    the function's canonical Numba IR.
    """
    # XXX make this a dedicated Pipeline?
    func_id = bytecode.FunctionIdentity.from_function(func)
    interp = interpreter.Interpreter(func_id)
    bc = bytecode.ByteCode(func_id=func_id)
    func_ir = interp.interpret(bc)
    post_proc = postproc.PostProcessor(func_ir)
    post_proc.run()
    return func_ir


class _CompileStatus(object):
    """
    Used like a C record
    """
    __slots__ = ['fail_reason', 'can_fallback', 'can_giveup']

    def __init__(self, can_fallback, can_giveup):
        self.fail_reason = None
        self.can_fallback = can_fallback
        self.can_giveup = can_giveup

    def __repr__(self):
        vals = []
        for k in self.__slots__:
            vals.append("{k}={v}".format(k=k, v=getattr(self, k)))
        return ', '.join(vals)


class _EarlyPipelineCompletion(Exception):
    def __init__(self, result):
        self.result = result


class _PipelineManager(object):
    def __init__(self):
        self.pipeline_order = []
        self.pipeline_stages = {}
        self._finalized = False

    def create_pipeline(self, pipeline_name):
        assert not self._finalized, "Pipelines can no longer be added"
        self.pipeline_order.append(pipeline_name)
        self.pipeline_stages[pipeline_name] = []
        self.current = pipeline_name

    def add_stage(self, stage_function, stage_description):
        assert not self._finalized, "Stages can no longer be added."
        current_pipeline_name = self.pipeline_order[-1]
        func_desc_tuple = (stage_function, stage_description)
        self.pipeline_stages[current_pipeline_name].append(func_desc_tuple)

    def finalize(self):
        self._finalized = True

    def _patch_error(self, desc, exc):
        """
        Patches the error to show the stage that it arose in.
        """
        newmsg = "{desc}\n{exc}".format(desc=desc, exc=exc)

        # For python2, attach the traceback of the previous exception.
        if not utils.IS_PY3:
            fmt = "Caused By:\n{tb}\n{newmsg}"
            newmsg = fmt.format(tb=traceback.format_exc(), newmsg=newmsg)

        exc.args = (newmsg,)
        return exc

    def run(self, status):
        assert self._finalized, "PM must be finalized before run()"
        res = None
        for pipeline_name in self.pipeline_order:
            event(pipeline_name)
            is_final_pipeline = pipeline_name == self.pipeline_order[-1]
            for stage, stage_name in self.pipeline_stages[pipeline_name]:
                try:
                    event(stage_name)
                    stage()
                except _EarlyPipelineCompletion as e:
                    return e.result
                except BaseException as e:
                    msg = "Failed at %s (%s)" % (pipeline_name, stage_name)
                    patched_exception = self._patch_error(msg, e)
                    # No more fallback pipelines?
                    if is_final_pipeline:
                        raise patched_exception
                    # Go to next fallback pipeline
                    else:
                        status.fail_reason = patched_exception
                        break
            else:
                return None

        # TODO save all error information
        raise CompilerError("All pipelines have failed")


class Pipeline(object):
    """
    Stores and manages states for the compiler pipeline
    """
    def __init__(self, typingctx, targetctx, library, args, return_type, flags,
                 locals):
        # Make sure the environment is reloaded
        config.reload_config()
        typingctx.refresh()
        targetctx.refresh()

        self.typingctx = typingctx
        self.targetctx = _make_subtarget(targetctx, flags)
        self.library = library
        self.args = args
        self.return_type = return_type
        self.flags = flags
        self.locals = locals

        # Results of various steps of the compilation pipeline
        self.bc = None
        self.func_id = None
        self.func_ir = None
        self.func_ir_original = None  # used for fallback
        self.lifted = None
        self.lifted_from = None
        self.typemap = None
        self.calltypes = None
        self.type_annotation = None

        self.status = _CompileStatus(
            can_fallback=self.flags.enable_pyobject,
            can_giveup=config.COMPATIBILITY_MODE
        )

    @contextmanager
    def fallback_context(self, msg):
        """
        Wraps code that would signal a fallback to object mode
        """
        try:
            yield
        except BaseException as e:
            if not self.status.can_fallback:
                raise
            else:
                if utils.PYVERSION >= (3,):
                    # Clear all references attached to the traceback
                    e = e.with_traceback(None)
                warnings.warn_explicit('%s: %s' % (msg, e),
                                       errors.NumbaWarning,
                                       self.func_id.filename,
                                       self.func_id.firstlineno)

                raise

    @contextmanager
    def giveup_context(self, msg):
        """
        Wraps code that would signal a fallback to interpreter mode
        """
        try:
            yield
        except BaseException as e:
            if not self.status.can_giveup:
                raise
            else:
                if utils.PYVERSION >= (3,):
                    # Clear all references attached to the traceback
                    e = e.with_traceback(None)
                warnings.warn_explicit('%s: %s' % (msg, e),
                                       errors.NumbaWarning,
                                       self.func_id.filename,
                                       self.func_id.firstlineno)

                raise

    def extract_bytecode(self, func_id):
        """
        Extract bytecode from function
        """
        bc = bytecode.ByteCode(func_id)
        if config.DUMP_BYTECODE:
            print(bc.dump())

        return bc

    def compile_extra(self, func):
        self.func_id = bytecode.FunctionIdentity.from_function(func)

        try:
            bc = self.extract_bytecode(self.func_id)
        except BaseException as e:
            if self.status.can_giveup:
                self.stage_compile_interp_mode()
                return self.cr
            else:
                raise e

        self.bc = bc
        self.lifted = ()
        self.lifted_from = None
        return self._compile_bytecode()

    def compile_ir(self, func_ir, lifted=(), lifted_from=None):
        self.func_id = func_ir.func_id
        self.lifted = lifted
        self.lifted_from = lifted_from

        self._set_and_check_ir(func_ir)
        return self._compile_ir()

    def stage_analyze_bytecode(self):
        """
        Analyze bytecode and translating to Numba IR
        """
        func_ir = translate_stage(self.func_id, self.bc)
        self._set_and_check_ir(func_ir)

    def _set_and_check_ir(self, func_ir):
        self.func_ir = func_ir
        self.nargs = self.func_ir.arg_count
        if not self.args and self.flags.force_pyobject:
            # Allow an empty argument types specification when object mode
            # is explicitly requested.
            self.args = (types.pyobject,) * self.nargs
        elif len(self.args) != self.nargs:
            raise TypeError("Signature mismatch: %d argument types given, "
                            "but function takes %d arguments"
                            % (len(self.args), self.nargs))

    def stage_process_ir(self):
        ir_processing_stage(self.func_ir)

    def stage_preserve_ir(self):
        self.func_ir_original = self.func_ir.copy()

    def frontend_looplift(self):
        """
        Loop lifting analysis and transformation
        """
        loop_flags = self.flags.copy()
        outer_flags = self.flags.copy()
        # Do not recursively loop lift
        outer_flags.unset('enable_looplift')
        loop_flags.unset('enable_looplift')
        if not self.flags.enable_pyobject_looplift:
            loop_flags.unset('enable_pyobject')

        main, loops = transforms.loop_lifting(self.func_ir,
                                              typingctx=self.typingctx,
                                              targetctx=self.targetctx,
                                              locals=self.locals,
                                              flags=loop_flags)
        if loops:
            # Some loops were extracted
            if config.DEBUG_FRONTEND or config.DEBUG:
                for loop in loops:
                    print("Lifting loop", loop.get_source_location())

            cres = compile_ir(self.typingctx, self.targetctx, main,
                              self.args, self.return_type,
                              outer_flags, self.locals,
                              lifted=tuple(loops), lifted_from=None)
            return cres

    def stage_objectmode_frontend(self):
        """
        Front-end: Analyze bytecode, generate Numba IR, infer types
        """
        self.func_ir = self.func_ir_original or self.func_ir
        if self.flags.enable_looplift:
            assert not self.lifted
            cres = self.frontend_looplift()
            if cres is not None:
                raise _EarlyPipelineCompletion(cres)

        # Fallback typing: everything is a python object
        self.typemap = defaultdict(lambda: types.pyobject)
        self.calltypes = defaultdict(lambda: types.pyobject)
        self.return_type = types.pyobject

    def stage_nopython_frontend(self):
        """
        Type inference and legalization
        """
        with self.fallback_context('Function "%s" failed type inference'
                                   % (self.func_id.func_name,)):
            # Type inference
            self.typemap, self.return_type, self.calltypes = type_inference_stage(
                self.typingctx,
                self.func_ir,
                self.args,
                self.return_type,
                self.locals)

        with self.fallback_context('Function "%s" has invalid return type'
                                   % (self.func_id.func_name,)):
            legalize_return_type(self.return_type, self.func_ir,
                                 self.targetctx)

    def stage_generic_rewrites(self):
        """
        Perform any intermediate representation rewrites before type
        inference.
        """
        assert self.func_ir
        with self.fallback_context('Internal error in pre-inference rewriting '
                                   'pass encountered during compilation of '
                                   'function "%s"' % (self.func_id.func_name,)):
            rewrites.rewrite_registry.apply('before-inference',
                                            self, self.func_ir)

    def stage_nopython_rewrites(self):
        """
        Perform any intermediate representation rewrites after type
        inference.
        """
        # Ensure we have an IR and type information.
        assert self.func_ir
        assert isinstance(getattr(self, 'typemap', None), dict)
        assert isinstance(getattr(self, 'calltypes', None), dict)
        with self.fallback_context('Internal error in post-inference rewriting '
                                   'pass encountered during compilation of '
                                   'function "%s"' % (self.func_id.func_name,)):
            rewrites.rewrite_registry.apply('after-inference',
                                            self, self.func_ir)

    def stage_parfor_pass(self):
        """
        Convert data-parallel computations into Parfor nodes
        """
        # Ensure we have an IR and type information.
        assert self.func_ir
        parfor_pass = ParforPass(self.func_ir, self.type_annotation.typemap,
            self.type_annotation.calltypes, self.return_type)
        parfor_pass.run()

    def stage_inline_pass(self):
        """
        Inline calls to locally defined closures.
        """
        # Ensure we have an IR and type information.
        assert self.func_ir
        inline_pass = InlineClosureCallPass(self.func_ir, run_frontend)
        inline_pass.run()
        # Remove all Dels, and re-run postproc
        post_proc = postproc.PostProcessor(self.func_ir)
        post_proc.run()

        if config.DEBUG or config.DUMP_IR:
            name = self.func_ir.func_id.func_qualname
            print(("IR DUMP: %s" % name).center(80, "-"))
            self.func_ir.dump()


    def stage_annotate_type(self):
        """
        Create type annotation after type inference
        """
        self.type_annotation = type_annotations.TypeAnnotation(
            func_ir=self.func_ir,
            typemap=self.typemap,
            calltypes=self.calltypes,
            lifted=self.lifted,
            lifted_from=self.lifted_from,
            args=self.args,
            return_type=self.return_type,
            html_output=config.HTML)

        if config.ANNOTATE:
            print("ANNOTATION".center(80, '-'))
            print(self.type_annotation)
            print('=' * 80)
        if config.HTML:
            with open(config.HTML, 'w') as fout:
                self.type_annotation.html_annotate(fout)

    def backend_object_mode(self):
        """
        Object mode compilation
        """
        with self.giveup_context("Function %s failed at object mode lowering"
                                 % (self.func_id.func_name,)):
            if len(self.args) != self.nargs:
                # append missing
                self.args = (tuple(self.args) + (types.pyobject,) *
                             (self.nargs - len(self.args)))

            return py_lowering_stage(self.targetctx,
                                     self.library,
                                     self.func_ir,
                                     self.flags)

    def backend_nopython_mode(self):
        """Native mode compilation"""
        with self.fallback_context("Function %s failed at nopython "
                                   "mode lowering" % (self.func_id.func_name,)):
            return native_lowering_stage(
                self.targetctx,
                self.library,
                self.func_ir,
                self.typemap,
                self.return_type,
                self.calltypes,
                self.flags)

    def _backend(self, lowerfn, objectmode):
        """
        Back-end: Generate LLVM IR from Numba IR, compile to machine code
        """
        if self.library is None:
            codegen = self.targetctx.codegen()
            self.library = codegen.create_library(self.func_id.func_qualname)
            # Enable object caching upfront, so that the library can
            # be later serialized.
            self.library.enable_object_caching()

        lowered = lowerfn()
        signature = typing.signature(self.return_type, *self.args)
        self.cr = compile_result(typing_context=self.typingctx,
                                 target_context=self.targetctx,
                                 entry_point=lowered.cfunc,
                                 typing_error=self.status.fail_reason,
                                 type_annotation=self.type_annotation,
                                 library=self.library,
                                 call_helper=lowered.call_helper,
                                 signature=signature,
                                 objectmode=objectmode,
                                 interpmode=False,
                                 lifted=self.lifted,
                                 fndesc=lowered.fndesc,
                                 environment=lowered.env,
                                 has_dynamic_globals=lowered.has_dynamic_globals,
                                 )

    def stage_objectmode_backend(self):
        """
        Lowering for object mode
        """
        lowerfn = self.backend_object_mode
        self._backend(lowerfn, objectmode=True)

        # Warn if compiled function in object mode and force_pyobject not set
        if not self.flags.force_pyobject:
            if len(self.lifted) > 0:
                warn_msg = 'Function "%s" was compiled in object mode without forceobj=True, but has lifted loops.' % (self.func_id.func_name,)
            else:
                warn_msg = 'Function "%s" was compiled in object mode without forceobj=True.' % (self.func_id.func_name,)
            warnings.warn_explicit(warn_msg, errors.NumbaWarning,
                                   self.func_id.filename,
                                   self.func_id.firstlineno)
            if self.flags.release_gil:
                warn_msg = "Code running in object mode won't allow parallel execution despite nogil=True."
                warnings.warn_explicit(warn_msg, errors.NumbaWarning,
                                       self.func_id.filename,
                                       self.func_id.firstlineno)

    def stage_nopython_backend(self):
        """
        Do lowering for nopython
        """
        lowerfn = self.backend_nopython_mode
        self._backend(lowerfn, objectmode=False)

    def stage_compile_interp_mode(self):
        """
        Just create a compile result for interpreter mode
        """
        args = [types.pyobject] * len(self.args)
        signature = typing.signature(types.pyobject, *args)
        self.cr = compile_result(typing_context=self.typingctx,
                                 target_context=self.targetctx,
                                 entry_point=self.func_id.func,
                                 typing_error=self.status.fail_reason,
                                 type_annotation="<Interpreter mode function>",
                                 signature=signature,
                                 objectmode=False,
                                 interpmode=True,
                                 lifted=(),
                                 fndesc=None,)

    def stage_cleanup(self):
        """
        Cleanup intermediate results to release resources.
        """

    def _compile_core(self):
        """
        Populate and run compiler pipeline
        """
        pm = _PipelineManager()

        if not self.flags.force_pyobject:
            pm.create_pipeline("nopython")
            if self.func_ir is None:
                pm.add_stage(self.stage_analyze_bytecode, "analyzing bytecode")
            pm.add_stage(self.stage_process_ir, "processing IR")
            if not self.flags.no_rewrites:
                if self.status.can_fallback:
                    pm.add_stage(self.stage_preserve_ir, "preserve IR for fallback")
                pm.add_stage(self.stage_generic_rewrites, "nopython rewrites")
            pm.add_stage(self.stage_inline_pass, "inline calls to locally defined closures")
            pm.add_stage(self.stage_nopython_frontend, "nopython frontend")
            pm.add_stage(self.stage_annotate_type, "annotate type")
            if not self.flags.no_rewrites:
                pm.add_stage(self.stage_nopython_rewrites, "nopython rewrites")
            if self.flags.auto_parallel:
                pm.add_stage(self.stage_parfor_pass, "convert to parfors")
            pm.add_stage(self.stage_nopython_backend, "nopython mode backend")
            pm.add_stage(self.stage_cleanup, "cleanup intermediate results")

        if self.status.can_fallback or self.flags.force_pyobject:
            pm.create_pipeline("object")
            if self.func_ir is None:
                pm.add_stage(self.stage_analyze_bytecode, "analyzing bytecode")
            pm.add_stage(self.stage_process_ir, "processing IR")
            pm.add_stage(self.stage_objectmode_frontend, "object mode frontend")
            pm.add_stage(self.stage_annotate_type, "annotate type")
            pm.add_stage(self.stage_objectmode_backend, "object mode backend")
            pm.add_stage(self.stage_cleanup, "cleanup intermediate results")

        if self.status.can_giveup:
            pm.create_pipeline("interp")
            pm.add_stage(self.stage_compile_interp_mode, "compiling with interpreter mode")
            pm.add_stage(self.stage_cleanup, "cleanup intermediate results")

        pm.finalize()
        res = pm.run(self.status)
        if res is not None:
            # Early pipeline completion
            return res
        else:
            assert self.cr is not None
            return self.cr

    def _compile_bytecode(self):
        """
        Populate and run pipeline for bytecode input
        """
        assert self.func_ir is None
        return self._compile_core()

    def _compile_ir(self):
        """
        Populate and run pipeline for IR input
        """
        assert self.func_ir is not None
        return self._compile_core()


def _make_subtarget(targetctx, flags):
    """
    Make a new target context from the given target context and flags.
    """
    subtargetoptions = {}
    if flags.debuginfo:
        subtargetoptions['enable_debuginfo'] = True
    if flags.boundcheck:
        subtargetoptions['enable_boundcheck'] = True
    if flags.nrt:
        subtargetoptions['enable_nrt'] = True
    if flags.auto_parallel:
        subtargetoptions['auto_parallel'] = True
    if flags.fastmath:
        subtargetoptions['enable_fastmath'] = True
    error_model = callconv.create_error_model(flags.error_model, targetctx)
    subtargetoptions['error_model'] = error_model

    return targetctx.subtarget(**subtargetoptions)


def compile_extra(typingctx, targetctx, func, args, return_type, flags,
                  locals, library=None):
    """
    Args
    ----
    - return_type
        Use ``None`` to indicate
    """
    pipeline = Pipeline(typingctx, targetctx, library,
                        args, return_type, flags, locals)
    return pipeline.compile_extra(func)


def compile_ir(typingctx, targetctx, func_ir, args, return_type, flags,
               locals, lifted=(), lifted_from=None, library=None):
    """
    Compile a function with the given IR.

    For internal use only.
    """

    pipeline = Pipeline(typingctx, targetctx, library,
                        args, return_type, flags, locals)
    return pipeline.compile_ir(func_ir=func_ir, lifted=lifted,
                               lifted_from=lifted_from)


def compile_internal(typingctx, targetctx, library,
                     func, args, return_type, flags, locals):
    """
    For internal use only.
    """
    pipeline = Pipeline(typingctx, targetctx, library,
                        args, return_type, flags, locals)
    return pipeline.compile_extra(func)


def legalize_return_type(return_type, interp, targetctx):
    """
    Only accept array return type iff it is passed into the function.
    Reject function object return types if in nopython mode.
    """
    if not targetctx.enable_nrt and isinstance(return_type, types.Array):
        # Walk IR to discover all arguments and all return statements
        retstmts = []
        caststmts = {}
        argvars = set()
        for bid, blk in interp.blocks.items():
            for inst in blk.body:
                if isinstance(inst, ir.Return):
                    retstmts.append(inst.value.name)
                elif isinstance(inst, ir.Assign):
                    if (isinstance(inst.value, ir.Expr)
                        and inst.value.op == 'cast'):
                        caststmts[inst.target.name] = inst.value
                    elif isinstance(inst.value, ir.Arg):
                        argvars.add(inst.target.name)

        assert retstmts, "No return statements?"

        for var in retstmts:
            cast = caststmts.get(var)
            if cast is None or cast.value.name not in argvars:
                raise TypeError("Only accept returning of array passed into the "
                                "function as argument")

    elif (isinstance(return_type, types.Function) or
            isinstance(return_type, types.Phantom)):
        raise TypeError("Can't return function object in nopython mode")


def translate_stage(func_id, bytecode):
    interp = interpreter.Interpreter(func_id)
    return interp.interpret(bytecode)


def ir_processing_stage(func_ir):
    post_proc = postproc.PostProcessor(func_ir)
    post_proc.run()

    if config.DEBUG or config.DUMP_IR:
        name = func_ir.func_id.func_qualname
        print(("IR DUMP: %s" % name).center(80, "-"))
        func_ir.dump()
        if func_ir.is_generator:
            print(("GENERATOR INFO: %s" % name).center(80, "-"))
            func_ir.dump_generator_info()

    return func_ir


def type_inference_stage(typingctx, interp, args, return_type, locals={}):
    if len(args) != interp.arg_count:
        raise TypeError("Mismatch number of argument types")

    warnings = errors.WarningsFixer(errors.NumbaWarning)
    infer = typeinfer.TypeInferer(typingctx, interp, warnings)
    with typingctx.callstack.register(infer, interp.func_id, args):
        # Seed argument types
        for index, (name, ty) in enumerate(zip(interp.arg_names, args)):
            infer.seed_argument(name, index, ty)

        # Seed return type
        if return_type is not None:
            infer.seed_return(return_type)

        # Seed local types
        for k, v in locals.items():
            infer.seed_type(k, v)

        infer.build_constraint()
        infer.propagate()
        typemap, restype, calltypes = infer.unify()

    # Output all Numba warnings
    warnings.flush()

    return typemap, restype, calltypes


def native_lowering_stage(targetctx, library, interp, typemap, restype,
                          calltypes, flags):
    # Lowering
    fndesc = funcdesc.PythonFunctionDescriptor.from_specialized_function(
        interp, typemap, restype, calltypes, mangler=targetctx.mangler,
        inline=flags.forceinline)

    lower = lowering.Lower(targetctx, library, fndesc, interp)
    lower.lower()
    if not flags.no_cpython_wrapper:
        lower.create_cpython_wrapper(flags.release_gil)
    env = lower.env
    call_helper = lower.call_helper
    has_dynamic_globals = lower.has_dynamic_globals
    del lower

    if flags.no_compile:
        return _LowerResult(fndesc, call_helper, cfunc=None, env=env,
                            has_dynamic_globals=has_dynamic_globals)
    else:
        # Prepare for execution
        cfunc = targetctx.get_executable(library, fndesc, env)
        # Insert native function for use by other jitted-functions.
        # We also register its library to allow for inlining.
        targetctx.insert_user_function(cfunc, fndesc, [library])
        return _LowerResult(fndesc, call_helper, cfunc=cfunc, env=env,
                            has_dynamic_globals=has_dynamic_globals)


def py_lowering_stage(targetctx, library, interp, flags):
    fndesc = funcdesc.PythonFunctionDescriptor.from_object_mode_function(interp)
    lower = objmode.PyLower(targetctx, library, fndesc, interp)
    lower.lower()
    if not flags.no_cpython_wrapper:
        lower.create_cpython_wrapper()
    env = lower.env
    call_helper = lower.call_helper
    has_dynamic_globals = lower.has_dynamic_globals
    del lower

    if flags.no_compile:
        return _LowerResult(fndesc, call_helper, cfunc=None, env=env,
                            has_dynamic_globals=has_dynamic_globals)
    else:
        # Prepare for execution
        cfunc = targetctx.get_executable(library, fndesc, env)
        return _LowerResult(fndesc, call_helper, cfunc=cfunc, env=env,
                            has_dynamic_globals=has_dynamic_globals)