This file is indexed.

/usr/lib/python2.7/dist-packages/linop/linop.py is in python-linop 0.8.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
#Copyright (c) 2008-2013, Dominique Orban <dominique.orban@gerad.ca>
#All rights reserved.
#
#Copyright (c) 2013-2014, Ghislain Vaillant <ghisvail@gmail.com>
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions
#are met:
#1. Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
#2. Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
#3. Neither the name of the linop developers nor the names of any contributors
#   may be used to endorse or promote products derived from this software
#   without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
#ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
#OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
#HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
#OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
#SUCH DAMAGE.

from __future__ import division
import numpy as np
import logging

__docformat__ = 'restructuredtext'


# Default (null) logger.
null_log = logging.getLogger('linop')
null_log.setLevel(logging.INFO)
null_log.addHandler(logging.NullHandler())


class BaseLinearOperator(object):

    """
    Base class defining the common interface shared by all linear operators.

    A linear operator is a linear mapping x -> A(x) such that the size of the
    input vector x is `nargin` and the size of the output is `nargout`. It can
    be visualized as a matrix of shape (`nargout`, `nargin`). Its type is any
    valid Numpy `dtype`. By default, it has `dtype` `numpy.float` but this can
    be changed to, e.g., `numpy.complex` via the `dtype` keyword argument and
    attribute.

    A logger may be attached to the linear operator via the `logger` keyword
    argument.

    """

    def __init__(self, nargin, nargout, symmetric=False, **kwargs):
        self.__nargin = nargin
        self.__nargout = nargout
        self.__symmetric = symmetric
        self.__shape = (nargout, nargin)
        self.__dtype = kwargs.get('dtype', np.float)
        self._nMatvec = 0

        # Log activity.
        self.logger = kwargs.get('logger', null_log)
        self.logger.info('New linear operator with shape ' + str(self.shape))
        return

    @property
    def nargin(self):
        """The size of an input vector."""
        return self.__nargin

    @property
    def nargout(self):
        """The size of an output vector."""
        return self.__nargout

    @property
    def symmetric(self):
        """Indicate whether the operator is symmetric or not."""
        return self.__symmetric

    @property
    def shape(self):
        """The shape of the operator."""
        return self.__shape

    @property
    def dtype(self):
        """The data type of the operator."""
        return self.__dtype

    @property
    def nMatvec(self):
        """The number of products with vectors computed so far."""
        return self._nMatvec

    def reset_counters(self):
        """Reset operator/vector product counter to zero."""
        self._nMatvec = 0

    def __call__(self, *args, **kwargs):
        # An alias for __mul__.
        return self.__mul__(*args, **kwargs)

    def __mul__(self, x):
        raise NotImplementedError('Please subclass to implement __mul__.')

    def __repr__(self):
        if self.symmetric:
            s = 'Symmetric'
        else:
            s = 'Unsymmetric'
        s += ' <' + self.__class__.__name__ + '>'
        s += ' of type %s' % self.dtype
        s += ' with shape (%d,%d)' % (self.nargout, self.nargin)
        return s

    def dot(self, x):
        """Numpy-like dot() method."""
        return self.__mul__(x)


class LinearOperator(BaseLinearOperator):

    """
    Generic linear operator class.

    A linear operator constructed from a `matvec` and (possibly) a
    `rmatvec` function. If `symmetric` is `True`, `rmatvec` is
    ignored. All other keyword arguments are passed directly to the superclass.

    """

    def __init__(self, nargin, nargout, matvec, rmatvec=None, **kwargs):

        super(LinearOperator, self).__init__(nargin, nargout, **kwargs)
        adjoint_of = (kwargs.get('adjoint_of', None) or 
                      kwargs.get('transpose_of', None))
        rmatvec = rmatvec or kwargs.get('matvec_transp', None)

        self.__matvec = matvec

        if self.symmetric:
            self.__H = self
        else:
            if adjoint_of is None:
                if rmatvec is not None:
                    # Create 'pointer' to transpose operator.
                    self.__H = LinearOperator(nargout, nargin,
                                              matvec=rmatvec,
                                              rmatvec=matvec,
                                              adjoint_of=self,
                                              **kwargs)
                else:
                    self.__H = None
            else:
                # Use operator supplied as transpose operator.
                if isinstance(adjoint_of, BaseLinearOperator):
                    self.__H = adjoint_of
                else:
                    msg = 'kwarg adjoint_of / transpose_of must be of type LinearOperator.'
                    msg += ' Got ' + str(adjoint_of.__class__)
                    raise ValueError(msg)


    @property
    def T(self):
        """The transpose operator.
        
        .. note:: this is an alias to the adjoint operator 
        
        """
        return self.__H

    @property
    def H(self):
        """The adjoint operator."""
        return self.__H

    def matvec(self, x):
        """
        Matrix-vector multiplication.

        The matvec property encapsulates the matvec routine specified at
        construct time, to ensure the consistency of the input and output
        arrays with the operator's shape.

        """
        x = np.asanyarray(x)
        M, N = self.shape

        # check input data consistency
        try:
            x = x.reshape(N)
        except ValueError:
            msg = 'input array size incompatible with operator dimensions'
            raise ValueError(msg)

        y = self.__matvec(x)

        # check output data consistency
        try:
            y = y.reshape(M)
        except ValueError:
            msg = 'output array size incompatible with operator dimensions'
            raise ValueError(msg)

        return y

    def to_array(self):
        n, m = self.shape
        H = np.empty((n, m))
        for j in range(m):
            ej = np.zeros(m)
            ej[j] = 1.0
            H[:, j] = self * ej
        return H

    def __mul_scalar(self, x):
        """Product between a linear operator and a scalar."""
        result_type = np.result_type(self.dtype, type(x))

        if x != 0:
            def matvec(y):
                return x * (self(y))

            def rmatvec(y):
                return x * (self.H(y))

            return LinearOperator(self.nargin, self.nargout,
                                  symmetric=self.symmetric,
                                  matvec=matvec,
                                  rmatvec=rmatvec,
                                  dtype=result_type)
        else:
            return ZeroOperator(self.nargin, self.nargout,
                                dtype=result_type)

    def __mul_linop(self, op):
        """Product between two linear operators."""
        if self.nargin != op.nargout:
            raise ShapeError('Cannot multiply operators together')

        def matvec(x):
            return self(op(x))

        def rmatvec(x):
            return op.T(self.H(x))

        result_type = np.result_type(self.dtype, op.dtype)

        return LinearOperator(op.nargin, self.nargout,
                              symmetric=False,   # Generally.
                              matvec=matvec,
                              rmatvec=rmatvec,
                              dtype=result_type)

    def __mul_vector(self, x):
        """Product between a linear operator and a vector."""
        self._nMatvec += 1
        result_type = np.result_type(self.dtype, x.dtype)
        return self.matvec(x).astype(result_type)

    def __mul__(self, x):
        if np.isscalar(x):
            return self.__mul_scalar(x)
        elif isinstance(x, BaseLinearOperator):
            return self.__mul_linop(x)
        elif isinstance(x, np.ndarray):
            return self.__mul_vector(x)
        else:
            raise ValueError('Cannot multiply')

    def __rmul__(self, x):
        if np.isscalar(x):
            return self.__mul__(x)
        raise ValueError('Cannot multiply')

    def __add__(self, other):
        if not isinstance(other, BaseLinearOperator):
            raise ValueError('Cannot add')
        if self.shape != other.shape:
            raise ShapeError('Cannot add')

        def matvec(x):
            return self(x) + other(x)

        def rmatvec(x):
            return self.H(x) + other.T(x)

        result_type = np.result_type(self.dtype, other.dtype)

        return LinearOperator(self.nargin, self.nargout,
                              symmetric=self.symmetric and other.symmetric,
                              matvec=matvec,
                              rmatvec=rmatvec,
                              dtype=result_type)

    def __neg__(self):
        return self * (-1)

    def __sub__(self, other):
        if not isinstance(other, BaseLinearOperator):
            raise ValueError('Cannot add')
        if self.shape != other.shape:
            raise ShapeError('Cannot add')

        def matvec(x):
            return self(x) - other(x)

        def rmatvec(x):
            return self.H(x) - other.T(x)

        result_type = np.result_type(self.dtype, other.dtype)

        return LinearOperator(self.nargin, self.nargout,
                              symmetric=self.symmetric and other.symmetric,
                              matvec=matvec,
                              rmatvec=rmatvec,
                              dtype=result_type)

    def __truediv__(self, other):
        if np.isscalar(other):
            return self * (1 / other)
        else:
            raise ValueError('Cannot divide')

    def __pow__(self, other):
        if not isinstance(other, int):
            raise ValueError('Can only raise to integer power')
        if other < 0:
            raise ValueError('Can only raise to nonnegative power')
        if self.nargin != self.nargout:
            raise ShapeError('Can only raise square operators to a power')
        if other == 0:
            return IdentityOperator(self.nargin)
        if other == 1:
            return self
        return self * self ** (other - 1)


class IdentityOperator(LinearOperator):

    """Class representing the identity operator of size `nargin`."""

    def __init__(self, nargin, **kwargs):
        if 'symmetric' in kwargs:
            kwargs.pop('symmetric')
        if 'matvec' in kwargs:
            kwargs.pop('matvec')

        super(IdentityOperator, self).__init__(nargin, nargin,
                                               symmetric=True,
                                               matvec=lambda x: x,
                                               **kwargs)


class DiagonalOperator(LinearOperator):

    """
    Class representing a diagonal operator.

    A diagonal linear operator defined by its diagonal `diag` (a Numpy array.)
    The type must be specified in the `diag` argument, e.g.,
    `np.ones(5, dtype=np.complex)` or `np.ones(5).astype(np.complex)`.

    """

    def __init__(self, diag, **kwargs):
        if 'symmetric' in kwargs:
            kwargs.pop('symmetric')
        if 'matvec' in kwargs:
            kwargs.pop('matvec')
        if 'dtype' in kwargs:
            kwargs.pop('dtype')

        diag = np.asarray(diag)
        if diag.ndim != 1:
            msg = "diag array must be 1-d"
            raise ValueError(msg)

        super(DiagonalOperator, self).__init__(diag.shape[0], diag.shape[0],
                                               symmetric=True,
                                               matvec=lambda x: diag * x,
                                               dtype=diag.dtype,
                                               **kwargs)


class MatrixLinearOperator(LinearOperator):

    """
    Class representing a matrix operator.

    A linear operator wrapping the multiplication with a matrix and its
    transpose (real) or conjugate transpose (complex). The operator's dtype
    is the same as the specified `matrix` argument.

    .. versionadded:: 0.3

    """

    def __init__(self, matrix, **kwargs):
        if 'symmetric' in kwargs:
            kwargs.pop('symmetric')
        if 'matvec' in kwargs:
            kwargs.pop('matvec')
        if 'dtype' in kwargs:
            kwargs.pop('dtype')

        if not hasattr(matrix, 'shape'):
            matrix = np.asanyarray(matrix)

        if matrix.ndim != 2:
            msg = "matrix must be 2-d (shape can be [M, N], [M, 1] or [1, N])"
            raise ValueError(msg)

        matvec = matrix.dot
        iscomplex = issubclass(np.dtype(matrix.dtype).type, np.complex)

        symmetric = (np.all(matrix == matrix.conj().T) if iscomplex
                     else np.all(matrix == matrix.T))

        if not symmetric:
            rmatvec = (matrix.conj().T.dot if iscomplex
                             else matrix.T.dot)
        else:
            rmatvec = None

        super(MatrixLinearOperator, self).__init__(matrix.shape[1], matrix.shape[0],
                                             symmetric=symmetric,
                                             matvec=matvec,
                                             rmatvec=rmatvec,
                                             dtype=matrix.dtype,
                                             **kwargs)


class ZeroOperator(LinearOperator):

    """Class representing the zero operator of shape `nargout`-by-`nargin`."""

    def __init__(self, nargin, nargout, **kwargs):
        if 'matvec' in kwargs:
            kwargs.pop('matvec')
        if 'rmatvec' in kwargs:
            kwargs.pop('rmatvec')

        def matvec(x):
            if x.shape != (nargin,):
                msg = 'Input has shape ' + str(x.shape)
                msg += ' instead of (%d,)' % self.nargin
                raise ValueError(msg)
            return np.zeros(nargout)

        def rmatvec(x):
            if x.shape != (nargout,):
                msg = 'Input has shape ' + str(x.shape)
                msg += ' instead of (%d,)' % self.nargout
                raise ValueError(msg)
            return np.zeros(nargin)

        super(ZeroOperator, self).__init__(nargin, nargout,
                                           matvec=matvec,
                                           rmatvec=rmatvec,
                                           **kwargs)


def ReducedLinearOperator(op, row_indices, col_indices):
    """
    Implement reduction of a linear operator (non symmetrical).

    Reduce a linear operator by limiting its input to `col_indices` and its
    output to `row_indices`.

    """

    nargin, nargout = len(col_indices), len(row_indices)
    m, n = op.shape    # Shape of non-reduced operator.

    def matvec(x):
        z = np.zeros(n, dtype=x.dtype)
        z[col_indices] = x[:]
        y = op * z
        return y[row_indices]

    def rmatvec(x):
        z = np.zeros(m, dtype=x.dtype)
        z[row_indices] = x[:]
        y = op.H * z
        return y[col_indices]

    return LinearOperator(nargin, nargout, matvec=matvec, symmetric=False,
                          rmatvec=rmatvec)


def SymmetricallyReducedLinearOperator(op, indices):
    """
    Implement reduction of a linear operator (symmetrical).

    Reduce a linear operator symmetrically by reducing boths its input and
    output to `indices`.

    """

    nargin = len(indices)
    m, n = op.shape    # Shape of non-reduced operator.

    def matvec(x):
        z = np.zeros(n, dtype=x.dtype)
        z[indices] = x[:]
        y = op * z
        return y[indices]

    def rmatvec(x):
        z = np.zeros(m, dtype=x.dtype)
        z[indices] = x[:]
        y = op * z
        return y[indices]

    return LinearOperator(nargin, nargin, matvec=matvec,
                          symmetric=op.symmetric, rmatvec=rmatvec)


class ShapeError(Exception):

    """
    Exception class for handling shape mismatch errors.

    Exception raised when defining a linear operator of the wrong shape or
    multiplying a linear operator with a vector of the wrong shape.

    """

    def __init__(self, value):
        super(ShapeError, self).__init__()
        self.value = value

    def __str__(self):
        return repr(self.value)


def PysparseLinearOperator(A):
    """
    Return a linear operator from a Pysparse sparse matrix.

    .. deprecated:: 0.6
        Use :func:`aslinearoperator` instead.

    """

    nargout, nargin = A.shape
    try:
        symmetric = A.issym
    except:
        symmetric = A.isSymmetric()

    def matvec(x):
        if x.shape != (nargin,):
            msg = 'Input has shape ' + str(x.shape)
            msg += ' instead of (%d,)' % nargin
            raise ValueError(msg)
        if hasattr(A, '__mul__'):
            return A * x
        Ax = np.empty(nargout)
        A.matvec(x, Ax)
        return Ax

    def rmatvec(y):
        if y.shape != (nargout,):
            msg = 'Input has shape ' + str(y.shape)
            msg += ' instead of (%d,)' % nargout
            raise ValueError(msg)
        if hasattr(A, '__rmul__'):
            return y * A
        ATy = np.empty(nargin)
        A.rmatvec(y, ATy)
        return ATy

    return LinearOperator(nargin, nargout, matvec=matvec,
                          rmatvec=rmatvec, symmetric=symmetric)


def linop_from_ndarray(A):
    """
    Return a linear operator from a Numpy `ndarray`.

    .. deprecated:: 0.4
        Use :class:`MatrixLinearOperator` or :func:`aslinearoperator` instead.

    """
    return LinearOperator(A.shape[1], A.shape[0],
                          lambda v: np.dot(A, v),
                          rmatvec=lambda u: np.dot(A.T, u),
                          symmetric=False,
                          dtype=A.dtype)


def aslinearoperator(A):
    """Return A as a LinearOperator.

    'A' may be any of the following types:
    - linop.LinearOperator
    - scipy.LinearOperator
    - ndarray
    - matrix
    - sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
    - any object with .shape and .matvec attributes

    See the :class:`LinearOperator` documentation for additonal information.

    .. versionadded:: 0.4

    """
    if isinstance(A, LinearOperator):
        return A

    try:
        import numpy as np
        if isinstance(A, np.ndarray) or isinstance(A, np.matrix):
            return MatrixLinearOperator(A)
    except ImportError:
        pass

    try:
        import scipy.sparse as ssp
        if ssp.isspmatrix(A):
            return MatrixLinearOperator(A)
    except ImportError:
        pass

    if hasattr(A, 'shape'):
        nargout, nargin = A.shape
        matvec = None
        rmatvec = None
        dtype = None
        symmetric = False
        if hasattr(A, 'matvec'):
            matvec = A.matvec
            if hasattr(A, 'rmatvec'):
                rmatvec = A.rmatvec
            elif hasattr(A, 'matvec_transp'):
                rmatvec = A.matvec_transp
            if hasattr(A, 'dtype'):
                dtype = A.dtype
            if hasattr(A, 'symmetric'):
                symmetric = A.symmetric
        elif hasattr(A, '__mul__'):
            matvec = lambda x: A * x
            if hasattr(A, '__rmul__'):
                rmatvec = lambda x: x * A
            if hasattr(A, 'dtype'):
                dtype = A.dtype
            try:
                symmetric = A.isSymmetric()
            except:
                symmetric = False
        return LinearOperator(
            nargin, nargout, symmetric=symmetric, matvec=matvec,
            rmatvec=rmatvec, dtype=dtype)
    else:
        raise TypeError('unsupported object type')


# some shorter aliases
MatrixOperator = MatrixLinearOperator
aslinop = aslinearoperator