/usr/lib/python2.7/dist-packages/linop/linop.py is in python-linop 0.8.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 | #Copyright (c) 2008-2013, Dominique Orban <dominique.orban@gerad.ca>
#All rights reserved.
#
#Copyright (c) 2013-2014, Ghislain Vaillant <ghisvail@gmail.com>
#All rights reserved.
#
#Redistribution and use in source and binary forms, with or without
#modification, are permitted provided that the following conditions
#are met:
#1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#3. Neither the name of the linop developers nor the names of any contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
#THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
#ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
#IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
#ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
#FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
#DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
#OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
#HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
#LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
#OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
#SUCH DAMAGE.
from __future__ import division
import numpy as np
import logging
__docformat__ = 'restructuredtext'
# Default (null) logger.
null_log = logging.getLogger('linop')
null_log.setLevel(logging.INFO)
null_log.addHandler(logging.NullHandler())
class BaseLinearOperator(object):
"""
Base class defining the common interface shared by all linear operators.
A linear operator is a linear mapping x -> A(x) such that the size of the
input vector x is `nargin` and the size of the output is `nargout`. It can
be visualized as a matrix of shape (`nargout`, `nargin`). Its type is any
valid Numpy `dtype`. By default, it has `dtype` `numpy.float` but this can
be changed to, e.g., `numpy.complex` via the `dtype` keyword argument and
attribute.
A logger may be attached to the linear operator via the `logger` keyword
argument.
"""
def __init__(self, nargin, nargout, symmetric=False, **kwargs):
self.__nargin = nargin
self.__nargout = nargout
self.__symmetric = symmetric
self.__shape = (nargout, nargin)
self.__dtype = kwargs.get('dtype', np.float)
self._nMatvec = 0
# Log activity.
self.logger = kwargs.get('logger', null_log)
self.logger.info('New linear operator with shape ' + str(self.shape))
return
@property
def nargin(self):
"""The size of an input vector."""
return self.__nargin
@property
def nargout(self):
"""The size of an output vector."""
return self.__nargout
@property
def symmetric(self):
"""Indicate whether the operator is symmetric or not."""
return self.__symmetric
@property
def shape(self):
"""The shape of the operator."""
return self.__shape
@property
def dtype(self):
"""The data type of the operator."""
return self.__dtype
@property
def nMatvec(self):
"""The number of products with vectors computed so far."""
return self._nMatvec
def reset_counters(self):
"""Reset operator/vector product counter to zero."""
self._nMatvec = 0
def __call__(self, *args, **kwargs):
# An alias for __mul__.
return self.__mul__(*args, **kwargs)
def __mul__(self, x):
raise NotImplementedError('Please subclass to implement __mul__.')
def __repr__(self):
if self.symmetric:
s = 'Symmetric'
else:
s = 'Unsymmetric'
s += ' <' + self.__class__.__name__ + '>'
s += ' of type %s' % self.dtype
s += ' with shape (%d,%d)' % (self.nargout, self.nargin)
return s
def dot(self, x):
"""Numpy-like dot() method."""
return self.__mul__(x)
class LinearOperator(BaseLinearOperator):
"""
Generic linear operator class.
A linear operator constructed from a `matvec` and (possibly) a
`rmatvec` function. If `symmetric` is `True`, `rmatvec` is
ignored. All other keyword arguments are passed directly to the superclass.
"""
def __init__(self, nargin, nargout, matvec, rmatvec=None, **kwargs):
super(LinearOperator, self).__init__(nargin, nargout, **kwargs)
adjoint_of = (kwargs.get('adjoint_of', None) or
kwargs.get('transpose_of', None))
rmatvec = rmatvec or kwargs.get('matvec_transp', None)
self.__matvec = matvec
if self.symmetric:
self.__H = self
else:
if adjoint_of is None:
if rmatvec is not None:
# Create 'pointer' to transpose operator.
self.__H = LinearOperator(nargout, nargin,
matvec=rmatvec,
rmatvec=matvec,
adjoint_of=self,
**kwargs)
else:
self.__H = None
else:
# Use operator supplied as transpose operator.
if isinstance(adjoint_of, BaseLinearOperator):
self.__H = adjoint_of
else:
msg = 'kwarg adjoint_of / transpose_of must be of type LinearOperator.'
msg += ' Got ' + str(adjoint_of.__class__)
raise ValueError(msg)
@property
def T(self):
"""The transpose operator.
.. note:: this is an alias to the adjoint operator
"""
return self.__H
@property
def H(self):
"""The adjoint operator."""
return self.__H
def matvec(self, x):
"""
Matrix-vector multiplication.
The matvec property encapsulates the matvec routine specified at
construct time, to ensure the consistency of the input and output
arrays with the operator's shape.
"""
x = np.asanyarray(x)
M, N = self.shape
# check input data consistency
try:
x = x.reshape(N)
except ValueError:
msg = 'input array size incompatible with operator dimensions'
raise ValueError(msg)
y = self.__matvec(x)
# check output data consistency
try:
y = y.reshape(M)
except ValueError:
msg = 'output array size incompatible with operator dimensions'
raise ValueError(msg)
return y
def to_array(self):
n, m = self.shape
H = np.empty((n, m))
for j in range(m):
ej = np.zeros(m)
ej[j] = 1.0
H[:, j] = self * ej
return H
def __mul_scalar(self, x):
"""Product between a linear operator and a scalar."""
result_type = np.result_type(self.dtype, type(x))
if x != 0:
def matvec(y):
return x * (self(y))
def rmatvec(y):
return x * (self.H(y))
return LinearOperator(self.nargin, self.nargout,
symmetric=self.symmetric,
matvec=matvec,
rmatvec=rmatvec,
dtype=result_type)
else:
return ZeroOperator(self.nargin, self.nargout,
dtype=result_type)
def __mul_linop(self, op):
"""Product between two linear operators."""
if self.nargin != op.nargout:
raise ShapeError('Cannot multiply operators together')
def matvec(x):
return self(op(x))
def rmatvec(x):
return op.T(self.H(x))
result_type = np.result_type(self.dtype, op.dtype)
return LinearOperator(op.nargin, self.nargout,
symmetric=False, # Generally.
matvec=matvec,
rmatvec=rmatvec,
dtype=result_type)
def __mul_vector(self, x):
"""Product between a linear operator and a vector."""
self._nMatvec += 1
result_type = np.result_type(self.dtype, x.dtype)
return self.matvec(x).astype(result_type)
def __mul__(self, x):
if np.isscalar(x):
return self.__mul_scalar(x)
elif isinstance(x, BaseLinearOperator):
return self.__mul_linop(x)
elif isinstance(x, np.ndarray):
return self.__mul_vector(x)
else:
raise ValueError('Cannot multiply')
def __rmul__(self, x):
if np.isscalar(x):
return self.__mul__(x)
raise ValueError('Cannot multiply')
def __add__(self, other):
if not isinstance(other, BaseLinearOperator):
raise ValueError('Cannot add')
if self.shape != other.shape:
raise ShapeError('Cannot add')
def matvec(x):
return self(x) + other(x)
def rmatvec(x):
return self.H(x) + other.T(x)
result_type = np.result_type(self.dtype, other.dtype)
return LinearOperator(self.nargin, self.nargout,
symmetric=self.symmetric and other.symmetric,
matvec=matvec,
rmatvec=rmatvec,
dtype=result_type)
def __neg__(self):
return self * (-1)
def __sub__(self, other):
if not isinstance(other, BaseLinearOperator):
raise ValueError('Cannot add')
if self.shape != other.shape:
raise ShapeError('Cannot add')
def matvec(x):
return self(x) - other(x)
def rmatvec(x):
return self.H(x) - other.T(x)
result_type = np.result_type(self.dtype, other.dtype)
return LinearOperator(self.nargin, self.nargout,
symmetric=self.symmetric and other.symmetric,
matvec=matvec,
rmatvec=rmatvec,
dtype=result_type)
def __truediv__(self, other):
if np.isscalar(other):
return self * (1 / other)
else:
raise ValueError('Cannot divide')
def __pow__(self, other):
if not isinstance(other, int):
raise ValueError('Can only raise to integer power')
if other < 0:
raise ValueError('Can only raise to nonnegative power')
if self.nargin != self.nargout:
raise ShapeError('Can only raise square operators to a power')
if other == 0:
return IdentityOperator(self.nargin)
if other == 1:
return self
return self * self ** (other - 1)
class IdentityOperator(LinearOperator):
"""Class representing the identity operator of size `nargin`."""
def __init__(self, nargin, **kwargs):
if 'symmetric' in kwargs:
kwargs.pop('symmetric')
if 'matvec' in kwargs:
kwargs.pop('matvec')
super(IdentityOperator, self).__init__(nargin, nargin,
symmetric=True,
matvec=lambda x: x,
**kwargs)
class DiagonalOperator(LinearOperator):
"""
Class representing a diagonal operator.
A diagonal linear operator defined by its diagonal `diag` (a Numpy array.)
The type must be specified in the `diag` argument, e.g.,
`np.ones(5, dtype=np.complex)` or `np.ones(5).astype(np.complex)`.
"""
def __init__(self, diag, **kwargs):
if 'symmetric' in kwargs:
kwargs.pop('symmetric')
if 'matvec' in kwargs:
kwargs.pop('matvec')
if 'dtype' in kwargs:
kwargs.pop('dtype')
diag = np.asarray(diag)
if diag.ndim != 1:
msg = "diag array must be 1-d"
raise ValueError(msg)
super(DiagonalOperator, self).__init__(diag.shape[0], diag.shape[0],
symmetric=True,
matvec=lambda x: diag * x,
dtype=diag.dtype,
**kwargs)
class MatrixLinearOperator(LinearOperator):
"""
Class representing a matrix operator.
A linear operator wrapping the multiplication with a matrix and its
transpose (real) or conjugate transpose (complex). The operator's dtype
is the same as the specified `matrix` argument.
.. versionadded:: 0.3
"""
def __init__(self, matrix, **kwargs):
if 'symmetric' in kwargs:
kwargs.pop('symmetric')
if 'matvec' in kwargs:
kwargs.pop('matvec')
if 'dtype' in kwargs:
kwargs.pop('dtype')
if not hasattr(matrix, 'shape'):
matrix = np.asanyarray(matrix)
if matrix.ndim != 2:
msg = "matrix must be 2-d (shape can be [M, N], [M, 1] or [1, N])"
raise ValueError(msg)
matvec = matrix.dot
iscomplex = issubclass(np.dtype(matrix.dtype).type, np.complex)
symmetric = (np.all(matrix == matrix.conj().T) if iscomplex
else np.all(matrix == matrix.T))
if not symmetric:
rmatvec = (matrix.conj().T.dot if iscomplex
else matrix.T.dot)
else:
rmatvec = None
super(MatrixLinearOperator, self).__init__(matrix.shape[1], matrix.shape[0],
symmetric=symmetric,
matvec=matvec,
rmatvec=rmatvec,
dtype=matrix.dtype,
**kwargs)
class ZeroOperator(LinearOperator):
"""Class representing the zero operator of shape `nargout`-by-`nargin`."""
def __init__(self, nargin, nargout, **kwargs):
if 'matvec' in kwargs:
kwargs.pop('matvec')
if 'rmatvec' in kwargs:
kwargs.pop('rmatvec')
def matvec(x):
if x.shape != (nargin,):
msg = 'Input has shape ' + str(x.shape)
msg += ' instead of (%d,)' % self.nargin
raise ValueError(msg)
return np.zeros(nargout)
def rmatvec(x):
if x.shape != (nargout,):
msg = 'Input has shape ' + str(x.shape)
msg += ' instead of (%d,)' % self.nargout
raise ValueError(msg)
return np.zeros(nargin)
super(ZeroOperator, self).__init__(nargin, nargout,
matvec=matvec,
rmatvec=rmatvec,
**kwargs)
def ReducedLinearOperator(op, row_indices, col_indices):
"""
Implement reduction of a linear operator (non symmetrical).
Reduce a linear operator by limiting its input to `col_indices` and its
output to `row_indices`.
"""
nargin, nargout = len(col_indices), len(row_indices)
m, n = op.shape # Shape of non-reduced operator.
def matvec(x):
z = np.zeros(n, dtype=x.dtype)
z[col_indices] = x[:]
y = op * z
return y[row_indices]
def rmatvec(x):
z = np.zeros(m, dtype=x.dtype)
z[row_indices] = x[:]
y = op.H * z
return y[col_indices]
return LinearOperator(nargin, nargout, matvec=matvec, symmetric=False,
rmatvec=rmatvec)
def SymmetricallyReducedLinearOperator(op, indices):
"""
Implement reduction of a linear operator (symmetrical).
Reduce a linear operator symmetrically by reducing boths its input and
output to `indices`.
"""
nargin = len(indices)
m, n = op.shape # Shape of non-reduced operator.
def matvec(x):
z = np.zeros(n, dtype=x.dtype)
z[indices] = x[:]
y = op * z
return y[indices]
def rmatvec(x):
z = np.zeros(m, dtype=x.dtype)
z[indices] = x[:]
y = op * z
return y[indices]
return LinearOperator(nargin, nargin, matvec=matvec,
symmetric=op.symmetric, rmatvec=rmatvec)
class ShapeError(Exception):
"""
Exception class for handling shape mismatch errors.
Exception raised when defining a linear operator of the wrong shape or
multiplying a linear operator with a vector of the wrong shape.
"""
def __init__(self, value):
super(ShapeError, self).__init__()
self.value = value
def __str__(self):
return repr(self.value)
def PysparseLinearOperator(A):
"""
Return a linear operator from a Pysparse sparse matrix.
.. deprecated:: 0.6
Use :func:`aslinearoperator` instead.
"""
nargout, nargin = A.shape
try:
symmetric = A.issym
except:
symmetric = A.isSymmetric()
def matvec(x):
if x.shape != (nargin,):
msg = 'Input has shape ' + str(x.shape)
msg += ' instead of (%d,)' % nargin
raise ValueError(msg)
if hasattr(A, '__mul__'):
return A * x
Ax = np.empty(nargout)
A.matvec(x, Ax)
return Ax
def rmatvec(y):
if y.shape != (nargout,):
msg = 'Input has shape ' + str(y.shape)
msg += ' instead of (%d,)' % nargout
raise ValueError(msg)
if hasattr(A, '__rmul__'):
return y * A
ATy = np.empty(nargin)
A.rmatvec(y, ATy)
return ATy
return LinearOperator(nargin, nargout, matvec=matvec,
rmatvec=rmatvec, symmetric=symmetric)
def linop_from_ndarray(A):
"""
Return a linear operator from a Numpy `ndarray`.
.. deprecated:: 0.4
Use :class:`MatrixLinearOperator` or :func:`aslinearoperator` instead.
"""
return LinearOperator(A.shape[1], A.shape[0],
lambda v: np.dot(A, v),
rmatvec=lambda u: np.dot(A.T, u),
symmetric=False,
dtype=A.dtype)
def aslinearoperator(A):
"""Return A as a LinearOperator.
'A' may be any of the following types:
- linop.LinearOperator
- scipy.LinearOperator
- ndarray
- matrix
- sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
- any object with .shape and .matvec attributes
See the :class:`LinearOperator` documentation for additonal information.
.. versionadded:: 0.4
"""
if isinstance(A, LinearOperator):
return A
try:
import numpy as np
if isinstance(A, np.ndarray) or isinstance(A, np.matrix):
return MatrixLinearOperator(A)
except ImportError:
pass
try:
import scipy.sparse as ssp
if ssp.isspmatrix(A):
return MatrixLinearOperator(A)
except ImportError:
pass
if hasattr(A, 'shape'):
nargout, nargin = A.shape
matvec = None
rmatvec = None
dtype = None
symmetric = False
if hasattr(A, 'matvec'):
matvec = A.matvec
if hasattr(A, 'rmatvec'):
rmatvec = A.rmatvec
elif hasattr(A, 'matvec_transp'):
rmatvec = A.matvec_transp
if hasattr(A, 'dtype'):
dtype = A.dtype
if hasattr(A, 'symmetric'):
symmetric = A.symmetric
elif hasattr(A, '__mul__'):
matvec = lambda x: A * x
if hasattr(A, '__rmul__'):
rmatvec = lambda x: x * A
if hasattr(A, 'dtype'):
dtype = A.dtype
try:
symmetric = A.isSymmetric()
except:
symmetric = False
return LinearOperator(
nargin, nargout, symmetric=symmetric, matvec=matvec,
rmatvec=rmatvec, dtype=dtype)
else:
raise TypeError('unsupported object type')
# some shorter aliases
MatrixOperator = MatrixLinearOperator
aslinop = aslinearoperator
|