This file is indexed.

/usr/lib/python2.7/dist-packages/healpy/fitsfunc.py is in python-healpy 1.10.3-2build4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
#
#  This file is part of Healpy.
#
#  Healpy is free software; you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation; either version 2 of the License, or
#  (at your option) any later version.
#
#  Healpy is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with Healpy; if not, write to the Free Software
#  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
#
#  For more information about Healpy, see http://code.google.com/p/healpy
#
"""Provides input and output functions for Healpix maps, alm, and cl.
"""
from __future__ import with_statement
from __future__ import division

import six
import gzip
import tempfile
import shutil
import os
import warnings
import astropy.io.fits as pf
import numpy as np

from . import pixelfunc
from .sphtfunc import Alm
from .pixelfunc import UNSEEN
from . import cookbook as cb

standard_column_names = {
    1 : "I_STOKES",
    3 : ["%s_STOKES" % comp for comp in "IQU"],
    6 : ["II", "IQ", "IU", "QQ", "QU", "UU"]
}

class HealpixFitsWarning(Warning):
    pass

def writeto(tbhdu, filename):
    # FIXME: Pyfits versions earlier than 3.1.2 had no support or flaky support
    # for writing to .gz files or GzipFile objects. Drop this code when
    # we decide to drop support for older versions of Pyfits or if we decide
    # to support only Astropy.
    if isinstance(filename, six.string_types) and filename.endswith('.gz'):
        basefilename, ext = os.path.splitext(filename)
        with tempfile.NamedTemporaryFile(suffix='.fits') as tmpfile:
            tbhdu.writeto(tmpfile.name, clobber=True)
            gzfile = gzip.open(filename, 'wb')
            try:
                try:
                    shutil.copyfileobj(tmpfile, gzfile)
                finally:
                    gzfile.close()
            except:
                os.unlink(gzfile.name)
                raise
    else:
        tbhdu.writeto(filename, clobber=True)

def read_cl(filename, dtype=np.float64, h=False):
    """Reads Cl from an healpix file, as IDL fits2cl.

    Parameters
    ----------
    filename : str or HDUList or HDU
      the fits file name
    dtype : data type, optional
      the data type of the returned array

    Returns
    -------
    cl : array
      the cl array
    """
    fits_hdu = _get_hdu(filename, hdu=1)
    cl = [fits_hdu.data.field(n) for n in range(len(fits_hdu.columns))]
    if len(cl) == 1:
        return cl[0]
    else:
        return cl

def write_cl(filename, cl, dtype=np.float64):
    """Writes Cl into an healpix file, as IDL cl2fits.

    Parameters
    ----------
    filename : str
      the fits file name
    cl : array
      the cl array to write to file, currently TT only
    """
    # check the dtype and convert it
    fitsformat = getformat(dtype)
    column_names = ['TEMPERATURE','GRADIENT','CURL','G-T','C-T','C-G']
    if isinstance(cl, list):
        cols = [pf.Column(name=column_name,
                               format='%s'%fitsformat,
                               array=column_cl) for column_name, column_cl in zip(column_names[:len(cl)], cl)]
    else: # we write only one TT
        cols = [pf.Column(name='TEMPERATURE',
                               format='%s'%fitsformat,
                               array=cl)]

    tbhdu = pf.BinTableHDU.from_columns(cols)
    # add needed keywords
    tbhdu.header['CREATOR'] = 'healpy'
    writeto(tbhdu, filename)

def write_map(filename,m,nest=False,dtype=np.float32,fits_IDL=True,coord=None,partial=False,column_names=None,column_units=None,extra_header=()):
    """Writes an healpix map into an healpix file.

    Parameters
    ----------
    filename : str
      the fits file name
    m : array or sequence of 3 arrays
      the map to write. Possibly a sequence of 3 maps of same size.
      They will be considered as I, Q, U maps.
      Supports masked maps, see the `ma` function.
    nest : bool, optional
      If True, ordering scheme is assumed to be NESTED, otherwise, RING. Default: RING.
      The map ordering is not modified by this function, the input map array
      should already be in the desired ordering (run `ud_grade` beforehand).
    fits_IDL : bool, optional
      If True, reshapes columns in rows of 1024, otherwise all the data will
      go in one column. Default: True
    coord : str
      The coordinate system, typically 'E' for Ecliptic, 'G' for Galactic or 'C' for
      Celestial (equatorial)
    partial : bool, optional
      If True, fits file is written as a partial-sky file with explicit indexing.
      Otherwise, implicit indexing is used.  Default: False.
    column_names : str or list
      Column name or list of column names, if None we use:
      I_STOKES for 1 component,
      I/Q/U_STOKES for 3 components,
      II, IQ, IU, QQ, QU, UU for 6 components,
      COLUMN_0, COLUMN_1... otherwise
    column_units : str or list
      Units for each column, or same units for all columns.
    extra_header : list
      Extra records to add to FITS header.
    dtype: np.dtype or list of np.dtypes, optional
      The datatype in which the columns will be stored. Will be converted
      internally from the numpy datatype to the fits convention. If a list,
      the length must correspond to the number of map arrays. 
      Default: np.float32.
    """
    if not hasattr(m, '__len__'):
        raise TypeError('The map must be a sequence')

    m = pixelfunc.ma_to_array(m)
    if pixelfunc.maptype(m) == 0: # a single map is converted to a list
        m = [m]

    # check the dtype and convert it
    try:
        fitsformat = []
        for curr_dtype in dtype:
            fitsformat.append(getformat(curr_dtype))
    except TypeError:
        #dtype is not iterable
        fitsformat = [getformat(dtype)] * len(m)

    if column_names is None:
        column_names = standard_column_names.get(len(m), ["COLUMN_%d" % n for n in range(len(m))])
    else:
        assert len(column_names) == len(m), "Length column_names != number of maps"

    if column_units is None or isinstance(column_units, six.string_types):
        column_units = [column_units] * len(m)

    # maps must have same length
    assert len(set(map(len, m))) == 1, "Maps must have same length"
    nside = pixelfunc.npix2nside(len(m[0]))

    if nside < 0:
        raise ValueError('Invalid healpix map : wrong number of pixel')

    cols=[]
    if partial:
        fits_IDL = False
        mask = pixelfunc.mask_good(m[0])
        pix = np.where(mask)[0]
        if len(pix) == 0:
            raise ValueError('Invalid healpix map : empty partial map')
        m = [mm[mask] for mm in m]
        ff = getformat(np.min_scalar_type(-pix.max()))
        if ff is None:
            ff = 'I'
        cols.append(pf.Column(name='PIXEL',
                              format=ff,
                              array=pix,
                              unit=None))

    for cn, cu, mm, curr_fitsformat in zip(column_names, column_units, m, 
                                           fitsformat):
        if len(mm) > 1024 and fits_IDL:
            # I need an ndarray, for reshape:
            mm2 = np.asarray(mm)
            cols.append(pf.Column(name=cn,
                                   format='1024%s' % curr_fitsformat,
                                   array=mm2.reshape(mm2.size//1024,1024),
                                   unit=cu))
        else:
            cols.append(pf.Column(name=cn,
                                   format='%s' % curr_fitsformat,
                                   array=mm,
                                   unit=cu))

    tbhdu = pf.BinTableHDU.from_columns(cols)
    # add needed keywords
    tbhdu.header['PIXTYPE'] = ('HEALPIX', 'HEALPIX pixelisation')
    if nest: ordering = 'NESTED'
    else:    ordering = 'RING'
    tbhdu.header['ORDERING'] = (ordering,
                                'Pixel ordering scheme, either RING or NESTED')
    if coord:
        tbhdu.header['COORDSYS'] = (coord,
                                    'Ecliptic, Galactic or Celestial (equatorial)')
    tbhdu.header['EXTNAME'] = ('xtension',
                               'name of this binary table extension')
    tbhdu.header['NSIDE'] = (nside,'Resolution parameter of HEALPIX')
    if not partial:
        tbhdu.header['FIRSTPIX'] = (0, 'First pixel # (0 based)')
        tbhdu.header['LASTPIX'] = (pixelfunc.nside2npix(nside)-1,
                                   'Last pixel # (0 based)')
    tbhdu.header['INDXSCHM'] = ('EXPLICIT' if partial else 'IMPLICIT',
                                'Indexing: IMPLICIT or EXPLICIT')
    tbhdu.header['OBJECT'] = ('PARTIAL' if partial else 'FULLSKY',
                              'Sky coverage, either FULLSKY or PARTIAL')

    # FIXME: In modern versions of Pyfits, header.update() understands a
    # header as an argument, and headers can be concatenated with the `+'
    # operator.
    for args in extra_header:
        tbhdu.header[args[0]] = args[1:]

    writeto(tbhdu, filename)


def read_map(filename,field=0,dtype=np.float64,nest=False,partial=False,hdu=1,h=False,
             verbose=True,memmap=False):
    """Read an healpix map from a fits file.  Partial-sky files,
    if properly identified, are expanded to full size and filled with UNSEEN.

    Parameters
    ----------
    filename : str or HDU or HDUList
      the fits file name
    field : int or tuple of int, or None, optional
      The column to read. Default: 0.
      By convention 0 is temperature, 1 is Q, 2 is U.
      Field can be a tuple to read multiple columns (0,1,2)
      If the fits file is a partial-sky file, field=0 corresponds to the
      first column after the pixel index column.
      If None, all columns are read in.
    dtype : data type or list of data types, optional
      Force the conversion to some type. Passing a list allows different 
      types for each field. In that case, the length of the list must
      correspond to the length of the field parameter. Default: np.float64
    nest : bool, optional
      If True return the map in NEST ordering, otherwise in RING ordering;
      use fits keyword ORDERING to decide whether conversion is needed or not
      If None, no conversion is performed.
    partial : bool, optional
      If True, fits file is assumed to be a partial-sky file with explicit indexing,
      if the indexing scheme cannot be determined from the header.
      If False, implicit indexing is assumed.  Default: False.
      A partial sky file is one in which OBJECT=PARTIAL and INDXSCHM=EXPLICIT,
      and the first column is then assumed to contain pixel indices.
      A full sky file is one in which OBJECT=FULLSKY and INDXSCHM=IMPLICIT.
      At least one of these keywords must be set for the indexing
      scheme to be properly identified.
    hdu : int, optional
      the header number to look at (start at 0)
    h : bool, optional
      If True, return also the header. Default: False.
    verbose : bool, optional
      If True, print a number of diagnostic messages
    memmap : bool, optional
      Argument passed to astropy.io.fits.open, if True, the map is not read into memory,
      but only the required pixels are read when needed. Default: False.

    Returns
    -------
    m | (m0, m1, ...) [, header] : array or a tuple of arrays, optionally with header appended
      The map(s) read from the file, and the header if *h* is True.
    """

    fits_hdu = _get_hdu(filename, hdu=hdu, memmap=memmap)

    nside = fits_hdu.header.get('NSIDE')
    if nside is None:
        warnings.warn("No NSIDE in the header file : will use length of array", HealpixFitsWarning)
    else:
        nside = int(nside)
    if verbose: print('NSIDE = {0:d}'.format(nside))

    if not pixelfunc.isnsideok(nside):
        raise ValueError('Wrong nside parameter.')
    ordering = fits_hdu.header.get('ORDERING','UNDEF').strip()
    if ordering == 'UNDEF':
        ordering = (nest and 'NESTED' or 'RING')
        warnings.warn("No ORDERING keyword in header file : "
                      "assume %s"%ordering)
    if verbose: print('ORDERING = {0:s} in fits file'.format(ordering))

    sz=pixelfunc.nside2npix(nside)
    ret = []

    # partial sky: check OBJECT, then INDXSCHM
    obj = fits_hdu.header.get('OBJECT', 'UNDEF').strip()
    if obj != 'UNDEF':
        if obj == 'PARTIAL':
            partial = True
        elif obj == 'FULLSKY':
            partial = False

    schm = fits_hdu.header.get('INDXSCHM', 'UNDEF').strip()
    if schm != 'UNDEF':
        if schm == 'EXPLICIT':
            if obj == 'FULLSKY':
                raise ValueError('Incompatible INDXSCHM keyword')
            partial = True
        elif schm == 'IMPLICIT':
            if obj == 'PARTIAL':
                raise ValueError('Incompatible INDXSCHM keyword')
            partial = False

    if schm == 'UNDEF':
        schm = (partial and 'EXPLICIT' or 'IMPLICIT')
        warnings.warn("No INDXSCHM keyword in header file : "
                       "assume {}".format(schm))
    if verbose:
        print('INDXSCHM = {0:s}'.format(schm))

    if field is None:
        field = range(len(fits_hdu.data.columns) - 1*partial)
    if not (hasattr(field, '__len__') or isinstance(field, str)):
        field = (field,)

    if partial:
        # increment field counters
        field = tuple(f if isinstance(f, str) else f+1 for f in field)
        try:
            pix = fits_hdu.data.field(0).astype(int).ravel()
        except pf.VerifyError as e:
            print(e)
            print("Trying to fix a badly formatted header")
            fits_hdu.verify("fix")
            pix = fits_hdu.data.field(0).astype(int).ravel()

    try:
        assert len(dtype) == len(field), "The number of dtypes are not equal to the number of fields"
    except TypeError:
        dtype = [dtype] * len(field)

    for ff, curr_dtype in zip(field, dtype):
        try:
            m=fits_hdu.data.field(ff).astype(curr_dtype).ravel()
        except pf.VerifyError as e:
            print(e)
            print("Trying to fix a badly formatted header")
            m=fits_hdu.verify("fix")
            m=fits_hdu.data.field(ff).astype(curr_dtype).ravel()

        if partial:
            mnew = UNSEEN * np.ones(sz, dtype=curr_dtype)
            mnew[pix] = m
            m = mnew

        if (not pixelfunc.isnpixok(m.size) or (sz>0 and sz != m.size)) and verbose:
            print('nside={0:d}, sz={1:d}, m.size={2:d}'.format(nside,sz,m.size))
            raise ValueError('Wrong nside parameter.')
        if not nest is None: # no conversion with None
            if nest and ordering == 'RING':
                idx = pixelfunc.nest2ring(nside,np.arange(m.size,dtype=np.int32))
                m = m[idx]
                if verbose: print('Ordering converted to NEST')
            elif (not nest) and ordering == 'NESTED':
                idx = pixelfunc.ring2nest(nside,np.arange(m.size,dtype=np.int32))
                m = m[idx]
                if verbose: print('Ordering converted to RING')
        try:
            m[pixelfunc.mask_bad(m)] = UNSEEN
        except OverflowError:
            pass
        ret.append(m)

    if len(ret) == 1:
        if h:
            return ret[0],fits_hdu.header.items()
        else:
            return ret[0]
    else:
        if h:
            ret.append(fits_hdu.header.items())
            return tuple(ret)
        else:
            return tuple(ret)


def write_alm(filename,alms,out_dtype=None,lmax=-1,mmax=-1,mmax_in=-1):
    """Write alms to a fits file.

    In the fits file the alms are written
    with explicit index scheme, index = l*l + l + m +1, possibly out of order.
    By default write_alm makes a table with the same precision as the alms.
    If specified, the lmax and mmax parameters truncate the input data to
    include only alms for which l <= lmax and m <= mmax.

    Parameters
    ----------
    filename : str
      The filename of the output fits file
    alms : array, complex or list of arrays
      A complex ndarray holding the alms, index = m*(2*lmax+1-m)/2+l, see Alm.getidx
    lmax : int, optional
      The maximum l in the output file
    mmax : int, optional
      The maximum m in the output file
    out_dtype : data type, optional
      data type in the output file (must be a numpy dtype). Default: *alms*.real.dtype
    mmax_in : int, optional
      maximum m in the input array
    """

    if not cb.is_seq_of_seq(alms):
        alms = [alms]

    l2max = Alm.getlmax(len(alms[0]),mmax=mmax_in)
    if (lmax != -1 and lmax > l2max):
        raise ValueError("Too big lmax in parameter")
    elif lmax == -1:
        lmax = l2max

    if mmax_in == -1:
        mmax_in = l2max

    if mmax == -1:
        mmax = lmax
    if mmax > mmax_in:
        mmax = mmax_in

    if (out_dtype == None):
        out_dtype = alms[0].real.dtype

    l,m = Alm.getlm(lmax)
    idx = np.where((l <= lmax)*(m <= mmax))
    l = l[idx]
    m = m[idx]

    idx_in_original = Alm.getidx(l2max, l=l, m=m)

    index = l**2 + l + m + 1

    hdulist = pf.HDUList()
    for alm in alms:
        out_data = np.empty(len(index),
                   dtype=[('index','i'),
                          ('real',out_dtype),
                          ('imag',out_dtype)])
        out_data['index'] = index
        out_data['real'] = alm.real[idx_in_original]
        out_data['imag'] = alm.imag[idx_in_original]

        cindex = pf.Column(name="index", format=getformat(np.int32), unit="l*l+l+m+1", array=out_data['index'])
        creal = pf.Column(name="real", format=getformat(out_dtype), unit="unknown", array=out_data['real'])
        cimag = pf.Column(name="imag", format=getformat(out_dtype), unit="unknown", array=out_data['imag'])

        tbhdu = pf.BinTableHDU.from_columns([cindex,creal,cimag])
        hdulist.append(tbhdu)
    writeto(hdulist, filename)

def read_alm(filename,hdu=1,return_mmax=False):
    """Read alm from a fits file.

    In the fits file, the alm are written
    with explicit index scheme, index = l**2+l+m+1, while healpix cxx
    uses index = m*(2*lmax+1-m)/2+l. The conversion is done in this
    function.

    Parameters
    ----------
    filename : str or HDUList or HDU
      The name of the fits file to read
    hdu : int, optional
      The header to read. Start at 0. Default: hdu=1
    return_mmax : bool, optional
      If true, both the alms and mmax is returned in a tuple. Default: return_mmax=False

    Returns
    -------
    alms[, mmax] : complex array or tuple of a complex array and an int
      The alms read from the file and optionally mmax read from the file
    """
    idx, almr, almi = mrdfits(filename,hdu=hdu)
    l = np.floor(np.sqrt(idx-1)).astype(np.long)
    m = idx - l**2 - l - 1
    if (m<0).any():
        raise ValueError('Negative m value encountered !')
    lmax = l.max()
    mmax = m.max()
    alm = almr*(0+0j)
    i = Alm.getidx(lmax,l,m)
    alm.real[i] = almr
    alm.imag[i] = almi
    if return_mmax:
        return alm, mmax
    else:
        return alm

## Generic functions to read and write column of data in fits file

def _get_hdu(input_data, hdu=None, memmap=None):
    """
    Return an HDU from a FITS file

    Parameters
    ----------
    input_data : str or HDUList or HDU instance
        The input FITS file, either as a filename, HDU list, or HDU instance.

    Returns
    -------
    fits_hdu : HDU
        The extracted HDU
    """

    if isinstance(input_data, six.string_types):
        hdulist = pf.open(input_data, memmap=memmap)
        return _get_hdu(hdulist, hdu=hdu)

    if isinstance(input_data, pf.HDUList):
        if isinstance(hdu, int) and hdu >= len(input_data):
            raise ValueError('Available hdu in [0-%d]' % len(input_data))
        else:
            fits_hdu = input_data[hdu]
    elif isinstance(input_data, (pf.PrimaryHDU, pf.ImageHDU, pf.BinTableHDU, pf.TableHDU, pf.GroupsHDU)):
        fits_hdu = input_data
    else:
        raise TypeError("First argument should be a input_data, HDUList instance, or HDU instance")

    return fits_hdu


def mrdfits(filename, hdu=1):
    """
    Read a table in a fits file.

    Parameters
    ----------
    filename : str or HDUList or HDU
      The name of the fits file to read, or an HDUList or HDU instance.
    hdu : int, optional
      The header to read. Start at 0. Default: hdu=1

    Returns
    -------
    cols : a list of arrays
      A list of column data in the given header
    """
    fits_hdu = _get_hdu(filename, hdu=hdu)
    val=[]
    for i in range(len(fits_hdu.columns)):
        val.append(fits_hdu.data.field(i))
    return val


def mwrfits(filename,data,hdu=1,colnames=None,keys=None):
    """Write columns to a fits file in a table extension.

    Parameters
    ----------
    filename : str
      The fits file name
    data : list of 1D arrays
      A list of 1D arrays to write in the table
    hdu : int, optional
      The header where to write the data. Default: 1
    colnames : list of str
      The column names
    keys : dict-like
      A dictionary with keywords to write in the header
    """
    # Check the inputs
    if colnames is not None:
        if len(colnames) != len(data):
            raise ValueError("colnames and data must the same length")
    else:
        colnames = ['']*len(data)
    cols=[]
    for line in six.moves.xrange(len(data)):
        cols.append(pf.Column(name=colnames[line],
                               format=getformat(data[line]),
                               array=data[line]))
    tbhdu = pf.BinTableHDU.from_columns(cols)
    if type(keys) is dict:
        for k,v in keys.items():
            tbhdu.header[k] = v
    # write the file
    writeto(tbhdu, filename)

def getformat(t):
    """Get the FITS convention format string of data type t.

    Parameters
    ----------
    t : data type
      The data type for which the FITS type is requested

    Returns
    -------
    fits_type : str or None
      The FITS string code describing the data type, or None if unknown type.
    """
    conv = {
        np.dtype(np.bool): 'L',
        np.dtype(np.uint8): 'B',
        np.dtype(np.int16): 'I',
        np.dtype(np.int32): 'J',
        np.dtype(np.int64): 'K',
        np.dtype(np.float32): 'E',
        np.dtype(np.float64): 'D',
        np.dtype(np.complex64): 'C',
        np.dtype(np.complex128): 'M'
        }
    try:
        if t in conv:
            return conv[t]
    except:
        pass
    try:
        if np.dtype(t) in conv:
            return conv[np.dtype(t)]
    except:
        pass
    try:
        if np.dtype(type(t)) in conv:
            return conv[np.dtype(type(t))]
    except:
        pass
    try:
        if np.dtype(type(t[0])) in conv:
            return conv[np.dtype(type(t[0]))]
    except:
        pass
    try:
        if t is str:
            return 'A'
    except:
        pass
    try:
        if type(t) is str:
            return 'A%d'%(len(t))
    except:
        pass
    try:
        if type(t[0]) is str:
            l=max(len(s) for s in t)
            return 'A%d'%(l)
    except:
        pass