This file is indexed.

/usr/lib/python2.7/dist-packages/h5py/_hl/selections.py is in python-h5py 2.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# This file is part of h5py, a Python interface to the HDF5 library.
#
# http://www.h5py.org
#
# Copyright 2008-2013 Andrew Collette and contributors
#
# License:  Standard 3-clause BSD; see "license.txt" for full license terms
#           and contributor agreement.

# We use __getitem__ side effects, which pylint doesn't like.
# pylint: disable=pointless-statement

"""
    High-level access to HDF5 dataspace selections
"""

from __future__ import absolute_import

import six
from six.moves import xrange    # pylint: disable=redefined-builtin

import numpy as np

from .. import h5s, h5r


def select(shape, args, dsid):
    """ High-level routine to generate a selection from arbitrary arguments
    to __getitem__.  The arguments should be the following:

    shape
        Shape of the "source" dataspace.

    args
        Either a single argument or a tuple of arguments.  See below for
        supported classes of argument.
    
    dsid
        A h5py.h5d.DatasetID instance representing the source dataset.

    Argument classes:

    Single Selection instance
        Returns the argument.

    numpy.ndarray
        Must be a boolean mask.  Returns a PointSelection instance.

    RegionReference
        Returns a Selection instance.

    Indices, slices, ellipses only
        Returns a SimpleSelection instance

    Indices, slices, ellipses, lists or boolean index arrays
        Returns a FancySelection instance.
    """
    if not isinstance(args, tuple):
        args = (args,)

    # "Special" indexing objects
    if len(args) == 1:

        arg = args[0]
        if isinstance(arg, Selection):
            if arg.shape != shape:
                raise TypeError("Mismatched selection shape")
            return arg

        elif isinstance(arg, np.ndarray):
            sel = PointSelection(shape)
            sel[arg]
            return sel

        elif isinstance(arg, h5r.RegionReference):
            sid = h5r.get_region(arg, dsid)
            if shape != sid.shape:
                raise TypeError("Reference shape does not match dataset shape")
                
            return Selection(shape, spaceid=sid)

    for a in args:
        if not isinstance(a, slice) and a is not Ellipsis:
            try:
                int(a)
                if isinstance(a, np.ndarray) and a.shape == (1,):
                    raise Exception()
            except Exception:
                sel = FancySelection(shape)
                sel[args]
                return sel
    
    sel = SimpleSelection(shape)
    sel[args]
    return sel

class _RegionProxy(object):

    """
        Thin proxy object which takes __getitem__-style index arguments and
        produces RegionReference objects.  Example:

        >>> dset = myfile['dataset']
        >>> myref = dset.regionref[0:100,20:30]
        >>> data = dset[myref]

    """

    def __init__(self, dsid):
        """ Supply a h5py.h5d.DatasetID instance """
        self.id = dsid

    def __getitem__(self, args):
        """ Takes arbitrary selection terms and produces a RegionReference
        object.  Selection must be compatible with the dataset.
        """
        selection = select(self.id.shape, args, self.id)
        return h5r.create(self.id, '.', h5r.DATASET_REGION, selection.id)

class Selection(object):

    """
        Base class for HDF5 dataspace selections.  Subclasses support the
        "selection protocol", which means they have at least the following
        members:
        
        __init__(shape)   => Create a new selection on "shape"-tuple
        __getitem__(args) => Perform a selection with the range specified.
                             What args are allowed depends on the
                             particular subclass in use.

        id (read-only) =>      h5py.h5s.SpaceID instance
        shape (read-only) =>   The shape of the dataspace.
        mshape  (read-only) => The shape of the selection region. 
                               Not guaranteed to fit within "shape", although
                               the total number of points is less than
                               product(shape).
        nselect (read-only) => Number of selected points.  Always equal to
                               product(mshape).

        broadcast(target_shape) => Return an iterable which yields dataspaces
                                   for read, based on target_shape.

        The base class represents "unshaped" selections (1-D).
    """

    def __init__(self, shape, spaceid=None):
        """ Create a selection.  Shape may be None if spaceid is given. """
        if spaceid is not None:
            self._id = spaceid
            self._shape = spaceid.shape
        else:
            shape = tuple(shape)
            self._shape = shape
            self._id = h5s.create_simple(shape, (h5s.UNLIMITED,)*len(shape))
            self._id.select_all()

    @property
    def id(self):
        """ SpaceID instance """
        return self._id

    @property
    def shape(self):
        """ Shape of whole dataspace """
        return self._shape

    @property
    def nselect(self):
        """ Number of elements currently selected """
        return self._id.get_select_npoints()

    @property
    def mshape(self):
        """ Shape of selection (always 1-D for this class) """
        return (self.nselect,)

    def broadcast(self, target_shape):
        """ Get an iterable for broadcasting """
        if np.product(target_shape) != self.nselect:
            raise TypeError("Broadcasting is not supported for point-wise selections")
        yield self._id

    def __getitem__(self, args):
        raise NotImplementedError("This class does not support indexing")

class PointSelection(Selection):

    """
        Represents a point-wise selection.  You can supply sequences of
        points to the three methods append(), prepend() and set(), or a
        single boolean array to __getitem__.
    """

    def _perform_selection(self, points, op):
        """ Internal method which actually performs the selection """
        points = np.asarray(points, order='C', dtype='u8')
        if len(points.shape) == 1:
            points.shape = (1,points.shape[0])

        if self._id.get_select_type() != h5s.SEL_POINTS:
            op = h5s.SELECT_SET

        if len(points) == 0:
            self._id.select_none()
        else:
            self._id.select_elements(points, op)

    def __getitem__(self, arg):
        """ Perform point-wise selection from a NumPy boolean array """
        if not (isinstance(arg, np.ndarray) and arg.dtype.kind == 'b'):
            raise TypeError("PointSelection __getitem__ only works with bool arrays")
        if not arg.shape == self.shape:
            raise TypeError("Boolean indexing array has incompatible shape")

        points = np.transpose(arg.nonzero())
        self.set(points)
        return self

    def append(self, points):
        """ Add the sequence of points to the end of the current selection """
        self._perform_selection(points, h5s.SELECT_APPEND)

    def prepend(self, points):
        """ Add the sequence of points to the beginning of the current selection """
        self._perform_selection(points, h5s.SELECT_PREPEND)

    def set(self, points):
        """ Replace the current selection with the given sequence of points"""
        self._perform_selection(points, h5s.SELECT_SET)


class SimpleSelection(Selection):

    """ A single "rectangular" (regular) selection composed of only slices
        and integer arguments.  Can participate in broadcasting.
    """

    @property
    def mshape(self):
        """ Shape of current selection """
        return self._mshape

    def __init__(self, shape, *args, **kwds):
        Selection.__init__(self, shape, *args, **kwds)
        rank = len(self.shape)
        self._sel = ((0,)*rank, self.shape, (1,)*rank, (False,)*rank)
        self._mshape = self.shape

    def __getitem__(self, args):

        if not isinstance(args, tuple):
            args = (args,)
  
        if self.shape == ():
            if len(args) > 0 and args[0] not in (Ellipsis, ()):
                raise TypeError("Invalid index for scalar dataset (only ..., () allowed)")
            self._id.select_all()
            return self

        start, count, step, scalar = _handle_simple(self.shape,args)

        self._id.select_hyperslab(start, count, step)

        self._sel = (start, count, step, scalar)

        self._mshape = tuple(x for x, y in zip(count, scalar) if not y)

        return self


    def broadcast(self, target_shape):
        """ Return an iterator over target dataspaces for broadcasting.

        Follows the standard NumPy broadcasting rules against the current
        selection shape (self.mshape).
        """
        if self.shape == ():
            if np.product(target_shape) != 1:
                raise TypeError("Can't broadcast %s to scalar" % target_shape)
            self._id.select_all()
            yield self._id
            return

        start, count, step, scalar = self._sel

        rank = len(count)
        target = list(target_shape)

        tshape = []
        for idx in xrange(1,rank+1):
            if len(target) == 0 or scalar[-idx]:     # Skip scalar axes
                tshape.append(1)
            else:
                t = target.pop()
                if t == 1 or count[-idx] == t:
                    tshape.append(t)
                else:
                    raise TypeError("Can't broadcast %s -> %s" % (target_shape, count))
        tshape.reverse()
        tshape = tuple(tshape)

        chunks = tuple(x//y for x, y in zip(count, tshape))
        nchunks = int(np.product(chunks))

        if nchunks == 1:
            yield self._id
        else:
            sid = self._id.copy()
            sid.select_hyperslab((0,)*rank, tshape, step)
            for idx in xrange(nchunks):
                offset = tuple(x*y*z + s for x, y, z, s in zip(np.unravel_index(idx, chunks), tshape, step, start))
                sid.offset_simple(offset)
                yield sid


class FancySelection(Selection):

    """
        Implements advanced NumPy-style selection operations in addition to
        the standard slice-and-int behavior.

        Indexing arguments may be ints, slices, lists of indicies, or
        per-axis (1D) boolean arrays.

        Broadcasting is not supported for these selections.
    """

    @property
    def mshape(self):
        return self._mshape

    def __init__(self, shape, *args, **kwds):
        Selection.__init__(self, shape, *args, **kwds)
        self._mshape = self.shape

    def __getitem__(self, args):

        if not isinstance(args, tuple):
            args = (args,)

        args = _expand_ellipsis(args, len(self.shape))

        # First build up a dictionary of (position:sequence) pairs

        sequenceargs = {}
        for idx, arg in enumerate(args):
            if not isinstance(arg, slice):
                if hasattr(arg, 'dtype') and arg.dtype == np.dtype('bool'):
                    if len(arg.shape) != 1:
                        raise TypeError("Boolean indexing arrays must be 1-D")
                    arg = arg.nonzero()[0]
                try:
                    sequenceargs[idx] = list(arg)
                except TypeError:
                    pass
                else:
                    list_arg = list(arg)
                    adjacent = zip(list_arg[:-1], list_arg[1:])
                    if any(fst >= snd for fst, snd in adjacent):
                        raise TypeError("Indexing elements must be in increasing order")

        if len(sequenceargs) > 1:
            raise TypeError("Only one indexing vector or array is currently allowed for advanced selection")
        if len(sequenceargs) == 0:
            raise TypeError("Advanced selection inappropriate")

        vectorlength = len(list(sequenceargs.values())[0])
        if not all(len(x) == vectorlength for x in sequenceargs.values()):
            raise TypeError("All sequence arguments must have the same length %s" % sequenceargs)

        # Now generate a vector of selection lists,
        # consisting only of slices and ints

        argvector = []
        for idx in xrange(vectorlength):
            entry = list(args)
            for position, seq in six.iteritems(sequenceargs):
                entry[position] = seq[idx]
            argvector.append(entry)

        # "OR" all these selection lists together to make the final selection

        self._id.select_none()
        for idx, vector in enumerate(argvector):
            start, count, step, scalar = _handle_simple(self.shape, vector)
            self._id.select_hyperslab(start, count, step, op=h5s.SELECT_OR)

        # Final shape excludes scalars, except where
        # they correspond to sequence entries

        mshape = list(count)
        for idx in xrange(len(mshape)):
            if idx in sequenceargs:
                mshape[idx] = len(sequenceargs[idx])
            elif scalar[idx]:
                mshape[idx] = 0

        self._mshape = tuple(x for x in mshape if x != 0)

    def broadcast(self, target_shape):
        if not target_shape == self.mshape:
            raise TypeError("Broadcasting is not supported for complex selections")
        yield self._id

def _expand_ellipsis(args, rank):
    """ Expand ellipsis objects and fill in missing axes.
    """
    n_el = sum(1 for arg in args if arg is Ellipsis)
    if n_el > 1:
        raise ValueError("Only one ellipsis may be used.")
    elif n_el == 0 and len(args) != rank:
        args = args + (Ellipsis,)

    final_args = []
    n_args = len(args)
    for arg in args:

        if arg is Ellipsis:
            final_args.extend( (slice(None,None,None),)*(rank-n_args+1) )
        else:
            final_args.append(arg)

    if len(final_args) > rank:
        raise TypeError("Argument sequence too long")

    return final_args

def _handle_simple(shape, args):
    """ Process a "simple" selection tuple, containing only slices and
        integer objects.  Return is a 4-tuple with tuples for start,
        count, step, and a flag which tells if the axis is a "scalar"
        selection (indexed by an integer).

        If "args" is shorter than "shape", the remaining axes are fully
        selected.
    """
    args = _expand_ellipsis(args, len(shape))

    start = []
    count = []
    step  = []
    scalar = []

    for arg, length in zip(args, shape):
        if isinstance(arg, slice):
            x,y,z = _translate_slice(arg, length)
            s = False
        else:
            try:
                x,y,z = _translate_int(int(arg), length)
                s = True
            except TypeError:
                raise TypeError('Illegal index "%s" (must be a slice or number)' % arg)
        start.append(x)
        count.append(y)
        step.append(z)
        scalar.append(s)

    return tuple(start), tuple(count), tuple(step), tuple(scalar)

def _translate_int(exp, length):
    """ Given an integer index, return a 3-tuple
        (start, count, step)
        for hyperslab selection
    """
    if exp < 0:
        exp = length+exp

    if not 0<=exp<length:
        raise ValueError("Index (%s) out of range (0-%s)" % (exp, length-1))

    return exp, 1, 1

def _translate_slice(exp, length):
    """ Given a slice object, return a 3-tuple
        (start, count, step)
        for use with the hyperslab selection routines
    """
    start, stop, step = exp.indices(length)
        # Now if step > 0, then start and stop are in [0, length]; 
        # if step < 0, they are in [-1, length - 1] (Python 2.6b2 and later; 
        # Python issue 3004).

    if step < 1:
        raise ValueError("Step must be >= 1 (got %d)" % step)
    if stop < start:
        raise ValueError("Reverse-order selections are not allowed")

    count = 1 + (stop - start - 1) // step

    return start, count, step

def guess_shape(sid):
    """ Given a dataspace, try to deduce the shape of the selection.

    Returns one of:
        * A tuple with the selection shape, same length as the dataspace 
        * A 1D selection shape for point-based and multiple-hyperslab selections
        * None, for unselected scalars and for NULL dataspaces
    """

    sel_class = sid.get_simple_extent_type()    # Dataspace class
    sel_type = sid.get_select_type()            # Flavor of selection in use

    if sel_class == h5s.NULL:
        # NULL dataspaces don't support selections
        return None

    elif sel_class == h5s.SCALAR:
        # NumPy has no way of expressing empty 0-rank selections, so we use None
        if sel_type == h5s.SEL_NONE: return None
        if sel_type == h5s.SEL_ALL: return tuple()

    elif sel_class != h5s.SIMPLE:
        raise TypeError("Unrecognized dataspace class %s" % sel_class)

    # We have a "simple" (rank >= 1) dataspace

    N = sid.get_select_npoints()
    rank = len(sid.shape)

    if sel_type == h5s.SEL_NONE:
        return (0,)*rank

    elif sel_type == h5s.SEL_ALL:
        return sid.shape

    elif sel_type == h5s.SEL_POINTS:
        # Like NumPy, point-based selections yield 1D arrays regardless of
        # the dataspace rank
        return (N,)

    elif sel_type != h5s.SEL_HYPERSLABS:
        raise TypeError("Unrecognized selection method %s" % sel_type)

    # We have a hyperslab-based selection

    if N == 0:
        return (0,)*rank

    bottomcorner, topcorner = (np.array(x) for x in sid.get_select_bounds())

    # Shape of full selection box
    boxshape = topcorner - bottomcorner + np.ones((rank,))

    def get_n_axis(sid, axis):
        """ Determine the number of elements selected along a particular axis.

        To do this, we "mask off" the axis by making a hyperslab selection
        which leaves only the first point along the axis.  For a 2D dataset
        with selection box shape (X, Y), for axis 1, this would leave a
        selection of shape (X, 1).  We count the number of points N_leftover
        remaining in the selection and compute the axis selection length by
        N_axis = N/N_leftover.
        """

        if(boxshape[axis]) == 1:
            return 1

        start = bottomcorner.copy()
        start[axis] += 1
        count = boxshape.copy()
        count[axis] -= 1

        # Throw away all points along this axis
        masked_sid = sid.copy()
        masked_sid.select_hyperslab(tuple(start), tuple(count), op=h5s.SELECT_NOTB)

        N_leftover = masked_sid.get_select_npoints()

        return N//N_leftover


    shape = tuple(get_n_axis(sid, x) for x in xrange(rank))

    if np.product(shape) != N:
        # This means multiple hyperslab selections are in effect,
        # so we fall back to a 1D shape
        return (N,)

    return shape