/usr/lib/python2.7/dist-packages/pyferret/datamethods.py is in python-ferret 7.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | """
Methods in pyferret for transferring data between the Ferret engine
and Python.
"""
from __future__ import print_function
import sys
import numpy
import numpy.ma
if sys.version_info[0] > 2:
import io
else:
import StringIO
from pyferret import libpyferret
# set of units (in uppercase) for checking if a custom axis is actual a longitude axis
_UC_LONGITUDE_UNITS = frozenset( ("DEG E", "DEG_E", "DEG EAST", "DEG_EAST",
"DEGREES E", "DEGREES_E", "DEGREES EAST", "DEGREES_EAST",
"DEG W", "DEG_W", "DEG WEST", "DEG_WEST",
"DEGREES W", "DEGREES_W", "DEGREES WEST", "DEGREES_WEST") )
# set of units (in uppercase) for checking if a custom axis is actual a latitude axis
_UC_LATITUDE_UNITS = frozenset( ("DEG N", "DEG_N", "DEG NORTH", "DEG_NORTH",
"DEGREES N", "DEGREES_N", "DEGREES NORTH", "DEGREES_NORTH",
"DEG S", "DEG_S", "DEG SOUTH", "DEG_SOUTH",
"DEGREES S", "DEGREES_S", "DEGREES SOUTH", "DEGREES_SOUTH") )
# set of units (in lowercase) for checking if a custom axis can be represented by a cdtime.reltime
# the unit must be followed by "since" and something else
_LC_TIME_UNITS = frozenset( ("s", "sec", "secs", "second", "seconds",
"mn", "min", "mins", "minute", "minutes",
"hr", "hour", "hours",
"dy", "day", "days",
"mo", "month", "months",
"season", "seasons",
"yr", "year", "years") )
_LC_MONTH_NUMS = { "jan":1, "feb":2, "mar":3, "apr":4, "may":5, "jun":6,
"jul":7, "aug":8, "sep":9, "oct":10, "nov":11, "dec":12 }
_UC_MONTH_NAMES = { 1: "JAN", 2:"FEB", 3:"MAR", 4:"APR", 5:"MAY", 6:"JUN",
7:"JUL", 8:"AUG", 9:"SEP", 10:"OCT", 11:"NOV", 12:"DEC" }
def metastr(datadict):
"""
Creates a string representation of the metadata in a data dictionary.
Print this string to show a nicely formatted display of the metadata.
Arguments:
datadict: a data dictionary, as returned by the getdata method.
Returns:
the string representation of the metadata in datadict.
Raises:
TypeError if datadict is not a dictionary
"""
if not isinstance(datadict, dict):
raise TypeError("datadict is not a dictionary")
# specify an order of output for standard keys, leaving out "data"
keylist = [ "name", "title", "dset", "data_unit", "missing_value",
"axis_names", "axis_types", "axis_units", "axis_coords" ]
# append non-standard keys in alphabetical order
for key in sorted(datadict.keys()):
if (key != "data") and (key not in keylist):
keylist.append(key)
# create the metadata string using StringIO
if sys.version_info[0] > 2:
strbuf = io.StringIO()
else:
strbuf = StringIO.StringIO()
for key in keylist:
try:
# make sure the key:value pair exists
val = datadict[key]
# just in case the key is not a string (for printing)
keystr = str(key)
if keystr == "axis_coords":
print(keystr + ":", file=strbuf)
for (idx, item) in enumerate(val):
# add the axis name (which will be present if coordinates
# are given) as a label for the axis coordinates
itemlabel = " '" + datadict["axis_names"][idx] + "': "
if datadict["axis_types"][idx] == libpyferret.AXISTYPE_TIME:
# add a translation of each of the time 6-tuples
strlist = [ ]
for subitem in item:
strlist.append(" %s = %02d-%3s-%04d %02d:%02d:%02d" % \
(str(subitem),
subitem[libpyferret.TIMEARRAY_DAYINDEX],
_UC_MONTH_NAMES[subitem[libpyferret.TIMEARRAY_MONTHINDEX]],
subitem[libpyferret.TIMEARRAY_YEARINDEX],
subitem[libpyferret.TIMEARRAY_HOURINDEX],
subitem[libpyferret.TIMEARRAY_MINUTEINDEX],
subitem[libpyferret.TIMEARRAY_SECONDINDEX],) )
if len(strlist) == 0:
strlist.append("[]")
else:
strlist[0] = "[" + strlist[0][1:]
strlist[-1] = strlist[-1] + "]"
else:
# just print the values of non-time axis coordinates
strlist = str(item).split('\n')
# adjust the subsequent-line-indent if multiple lines
itemstr = itemlabel + strlist[0]
indent = " " * len(itemlabel)
for addstr in strlist[1:]:
itemstr += "\n" + indent + addstr
print(itemstr, file=strbuf)
elif keystr == "axis_types":
# add a translation of the axis type number
valstr = "("
for (idx, item) in enumerate(val):
if idx > 0:
valstr += ", "
valstr += str(item)
if item == libpyferret.AXISTYPE_LONGITUDE:
valstr += "=longitude"
elif item == libpyferret.AXISTYPE_LATITUDE:
valstr += "=latitude"
elif item == libpyferret.AXISTYPE_LEVEL:
valstr += "=level"
elif item == libpyferret.AXISTYPE_TIME:
valstr += "=time"
elif item == libpyferret.AXISTYPE_CUSTOM:
valstr += "=custom"
elif item == libpyferret.AXISTYPE_ABSTRACT:
valstr += "=abstract"
elif item == libpyferret.AXISTYPE_NORMAL:
valstr += "=unused"
valstr += ")"
print(keystr + ": " + valstr, file=strbuf)
elif keystr == "missing_value":
# print the one value in the missing value array
print(keystr + ": " + str(val[0]), file=strbuf)
else:
# just print as "key: value", except
# adjust the subsequent-line-indent if multiple lines
strlist = str(val).split('\n')
valstr = strlist[0]
indent = " " * (len(keystr) + 2)
for addstr in strlist[1:]:
valstr += "\n" + indent + addstr
print(keystr + ": " + valstr, file=strbuf)
except KeyError:
# known key not present - ignore
pass
strval = strbuf.getvalue()
strbuf.close()
return strval
def getstrdata(name):
"""
Returns the string array and axes information for the data variable
described in name as a dictionary.
Arguments:
name: the name of the string data array to retrieve
Returns:
A dictionary contains the string data array and axes information.
The dictionary contains the following key/value pairs:
'title' : the string passed in the name argument
'data': the string data array. This will be a NumPy String
ndarray with a string length one more than the longest
string in the array.
'missing_value': the missing data value. This will be a NumPy
String ndarray (with the same string length as for data)
containing a single String value.
'axis_types': a list of integer values describing the type of
each axis. Possible values are the following constants
defined by the pyferret module:
AXISTYPE_LONGITUDE
AXISTYPE_LATITUDE
AXISTYPE_LEVEL
AXISTYPE_TIME
AXISTYPE_CUSTOM (axis units not recognized by Ferret)
AXISTYPE_ABSTRACT (axis is unit-less integer values)
AXISTYPE_NORMAL (axis is normal to the data)
'axis_names': a list of strings giving the name of each axis
'axis_units': a list of strings giving the unit of each axis.
If the axis type is AXISTYPE_TIME, this names the calendar
used for the timestamps, as one of the following strings
defined by the pyferret module:
CALTYPE_360DAY
CALTYPE_NOLEAP
CALTYPE_GREGORIAN
CALTYPE_JULIAN
CALTYPE_ALLLEAP
CALTYPE_NONE (calendar not specified)
'axis_coords': a list of NumPy ndarrays giving the coordinate values
for each axis. If the axis type is neither AXISTYPE_TIME
nor AXISTYPE_NORMAL, a NumPy float64 ndarray is given. If
the axis is type AXISTYPE_TIME, a NumPy integer ndarray of
shape (N,6) where N is the number of time points. The six
integer values per time point are the day, month, year, hour,
minute, and second of the associate calendar for this time
axis. The following constants defined by the pyferret module
give the values of these six indices:
TIMEARRAY_DAYINDEX
TIMEARRAY_MONTHINDEX
TIMEARRAY_YEARINDEX
TIMEARRAY_HOURINDEX
TIMEARRAY_MINUTEINDEX
TIMEARRAY_SECONDINDEX
(Thus, axis_coords[t, pyferret.TIMEARRAY_YEARINDEX]
gives the year of time point t.)
Note: a relative time axis will be of type AXISTYPE_CUSTOM, with a unit
indicating the starting point, such as 'days since 01-JAN-2000'
Raises:
ValueError if the data name is invalid
MemoryError if Ferret has not been started or has been stopped
See also:
get
"""
# check name
if not isinstance(name, str):
raise ValueError("name must be a string")
elif name.isspace():
raise ValueError("name cannot be an empty string")
# get the data and related information from Ferret
vals = libpyferret._getstrdata(name)
# break apart the tuple to simplify (returning a dictionary would have been better)
data = vals[0]
bdfs = vals[1]
axis_types = vals[2]
axis_names = vals[3]
axis_units = vals[4]
axis_coords = vals[5]
# A custom axis could be standard axis that is not in Ferret's expected order,
# so check the units
for k in range(libpyferret.MAX_FERRET_NDIM):
if axis_types[k] == libpyferret.AXISTYPE_CUSTOM:
uc_units = axis_units[k].upper()
if uc_units in _UC_LONGITUDE_UNITS:
axis_types[k] = libpyferret.AXISTYPE_LONGITUDE
elif uc_units in _UC_LATITUDE_UNITS:
axis_types[k] = libpyferret.AXISTYPE_LATITUDE
# libpyferret._get returns a copy of the data, so no need to force a copy
return { "title": name, "data":data, "missing_value":bdfs, "axis_types":axis_types,
"axis_names":axis_names, "axis_units":axis_units, "axis_coords":axis_coords }
def getdata(name, create_mask=True):
"""
Returns the numeric array and axes information for the data variable
described in name as a dictionary.
Arguments:
name: the name of the numeric data to retrieve
create_mask: return the numeric data array as a MaskedArray object?
Returns:
A dictionary contains the numeric data array and axes information.
Note that 'name' is not assigned, which is required for the putdata
method. The dictionary contains the following key/value pairs:
'title' : the string passed in the name argument
'data': the numeric data array. If create_mask is True, this
will be a NumPy float64 MaskedArray object with the
masked array properly assigned. If create_mask is False,
this will just be a NumPy float64 ndarray.
'missing_value': the missing data value. This will be a NumPy
float64 ndarray containing a single value.
'data_unit': a string describing the unit of the data.
'axis_types': a list of integer values describing the type of
each axis. Possible values are the following constants
defined by the pyferret module:
AXISTYPE_LONGITUDE
AXISTYPE_LATITUDE
AXISTYPE_LEVEL
AXISTYPE_TIME
AXISTYPE_CUSTOM (axis units not recognized by Ferret)
AXISTYPE_ABSTRACT (axis is unit-less integer values)
AXISTYPE_NORMAL (axis is normal to the data)
'axis_names': a list of strings giving the name of each axis
'axis_units': a list of strings giving the unit of each axis.
If the axis type is AXISTYPE_TIME, this names the calendar
used for the timestamps, as one of the following strings
defined by the pyferret module:
CALTYPE_360DAY
CALTYPE_NOLEAP
CALTYPE_GREGORIAN
CALTYPE_JULIAN
CALTYPE_ALLLEAP
CALTYPE_NONE (calendar not specified)
'axis_coords': a list of NumPy ndarrays giving the coordinate values
for each axis. If the axis type is neither AXISTYPE_TIME
nor AXISTYPE_NORMAL, a NumPy float64 ndarray is given. If
the axis is type AXISTYPE_TIME, a NumPy integer ndarray of
shape (N,6) where N is the number of time points. The six
integer values per time point are the day, month, year, hour,
minute, and second of the associate calendar for this time
axis. The following constants defined by the pyferret module
give the values of these six indices:
TIMEARRAY_DAYINDEX
TIMEARRAY_MONTHINDEX
TIMEARRAY_YEARINDEX
TIMEARRAY_HOURINDEX
TIMEARRAY_MINUTEINDEX
TIMEARRAY_SECONDINDEX
(Thus, axis_coords[t, pyferret.TIMEARRAY_YEARINDEX]
gives the year of time point t.)
Note: a relative time axis will be of type AXISTYPE_CUSTOM, with a unit
indicating the starting point, such as 'days since 01-JAN-2000'
Raises:
ValueError if the data name is invalid
MemoryError if Ferret has not been started or has been stopped
See also:
get
"""
# check name
if not isinstance(name, str):
raise ValueError("name must be a string")
elif name.isspace():
raise ValueError("name cannot be an empty string")
# get the data and related information from Ferret
vals = libpyferret._get(name)
# break apart the tuple to simplify (returning a dictionary would have been better)
data = vals[0]
bdfs = vals[1]
data_unit = vals[2]
axis_types = vals[3]
axis_names = vals[4]
axis_units = vals[5]
axis_coords = vals[6]
# A custom axis could be standard axis that is not in Ferret's expected order,
# so check the units
for k in range(libpyferret.MAX_FERRET_NDIM):
if axis_types[k] == libpyferret.AXISTYPE_CUSTOM:
uc_units = axis_units[k].upper()
if uc_units in _UC_LONGITUDE_UNITS:
axis_types[k] = libpyferret.AXISTYPE_LONGITUDE
elif uc_units in _UC_LATITUDE_UNITS:
axis_types[k] = libpyferret.AXISTYPE_LATITUDE
# libpyferret._get returns a copy of the data, so no need to force a copy
if create_mask:
if numpy.isnan(bdfs[0]):
# NaN comparisons always return False, even to another NaN
datavar = numpy.ma.array(data, fill_value=bdfs[0], mask=numpy.isnan(data))
else:
# since values in data and bdfs[0] are all float64 values assigned by Ferret,
# using equality should work correctly
datavar = numpy.ma.array(data, fill_value=bdfs[0], mask=( data == bdfs[0] ))
else:
datavar = data
return { "title": name, "data":datavar, "missing_value":bdfs, "data_unit":data_unit,
"axis_types":axis_types, "axis_names":axis_names, "axis_units":axis_units,
"axis_coords":axis_coords }
def putdata(datavar_dict, axis_pos=None):
"""
Creates a Ferret data variable with a copy of the data given in the dictionary
datavar_dict, reordering the data and axes according to tuple axis_pos.
Arguments:
datavar_dict: a dictionary with the following keys and associated values:
'name': the code name for the variable in Ferret (eg, 'SST').
Must be given.
'title': the title name for the variable in Ferret (eg, 'Sea Surface
Temperature'). If not given, the value of 'name' is used.
'dset' : the Ferret dataset name or number to associate with this new data
variable. If blank or not given, the current dataset is used. If
None or 'None', no dataset will be associated with the new variable.
'data': a NumPy numeric ndarray or masked array. The data will be saved
in Ferret as a 64-bit floating-point values. Must be given.
'missing_value': the missing data value. This will be saved in Ferret as
a 64-bit floating-point value. If not given, Ferret's default
missing value (-1.0E34) will be used.
'data_unit': a string describing the unit of the data. If not given, no
unit will be assigned.
'axis_types': a list of integer values describing the type of each axis.
Possible values are the following constants defined by the pyferret
module:
AXISTYPE_LONGITUDE
AXISTYPE_LATITUDE
AXISTYPE_LEVEL
AXISTYPE_TIME
AXISTYPE_CUSTOM (axis units not interpreted by Ferret)
AXISTYPE_ABSTRACT (axis is unit-less integer values)
AXISTYPE_NORMAL (axis is normal to the data)
If not given, AXISTYPE_ABSTRACT will be used if the data array
has data for that axis (shape element greater than one); otherwise,
AXISTYPE_NORMAL will be used.
'axis_names': a list of strings giving the name of each axis. If not given,
Ferret will generate names if needed.
'axis_units': a list of strings giving the unit of each axis.
If the axis type is AXISTYPE_TIME, this names the calendar
used for the timestamps, as one of the following strings
defined by the pyferret module:
CALTYPE_360DAY
CALTYPE_NOLEAP
CALTYPE_GREGORIAN
CALTYPE_JULIAN
CALTYPE_ALLLEAP
CALTYPE_NONE (calendar not specified)
If not given, 'DEGREES_E' will be used for AXISTYPE_LONGITUDE,
'DEGREES_N' for AXISTYPE_LATITUDE, CALTYPE_GREGORIAN for
AXISTYPE_TIME, and no units will be given for other axis types.
'axis_coords': a list of arrays of coordinates for each axis.
If the axis type is neither AXISTYPE_TIME nor AXISTYPE_NORMAL,
a one-dimensional numeric list or ndarray should be given (the
values will be stored as floating-point values).
If the axis is type AXISTYPE_TIME, a two-dimension list or ndarray
with shape (N,6), where N is the number of time points, should be
given. The six integer values per time point are the day, month,
year, hour, minute, and second of the associate calendar for this
time axis. The following constants defined by the pyferret module
give the values of these six indices:
TIMEARRAY_DAYINDEX
TIMEARRAY_MONTHINDEX
TIMEARRAY_YEARINDEX
TIMEARRAY_HOURINDEX
TIMEARRAY_MINUTEINDEX
TIMEARRAY_SECONDINDEX
(Thus, axis_coords[t, pyferret.TIMEARRAY_YEARINDEX] gives the year of
time point t.)
An array of coordinates must be given if the axis does not have a type
of AXISTYPE_NORMAL or AXISTYPE_ABSTRACT (or if axis types are not given).
Note: a relative time axis should be given as type AXISTYPE_CUSTOM, with a
unit indicating the starting point, such as 'days since 01-JAN-2000'
axis_pos: a six-tuple giving the Ferret positions for each axis in datavar.
If the axes in datavar are in (forecast, ensemble, time, level, lat., long.)
order, the tuple (F_AXIS, E_AXIS, T_AXIS, Z_AXIS, Y_AXIS, X_AXIS) should be
used for proper axis handling in Ferret. If not given (or None), the first
longitude axis will be made the X_AXIS, the first latitude axis will be made
the Y_AXIS, the first level axis will be made the Z_AXIS, the first time axis
will be made the T_AXIS, the second time axis will be made the F_AXIS, and any
remaining axes are then filled into the remaining unassigned positions.
Returns:
None
Raises:
KeyError: if datavar_dict is missing a required key
MemoryError: if Ferret has not been started or has been stopped
ValueError: if there is a problem with the value of a key
See also:
put
"""
#
# code name for the variable
codename = datavar_dict.get('name', '')
if codename != None:
codename = str(codename).strip()
if not codename:
raise ValueError("The value of 'name' must be a non-blank string")
#
# title for the variable
titlename = str(datavar_dict.get('title', codename)).strip()
#
# Ferret dataset for the variable; None gets turned into the string 'None'
dset_str = str(datavar_dict.get('dset', '')).strip()
#
# value for missing data
missingval = float(datavar_dict.get('missing_value', -1.0E34))
#
# data units
data_unit = str(datavar_dict.get('data_unit', '')).strip()
#
# axis types
axis_types = [ libpyferret.AXISTYPE_NORMAL ] * libpyferret.MAX_FERRET_NDIM
given_axis_types = datavar_dict.get('axis_types', None)
if given_axis_types:
if len(given_axis_types) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes (in the types) is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
for k in range(len(given_axis_types)):
axis_types[k] = given_axis_types[k]
#
# axis names
axis_names = [ "" ] * libpyferret.MAX_FERRET_NDIM
given_axis_names = datavar_dict.get('axis_names', None)
if given_axis_names:
if len(given_axis_names) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes (in the names) is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
for k in range(len(given_axis_names)):
axis_names[k] = given_axis_names[k]
#
# axis units
axis_units = [ "" ] * libpyferret.MAX_FERRET_NDIM
given_axis_units = datavar_dict.get('axis_units', None)
if given_axis_units:
if len(given_axis_units) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes (in the units) is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
for k in range(len(given_axis_units)):
axis_units[k] = given_axis_units[k]
# axis coordinates
axis_coords = [ None ] * libpyferret.MAX_FERRET_NDIM
given_axis_coords = datavar_dict.get('axis_coords', None)
if given_axis_coords:
if len(given_axis_coords) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes (in the coordinates) is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
for k in range(len(given_axis_coords)):
axis_coords[k] = given_axis_coords[k]
#
# data array
datavar = datavar_dict['data']
#
# For any axis with data (shape > 1), if AXISTYPE_NORMAL (presumably from not being specified),
# change to AXISTYPE_ABSTRACT. Note that a shape == 1 could either be normal or a singleton axis.
try:
shape = datavar.shape
if len(shape) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes (in the data) is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
for k in range(len(shape)):
if (shape[k] > 1) and (axis_types[k] == libpyferret.AXISTYPE_NORMAL):
axis_types[k] = libpyferret.AXISTYPE_ABSTRACT
except AttributeError:
raise ValueError("The value of 'data' must be a NumPy ndarray (or derived from an ndarray)")
#
# assign any defaults on the axis information not given,
# and make a copy of the axis coordinates (to ensure they are well-behaved)
for k in range(libpyferret.MAX_FERRET_NDIM):
if axis_types[k] == libpyferret.AXISTYPE_LONGITUDE:
if not axis_units[k]:
axis_units[k] = "DEGREES_E"
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.float64, copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
elif axis_types[k] == libpyferret.AXISTYPE_LATITUDE:
if not axis_units[k]:
axis_units[k] = "DEGREES_N"
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.float64, copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
elif axis_types[k] == libpyferret.AXISTYPE_LEVEL:
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.float64, copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
elif axis_types[k] == libpyferret.AXISTYPE_TIME:
if not axis_units[k]:
axis_units[k] = CALTYPE_GREGORIAN
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.int32, order='C', copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
if axis_coords[k].shape[1] != 6:
raise ValueError("number of components (second index) for time axis %d is not 6" % (k+1))
elif axis_types[k] == libpyferret.AXISTYPE_CUSTOM:
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.float64, copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
elif axis_types[k] == libpyferret.AXISTYPE_ABSTRACT:
if axis_coords[k] != None:
axis_coords[k] = numpy.array(axis_coords[k], dtype=numpy.float64, copy=1)
if axis_coords[k].shape[0] != shape[k]:
raise ValueError("number of coordinates for axis %d does not match the number of data points" % (k+1))
else:
# axis needed but not specified
axis_coords[k] = numpy.arange(1.0, float(shape[k]) + 0.5, 1.0, dtype=numpy.float64)
elif axis_types[k] == libpyferret.AXISTYPE_NORMAL:
axis_coords[k] = None
else:
raise RuntimeError("Unexpected axis_type of %d" % axis_types[k])
#
# figure out the desired axis order
if axis_pos != None:
# start with the positions provided by the user
ferr_axis = list(axis_pos)
if len(ferr_axis) < len(shape):
raise ValueError("axis_pos, if given, must provide a position for each axis in the data")
# append undefined axes positions, which were initialized to AXISTYPE_NORMAL
if not libpyferret.X_AXIS in ferr_axis:
ferr_axis.append(libpyferret.X_AXIS)
if not libpyferret.Y_AXIS in ferr_axis:
ferr_axis.append(libpyferret.Y_AXIS)
if not libpyferret.Z_AXIS in ferr_axis:
ferr_axis.append(libpyferret.Z_AXIS)
if not libpyferret.T_AXIS in ferr_axis:
ferr_axis.append(libpyferret.T_AXIS)
if not libpyferret.E_AXIS in ferr_axis:
ferr_axis.append(libpyferret.E_AXIS)
if not libpyferret.F_AXIS in ferr_axis:
ferr_axis.append(libpyferret.F_AXIS)
# intentionally left as 6 (instead of MAX_FERRET_NDIM) since new axes will need to be appended
if len(ferr_axis) != 6:
raise ValueError("axis_pos can contain at most one of each of the pyferret integer values X_AXIS, Y_AXIS, Z_AXIS, or T_AXIS")
else:
ferr_axis = [ -1 ] * libpyferret.MAX_FERRET_NDIM
# assign positions of longitude/latitude/level/time
for k in range(len(axis_types)):
if axis_types[k] == libpyferret.AXISTYPE_LONGITUDE:
if not libpyferret.X_AXIS in ferr_axis:
ferr_axis[k] = libpyferret.X_AXIS
elif axis_types[k] == libpyferret.AXISTYPE_LATITUDE:
if not libpyferret.Y_AXIS in ferr_axis:
ferr_axis[k] = libpyferret.Y_AXIS
elif axis_types[k] == libpyferret.AXISTYPE_LEVEL:
if not libpyferret.Z_AXIS in ferr_axis:
ferr_axis[k] = libpyferret.Z_AXIS
elif axis_types[k] == libpyferret.AXISTYPE_TIME:
if not libpyferret.T_AXIS in ferr_axis:
ferr_axis[k] = libpyferret.T_AXIS
elif not libpyferret.F_AXIS in ferr_axis:
ferr_axis[k] = libpyferret.F_AXIS
# fill in other axes types in unused positions
if not libpyferret.X_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.X_AXIS
if not libpyferret.Y_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.Y_AXIS
if not libpyferret.Z_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.Z_AXIS
if not libpyferret.T_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.T_AXIS
if not libpyferret.E_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.E_AXIS
if not libpyferret.F_AXIS in ferr_axis:
ferr_axis[ferr_axis.index(-1)] = libpyferret.F_AXIS
try:
ferr_axis.index(-1)
raise RuntimeError("Unexpected undefined axis position (MAX_FERRET_NDIM increased?) in ferr_axis " + str(ferr_axis))
except ValueError:
# expected result
pass
#
# get the missing data value as a 64-bit float
bdfval = numpy.array(missingval, dtype=numpy.float64)
#
# if a masked array, make sure the masked values are set
# to the missing value, and get the ndarray underneath
try:
if numpy.any(datavar.mask):
datavar.data[datavar.mask] = bdfval
data = datavar.data
except AttributeError:
data = datavar
#
# get the data as an ndarray of MAX_FERRET_NDIM dimensions
# adding new axes still reference the original data array - just creates new shape and stride objects
for k in range(len(shape), libpyferret.MAX_FERRET_NDIM):
data = data[..., numpy.newaxis]
#
# swap data axes and axis information to give (X_AXIS, Y_AXIS, Z_AXIS, T_AXIS, E_AXIS, F_AXIS) axes
# swapping axes still reference the original data array - just creates new shape and stride objects
k = ferr_axis.index(libpyferret.X_AXIS)
if k != 0:
data = data.swapaxes(0, k)
ferr_axis[0], ferr_axis[k] = ferr_axis[k], ferr_axis[0]
axis_types[0], axis_types[k] = axis_types[k], axis_types[0]
axis_names[0], axis_names[k] = axis_names[k], axis_names[0]
axis_units[0], axis_units[k] = axis_units[k], axis_units[0]
axis_coords[0], axis_coords[k] = axis_coords[k], axis_coords[0]
k = ferr_axis.index(libpyferret.Y_AXIS)
if k != 1:
data = data.swapaxes(1, k)
ferr_axis[1], ferr_axis[k] = ferr_axis[k], ferr_axis[1]
axis_types[1], axis_types[k] = axis_types[k], axis_types[1]
axis_names[1], axis_names[k] = axis_names[k], axis_names[1]
axis_units[1], axis_units[k] = axis_units[k], axis_units[1]
axis_coords[1], axis_coords[k] = axis_coords[k], axis_coords[1]
k = ferr_axis.index(libpyferret.Z_AXIS)
if k != 2:
data = data.swapaxes(2, k)
ferr_axis[2], ferr_axis[k] = ferr_axis[k], ferr_axis[2]
axis_types[2], axis_types[k] = axis_types[k], axis_types[2]
axis_names[2], axis_names[k] = axis_names[k], axis_names[2]
axis_units[2], axis_units[k] = axis_units[k], axis_units[2]
axis_coords[2], axis_coords[k] = axis_coords[k], axis_coords[2]
k = ferr_axis.index(libpyferret.T_AXIS)
if k != 3:
data = data.swapaxes(3, k)
ferr_axis[3], ferr_axis[k] = ferr_axis[k], ferr_axis[3]
axis_types[3], axis_types[k] = axis_types[k], axis_types[3]
axis_names[3], axis_names[k] = axis_names[k], axis_names[3]
axis_units[3], axis_units[k] = axis_units[k], axis_units[3]
axis_coords[3], axis_coords[k] = axis_coords[k], axis_coords[3]
k = ferr_axis.index(libpyferret.E_AXIS)
if k != 4:
data = data.swapaxes(4, k)
ferr_axis[4], ferr_axis[k] = ferr_axis[k], ferr_axis[4]
axis_types[4], axis_types[k] = axis_types[k], axis_types[4]
axis_names[4], axis_names[k] = axis_names[k], axis_names[4]
axis_units[4], axis_units[k] = axis_units[k], axis_units[4]
axis_coords[4], axis_coords[k] = axis_coords[k], axis_coords[4]
# F_AXIS must now be ferr_axis[5]
# assumes MAX_FERRET_NDIM == 6; extend the logic if axes are added
# would rather not assume X_AXIS == 0, Y_AXIS == 1, Z_AXIS == 2,
# T_AXIS == 3, E_AXIS == 4, F_AXIS == 5
#
# now make a copy of the data as (contiguous) 64-bit floats in Fortran order
fdata = numpy.array(data, dtype=numpy.float64, order='F', copy=1)
#
# libpyferret._put will raise an Exception if there is a problem
libpyferret._put(codename, titlename, fdata, bdfval, data_unit, dset_str,
axis_types, axis_names, axis_units, axis_coords)
return None
def get(name, create_mask=True):
"""
Returns the numeric data array described in name as a TransientVariable object.
Arguments:
name: the name of the numeric data array to retrieve
create_mask: create the mask for the TransientVariable object?
Returns:
A cdms2 TransientVariable object (cdms2.tvariable) containing the
numeric data. The data, axes, and missing value will be assigned.
If create_mask is True (or not given), the mask attribute will be
assigned using the missing value.
Raises:
ImportError: if the cdms2 or cdtime modules cannot be found (use getdata instead)
ValueError: if the data name is invalid
MemoryError: if Ferret has not been started or has been stopped
See also:
getdata (does not need cdms2 or cdtime)
"""
# Check (again) if able to import cdms2/cdtime.
# If the imports were successful before, these imports do nothing
try:
import cdms2
import cdtime
except ImportError:
raise ImportError("cdms2 or cdtime not found; pyferret.get not available.\n" \
" Use pyferret.getdata instead.")
# get the data and related information from Ferret,
# building on what was done in getdata
data_dict = getdata(name, create_mask)
data = data_dict["data"]
bdfs = data_dict["missing_value"]
data_unit = data_dict["data_unit"]
axis_types = data_dict["axis_types"]
axis_names = data_dict["axis_names"]
axis_units = data_dict["axis_units"]
axis_coords = data_dict["axis_coords"]
# create the axis list for this variable
var_axes = [ ]
for k in range(libpyferret.MAX_FERRET_NDIM):
if axis_types[k] == libpyferret.AXISTYPE_LONGITUDE:
newaxis = cdms2.createAxis(axis_coords[k], id=axis_names[k])
newaxis.units = axis_units[k]
newaxis.designateLongitude()
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_LATITUDE:
newaxis = cdms2.createAxis(axis_coords[k], id=axis_names[k])
newaxis.units = axis_units[k]
newaxis.designateLatitude()
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_LEVEL:
newaxis = cdms2.createAxis(axis_coords[k], id=axis_names[k])
newaxis.units = axis_units[k]
newaxis.designateLevel()
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_TIME:
# create the time axis from cdtime.comptime (component time) objects
time_coords = axis_coords[k]
timevals = [ ]
for t in range(time_coords.shape[0]):
day = time_coords[t, libpyferret.TIMEARRAY_DAYINDEX]
month = time_coords[t, libpyferret.TIMEARRAY_MONTHINDEX]
year = time_coords[t, libpyferret.TIMEARRAY_YEARINDEX]
hour = time_coords[t, libpyferret.TIMEARRAY_HOURINDEX]
minute = time_coords[t, libpyferret.TIMEARRAY_MINUTEINDEX]
second = time_coords[t, libpyferret.TIMEARRAY_SECONDINDEX]
timevals.append( cdtime.comptime(year,month,day,hour,minute,second) )
newaxis = cdms2.createAxis(timevals, id=axis_names[k])
# designate the calendar
if axis_units[k] == CALTYPE_360DAY:
calendar_type = cdtime.Calendar360
elif axis_units[k] == CALTYPE_NOLEAP:
calendar_type = cdtime.NoLeapCalendar
elif axis_units[k] == CALTYPE_GREGORIAN:
calendar_type = cdtime.GregorianCalendar
elif axis_units[k] == CALTYPE_JULIAN:
calendar_type = cdtime.JulianCalendar
else:
if axis_units[k] == CALTYPE_ALLLEAP:
raise ValueError("The all-leap calendar not support by cdms2")
if axis_units[k] == CALTYPE_NONE:
raise ValueError("Undesignated calendar not support by cdms2")
raise RuntimeError("Unexpected calendar type of %s" % axis_units[k])
newaxis.designateTime(calendar=calendar_type)
# and finally append it to the axis list
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_CUSTOM:
# Check a custom axis for relative time units. Note that getdata has
# already dealt with longitude or latitude not in Ferret's standard position.
lc_vals = axis_units[k].lower().split()
if (len(lc_vals) > 2) and (lc_vals[1] == "since") and (lc_vals[0] in _LC_TIME_UNITS):
# (unit) since (start_date)
datevals = lc_vals[2].split("-")
try:
# try to convert dd-mon-yyyy Ferret-style start_date to yyyy-mm-dd
day_num = int(datevals[0])
mon_num = _LC_MONTH_NUMS[datevals[1]]
year_num = int(datevals[2])
lc_vals[2] = "%04d-%02d-%02d" % (year_num, mon_num, day_num)
relunit = " ".join(lc_vals)
except (IndexError, KeyError, ValueError):
# use the relative time unit as given
relunit = " ".join(lc_vals)
timevals = [ ]
for t in range(axis_coords[k].shape[0]):
dtval = cdtime.reltime(axis_coords[k][t], relunit)
timevals.append(dtval)
newaxis = cdms2.createAxis(timevals, id=axis_names[k])
newaxis.designateTime()
else:
newaxis = cdms2.createAxis(axis_coords[k], id=axis_names[k])
newaxis.units = axis_units[k]
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_ABSTRACT:
newaxis = cdms2.createAxis(axis_coords[k], id=axis_names[k])
var_axes.append(newaxis)
elif axis_types[k] == libpyferret.AXISTYPE_NORMAL:
var_axes.append(None)
else:
raise RuntimeError("Unexpected axis type of %d" % axis_types[k])
# getdata returns a copy of the data, thus createVariable does not
# need to force a copy. The mask, if request, was created by getdata.
datavar = cdms2.createVariable(data, fill_value=bdfs[0], axes=var_axes,
attributes={"name":name, "units":data_unit})
return datavar
def put(datavar, axis_pos=None):
"""
Creates a Ferret data variable with a copy of the data given in the
AbstractVariable object datavar.
Arguments:
datavar: a cdms2 AbstractVariable describing the data variable
to be created in Ferret. Any masked values in the data
of datavar will be set to the missing value for datavar
before extracting the data as 64-bit floating-point
values for Ferret. In addition to the data and axes
described in datavar, the following attributes are used:
id: the code name for the variable in Ferret (eg,
'SST'). This name must be present and, ideally,
should not contain spaces, quotes, or algebraic
symbols.
name: the title name of the variable in Ferret (eg,
'Sea Surface Temperature'). If not present, the
value of the id attribute is used.
units: the unit name for the data. If not present,
no units are associated with the data.
dset: Ferret dataset name or number to be associated
with this new variable. If not given or blank,
the variable is associated with the current dataset.
If None or 'None', the variable is not associated
with any dataset.
axis_pos: a six-tuple giving the Ferret positions for each axis in
datavar. If the axes in datavar are in (forecast, ensemble,
time, level, lat., long.) order, the tuple (F_AXIS, E_AXIS,
T_AXIS, Z_AXIS, Y_AXIS, X_AXIS) should be used for proper
axis handling in Ferret. If not given (or None), the first
longitude axis will be made the X_AXIS, the first latitude
axis will be made the Y_AXIS, the first level axis will be
made the Z_AXIS, the first time axis will be made the T_AXIS,
the second time axis will be made the F_AXIS, and any remaining
axes are then filled into the remaining unassigned positions.
Returns:
None
Raises:
ImportError: if the cdms2 or cdtime modules cannot be found (use putdata instead)
AttributeError: if datavar is missing a required method or attribute
MemoryError: if Ferret has not been started or has been stopped
ValueError: if there is a problem with the contents of the arguments
See also:
putdata (does not require cdms2 or cdtime)
"""
# Check (again) if able to import cdms2/cdtime.
# If the imports were successful before, these imports do nothing
try:
import cdms2
import cdtime
except ImportError:
raise ImportError("cdms2 or cdtime not found; pyferret.put not available.\n" \
" Use pyferret.putdata instead.")
#
# code name for the Ferret variable
codename = datavar.id.strip()
if codename == "":
raise ValueError("The id attribute must be a non-blank string")
#
# title name for the Ferret variable
try:
titlename = datavar.name.strip()
except AttributeError:
titlename = codename
#
# units for the data
try:
data_unit = datavar.units.strip()
except AttributeError:
data_unit = ""
#
# missing data value
missingval = datavar.getMissing()
#
# Ferret dataset for the variable; None / 'None' is different from blank / empty
try:
dset_str = str(datavar.dset).strip()
except AttributeError:
dset_str = ""
#
# get the list of axes and initialize the axis information lists
axis_list = datavar.getAxisList()
if len(axis_list) > libpyferret.MAX_FERRET_NDIM:
raise ValueError("More than %d axes is not supported in Ferret at this time" % libpyferret.MAX_FERRET_NDIM)
axis_types = [ libpyferret.AXISTYPE_NORMAL ] * libpyferret.MAX_FERRET_NDIM
axis_names = [ "" ] * libpyferret.MAX_FERRET_NDIM
axis_units = [ "" ] * libpyferret.MAX_FERRET_NDIM
axis_coords = [ None ] * libpyferret.MAX_FERRET_NDIM
for k in range(len(axis_list)):
#
# get the information for this axis
axis = axis_list[k]
axis_names[k] = axis.id.strip()
try:
axis_units[k] = axis.units.strip()
except AttributeError:
axis_units[k] = ""
axis_data = axis.getData()
#
# assign the axis information
if axis.isLongitude():
axis_types[k] = libpyferret.AXISTYPE_LONGITUDE
axis_coords[k] = axis_data
elif axis.isLatitude():
axis_types[k] = libpyferret.AXISTYPE_LATITUDE
axis_coords[k] = axis_data
elif axis.isLevel():
axis_types[k] = libpyferret.AXISTYPE_LEVEL
axis_coords[k] = axis_data
elif axis.isTime():
#
# try to create a time axis reading the values as cdtime comptime objects
try:
time_coords = numpy.empty((len(axis_data),6), dtype=numpy.int32, order="C")
for t in range(len(axis_data)):
tval = axis_data[t]
time_coords[t, libpyferret.TIMEARRAY_DAYINDEX] = tval.day
time_coords[t, libpyferret.TIMEARRAY_MONTHINDEX] = tval.month
time_coords[t, libpyferret.TIMEARRAY_YEARINDEX] = tval.year
time_coords[t, libpyferret.TIMEARRAY_HOURINDEX] = tval.hour
time_coords[t, libpyferret.TIMEARRAY_MINUTEINDEX] = tval.minute
time_coords[t, libpyferret.TIMEARRAY_SECONDINDEX] = int(tval.second)
axis_types[k] = libpyferret.AXISTYPE_TIME
axis_coords[k] = time_coords
# assign the axis_units value to the CALTYPE_ calendar type string
calendar_type = axis.getCalendar()
if calendar_type == cdtime.Calendar360:
axis_units[k] = CALTYPE_360DAY
elif calendar_type == cdtime.NoLeapCalendar:
axis_units[k] = CALTYPE_NOLEAP
elif calendar_type == cdtime.GregorianCalendar:
axis_units[k] = CALTYPE_GREGORIAN
elif calendar_type == cdtime.JulianCalendar:
axis_units[k] = CALTYPE_JULIAN
else:
if calendar_type == cdtime.MixedCalendar:
raise ValueError("The cdtime.MixedCalendar not support by pyferret")
raise ValueError("Unknown cdtime calendar %s" % str(calendar_type))
except AttributeError:
axis_types[k] = libpyferret.AXISTYPE_CUSTOM
#
# if not comptime objects, assume reltime objects - create as a custom axis
if axis_types[k] == libpyferret.AXISTYPE_CUSTOM:
time_coords = numpy.empty((len(axis_data),), dtype=numpy.float64)
for t in range(len(axis_data)):
time_coords[t] = axis_data[t].value
axis_coords[k] = timecoords
# assign axis_units as the reltime units - makes sure all are the same
axis_units[k] = axis_data[0].units
for t in range(1, len(axis_data)):
if axis_data[t].units != axis_units[k]:
raise ValueError("Relative time axis does not have a consistent start point")
#
# cdms2 will create an axis if None (normal axis) was given, so create a
# custom or abstract axis only if it does not look like a cdms2-created axis
elif not ( (axis_units[k] == "") and (len(axis_data) == 1) and (axis_data[0] == 0.0) and \
(axis_data.dtype == numpy.dtype('float64')) and \
axis_names[k].startswith("axis_") and axis_names[k][5:].isdigit() ):
axis_types[k] = libpyferret.AXISTYPE_CUSTOM
axis_coords[k] = axis_data
# if a unitless integer value axis, it is abstract instead of custom
if axis_units[k] == "":
axis_int_vals = numpy.array(axis_data, dtype=int)
if numpy.allclose(axis_data, axis_int_vals):
axis_types[k] = libpyferret.AXISTYPE_ABSTRACT
#
# datavar is an embelished masked array
datavar_dict = { 'name': codename, 'title': titlename, 'dset': dset_str, 'data': datavar,
'missing_vaue': missingval, 'data_unit': data_unit, 'axis_types': axis_types,
'axis_names': axis_names, 'axis_units': axis_units, 'axis_coords': axis_coords }
#
# use putdata to set defaults, rearrange axes, and add copies
# of data in the appropriate format to Ferret
putdata(datavar_dict, axis_pos)
return None
|