/usr/lib/python2.7/dist-packages/gcircle.py is in python-ferret 7.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 | """
Module of functions involving great circles
(thus assuming spheroid model of the earth)
with points given in longitudes and latitudes.
"""
from __future__ import print_function
import math
import numpy
import numpy.random
# Equatorial radius of the earth in kilometers
EARTH_ER = 6378.137
# Authalic radius of the earth in kilometers
EARTH_AR = 6371.007
# Meridional radius of the earth in kilometers
EARTH_MR = 6367.449
# Polar radius of the earth in kilometers
EARTH_PR = 6356.752
DEG2RAD = math.pi / 180.0
RAD2DEG = 180.0 / math.pi
KM2MI = 0.6213712
MI2KM = 1.609344
def lonlatdistance(pt1lon, pt1lat, pt2lon, pt2lat):
"""
Compute the great circle distance between two points
on a sphere using the haversine formula.
Arguments:
pt1lon - longitude(s) of the first point
pt1lat - latitude(s) of the first point
pt2lon - longitude(s) of the second point
pt2lat - latitude(s) of the second point
Returns:
The great circle distance(s) in degrees [0.0, 180.0]
"""
lon1 = numpy.deg2rad(numpy.asarray(pt1lon, dtype=float))
lat1 = numpy.deg2rad(numpy.asarray(pt1lat, dtype=float))
lon2 = numpy.deg2rad(numpy.asarray(pt2lon, dtype=float))
lat2 = numpy.deg2rad(numpy.asarray(pt2lat, dtype=float))
dellat = numpy.power(numpy.sin(0.5 * (lat2 - lat1)), 2.0)
dellon = numpy.cos(lat1) * numpy.cos(lat2) * \
numpy.power(numpy.sin(0.5 * (lon2 - lon1)), 2.0)
dist = 2.0 * numpy.arcsin(numpy.power(dellon + dellat, 0.5))
return numpy.rad2deg(dist)
def lonlatintersect(gc1lon1, gc1lat1, gc1lon2, gc1lat2,
gc2lon1, gc2lat1, gc2lon2, gc2lat2):
"""
Compute the intersections of two great circles. Uses the line of
intersection between the two planes of the great circles.
Arguments:
gc1lon1 - longitude(s) of the first point on the first great circle
gc1lat1 - latitude(s) of the first point on the first great circle
gc1lon2 - longitude(s) of the second point on the first great circle
gc1lat2 - latitude(s) of the second point on the first great circle
gc2lon1 - longitude(s) of the first point on the second great circle
gc2lat1 - latitude(s) of the first point on the second great circle
gc2lon2 - longitude(s) of the second point on the second great circle
gc2lat2 - latitude(s) of the second point on the second great circle
Returns:
( (pt1lon, pt1lat), (pt2lon, pt2lat) ) - the longitudes and latitudes
of the two intersections of the two great circles. NaN will
be returned for both longitudes and latitudes if a great
circle is not well-defined, or the two great-circles coincide.
"""
# Minimum acceptable norm of a cross product
# arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth
MIN_NORM = 1.0E-7
# Convert longitudes and latitudes to points on a unit sphere
# The "+ 0.0 * ptlonr" is to broadcast gcz if needed
ptlonr = numpy.deg2rad(numpy.asarray(gc1lon1, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(gc1lat1, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
gc1xyz1 = numpy.array([gcx, gcy, gcz])
#
ptlonr = numpy.deg2rad(numpy.asarray(gc1lon2, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(gc1lat2, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
gc1xyz2 = numpy.array([gcx, gcy, gcz])
#
ptlonr = numpy.deg2rad(numpy.asarray(gc2lon1, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(gc2lat1, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
gc2xyz1 = numpy.array([gcx, gcy, gcz])
#
ptlonr = numpy.deg2rad(numpy.asarray(gc2lon2, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(gc2lat2, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
gc2xyz2 = numpy.array([gcx, gcy, gcz])
# Get the unit-perpendicular to the plane going through the
# origin and the two points on each great circle. If the
# norm of the cross product is too small, the great circle
# is not well-defined, so zero it out so NaN is produced.
gc1pp = numpy.cross(gc1xyz1, gc1xyz2, axis=0)
norm = (gc1pp[0]**2 + gc1pp[1]**2 + gc1pp[2]**2)**0.5
if len(norm.shape) == 0:
if numpy.fabs(norm) < MIN_NORM:
norm = 0.0
else:
norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
gc1pp /= norm
gc2pp = numpy.cross(gc2xyz1, gc2xyz2, axis=0)
norm = (gc2pp[0]**2 + gc2pp[1]**2 + gc2pp[2]**2)**0.5
if len(norm.shape) == 0:
if numpy.fabs(norm) < MIN_NORM:
norm = 0.0
else:
norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
gc2pp /= norm
# The line of intersection of the two planes is perpendicular
# to the two plane-perpendiculars and goes through the origin.
# Points of intersection are the points on this line one unit
# from the origin. If the norm of the cross product is too
# small, the two planes are practically indistinguishable from
# each other (coincide).
pt1xyz = numpy.cross(gc1pp, gc2pp, axis=0)
norm = (pt1xyz[0]**2 + pt1xyz[1]**2 + pt1xyz[2]**2)**0.5
if len(norm.shape) == 0:
if numpy.fabs(norm) < MIN_NORM:
norm = 0.0
else:
norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
pt1xyz /= norm
pt2xyz = -1.0 * pt1xyz
# Convert back to longitudes and latitudes
pt1lats = numpy.rad2deg(numpy.arcsin(pt1xyz[2]))
pt1lons = numpy.rad2deg(numpy.arctan2(pt1xyz[1], pt1xyz[0]))
pt2lats = numpy.rad2deg(numpy.arcsin(pt2xyz[2]))
pt2lons = numpy.rad2deg(numpy.arctan2(pt2xyz[1], pt2xyz[0]))
return ( (pt1lons, pt1lats), (pt2lons, pt2lats) )
def lonlatfwdpt(origlon, origlat, endlon, endlat, fwdfact):
"""
Find the longitude and latitude of a point that is a given factor
times the distance along the great circle from an origination point
to an ending point.
Note that the shorter great circle arc from the origination point
to the ending point is always used.
If O is the origination point, E is the ending point, and P is
the point returned from this computation, a factor value of:
0.5: P bisects the great circle arc between O and E
2.0: E bisects the great circle arc between O and P
-1.0: O bisects the great circle arc between P and E
Arguments:
origlon - longitude(s) of the origination point
origlat - latitude(s) of the origination point
endlon - longitude(s) of the ending point
endlat - latitude(s) of the ending point
fwdfact - forward distance factor(s)
Returns:
(ptlon, ptlat) - longitude and latitude of the computed point(s).
NaN will be returned for both the longitude and
latitude if the great circle is not well-defined.
"""
# Minimum acceptable norm of a cross product
# arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth
MIN_NORM = 1.0E-7
# Convert longitudes and latitudes to points on a unit sphere
# The "+ 0.0 * ptlonr" is to broadcast gcz if needed
ptlonr = numpy.deg2rad(numpy.asarray(origlon, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(origlat, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
origxyz = numpy.array([gcx, gcy, gcz])
#
ptlonr = numpy.deg2rad(numpy.asarray(endlon, dtype=float))
ptlatr = numpy.deg2rad(numpy.asarray(endlat, dtype=float))
gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
coslat = numpy.cos(ptlatr)
gcy = coslat * numpy.sin(ptlonr)
gcx = coslat * numpy.cos(ptlonr)
endxyz = numpy.array([gcx, gcy, gcz])
# Determine the rotation matrix about the origin that takes
# origxyz to (1,0,0) (equator and prime meridian) and endxyz
# to (x,y,0) with y > 0 (equator in eastern hemisphere).
#
# The first row of the matrix is origxyz.
#
# The third row of the matrix is the normalized cross product
# of origxyz and endxyz. (The great circle plane perpendicular.)
# If the norm of this cross product is too small, the great
# circle is not well-defined, so zero it out so NaN is produced.
gcpp = numpy.cross(origxyz, endxyz, axis=0)
norm = (gcpp[0]**2 + gcpp[1]**2 + gcpp[2]**2)**0.5
if len(norm.shape) == 0:
if numpy.fabs(norm) < MIN_NORM:
norm = 0.0
else:
norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
gcpp /= norm
# The second row of the matrix is the cross product of the
# third row (gcpp) and the first row (origxyz). This will
# have norm 1.0 since gcpp and origxyz are perpendicular
# unit vectors.
fwdax = numpy.cross(gcpp, origxyz, axis=0)
# Get the coordinates of the rotated end point.
endtrx = origxyz[0] * endxyz[0] + origxyz[1] * endxyz[1] + origxyz[2] * endxyz[2]
endtry = fwdax[0] * endxyz[0] + fwdax[1] * endxyz[1] + fwdax[2] * endxyz[2]
# Get the angle along the equator of the rotated end point, multiply
# by the given factor, and convert this new angle back to coordinates.
fwdang = numpy.arctan2(endtry, endtrx)
fwdang *= numpy.asarray(fwdfact, dtype=float)
fwdtrx = numpy.cos(fwdang)
fwdtry = numpy.sin(fwdang)
# Rotate the new point back to the original coordinate system
# The inverse rotation matrix is the transpose of that matrix.
fwdx = origxyz[0] * fwdtrx + fwdax[0] * fwdtry
fwdy = origxyz[1] * fwdtrx + fwdax[1] * fwdtry
fwdz = origxyz[2] * fwdtrx + fwdax[2] * fwdtry
# Convert the point coordinates into longitudes and latitudes
ptlat = numpy.rad2deg(numpy.arcsin(fwdz))
ptlon = numpy.rad2deg(numpy.arctan2(fwdy, fwdx))
return (ptlon, ptlat)
def equidistscatter(min_lon, min_lat, max_lon, max_lat, min_gcdist, dfactor=5.0):
"""
Create a roughly equidistant set of points in a specified region.
This is done by creating a dense "grid" of points, then repeatedly
randomly selecting a point from that collection and eliminating
points too close to that selected point. For the special cases
where min_lon and max_lon, or min_lat and max_lat, are very close
relative to min_gcdist, the maximum number of evenly spaced points
that can be put on the line described is computed and assigned.
Arguments:
min_lon - minimum longitude of the region
min_lat - minimum latitude of the region
max_lon - maximum longitude of the region
max_lat - maximum latitude of the region
min_gcdist - minimum distance, in great circle degrees,
between returned points
dfactor - the number of axis points in the dense "grid"
compared to the desired "grid". Larger value will
generally increase the uniformity of the returned
points but will also increase the time required
for the calculation.
Returns:
(pt_lons, pt_lats) - ptlons is an array of longitudes and ptlats
is an array of latitudes of (somewhat random) points in
the specified region that are roughly equidistant from
each other but not closer than min_gcdist to each other.
"""
lonmin = float(min_lon)
lonmax = float(max_lon)
if math.fabs(lonmax - lonmin) > 180.0:
raise ValueError("Difference between max_lon and min_lon is more than 180.0")
latmin = float(min_lat)
if math.fabs(latmin) > 90.0:
raise ValueError("min_lat is not in [-90.0,90.0]")
latmax = float(max_lat)
if math.fabs(latmax) > 90.0:
raise ValueError("max_lat is not in [-90.0,90.0]")
mindeg = float(min_gcdist)
if (mindeg <= 0.0) or (mindeg >= 90.0):
raise ValueError("min_gcdist is not in (0.0,90.0)")
dfact = float(dfactor)
if dfact < 1.0:
raise ValueError("dfactor is less than one");
# If lonmin is relatively close to lonmax, directly
# compute the points. Distance on a meridian is the
# difference in latitudes.
if math.fabs(lonmax - lonmin) < (0.05 * mindeg):
lon = 0.5 * (lonmax + lonmin)
dellat = mindeg
numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat )
if latmax < latmin:
dellat *= -1.0
hdiff = 0.5 * ( (latmax - latmin) - (numlats - 1) * dellat )
latvals = numpy.linspace(latmin + hdiff, latmax - hdiff, numlats)
lonvals = numpy.ones((numlats,), dtype=float) * lon
return (lonvals, latvals)
# If latmin is relatively close to latmax, directly
# compute the points. Distance depends on the latitude
# as well as the difference in longitudes.
if math.fabs(latmax - latmin) < (0.05 * mindeg):
lat = 0.5 * (latmax + latmin)
numer = math.sin(0.5 * DEG2RAD * mindeg)
denom = math.cos(lat * DEG2RAD)
if numer < denom:
dellon = math.asin(numer / denom) * 2.0 * RAD2DEG
numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon )
else:
# everything too close to a pole - just select one point
dellon = 180.0
numlons = 1
if lonmax < lonmin:
dellon *= -1.0
hdiff = 0.5 * ( (lonmax - lonmin) - (numlons - 1) * dellon )
lonvals = numpy.linspace(lonmin + hdiff, lonmax - hdiff, numlons)
latvals = numpy.ones((numlons,), dtype=float) * lat
return (lonvals, latvals)
# Get the number of latitudes for the dense grid
# Always use latmin and latmax, even if they are too close
dellat = mindeg / dfact
numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat )
if numlats < 2:
numlats = 2
latvals = numpy.linspace(latmin, latmax, numlats)
# Create the dense grid of longitudes and latitudes
denslons = [ ]
denslats = [ ]
numer = math.sin(0.5 * DEG2RAD * mindeg / dfact)
for lat in latvals:
# Get the number of longitudes for the dense grid
# Always use lonmin and lonmax, even if they are too close
denom = math.cos(lat * DEG2RAD)
if numer < denom:
dellon = math.asin(numer / denom) * 2.0 * RAD2DEG
numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon )
if numlons < 2:
numlons = 2
else:
# too close to a pole
numlons = 2
lonvals = numpy.linspace(lonmin, lonmax, numlons)
# Add each lon,lat pair to the dense grid
for lon in lonvals:
denslons.append(lon)
denslats.append(lat)
denslons = numpy.asarray(denslons)
denslats = numpy.asarray(denslats)
# create a random permutation of the indices to use for the selection order
availinds = numpy.random.permutation(len(denslats))
selectinds = [ ]
while len(availinds) > 0:
# Get the index of the next available point
ind = availinds[0]
selectinds.append(ind)
# Compute the distance of the available points to the selected point
gcdists = lonlatdistance(denslons[ind], denslats[ind],
denslons[availinds], denslats[availinds])
# Remove indices of any available points too close to this point
availinds = availinds[ gcdists >= mindeg ]
# sort the selected indices so the longitudes and latitudes have some order
selectinds = numpy.sort(selectinds)
# get the selected longitudes and latitudes
selectlons = denslons[selectinds]
selectlats = denslats[selectinds]
# return the selected longitudes and latitudes arrays
return (selectlons, selectlats)
#
# The following is just for testing "by-hand" and to serve as examples.
#
if __name__ == "__main__":
# Test lonlatdistance
tenten = numpy.linspace(0.0,90.0,10)
# On the equator, distance = delta longitude
dists = lonlatdistance(0.0, 0.0, tenten, 0.0)
if not numpy.allclose(dists, tenten):
raise ValueError("Equatorial distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists)))
print("Equatorial distance: PASS")
print()
# On any meridian, distance = delta latitude
dists = lonlatdistance(20.0, 0.0, 20.0, tenten)
if not numpy.allclose(dists, tenten):
raise ValueError("Meridional distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists)))
print("Meridional distance: PASS")
print()
# Play with some distances between cities (deg W, deg N)
seattle = (122.0 + (20.0 / 60.0), 47.0 + (37.0 / 60.0))
portland = (122.0 + (41.0 / 60.0), 45.0 + (31.0 / 60.0))
spokane = (117.0 + (26.0 / 60.0), 47.0 + (40.0 / 60.0))
austin = ( 97.0 + (45.0 / 60.0), 30.0 + (15.0 / 60.0))
houston = ( 95.0 + (23.0 / 60.0), 29.0 + (46.0 / 60.0))
dallas = ( 96.0 + (48.0 / 60.0), 32.0 + (47.0 / 60.0))
lons = ( seattle[0], portland[0], spokane[0] )
lons1, lons2 = numpy.meshgrid(lons, lons)
lats = ( seattle[1], portland[1], spokane[1] )
lats1, lats2 = numpy.meshgrid(lats, lats)
dists = lonlatdistance(lons1, lats1, lons2, lats2)
dists *= DEG2RAD * EARTH_MR * KM2MI
expected = [ [ 0, 146, 228 ],
[ 146, 0, 290 ],
[ 228, 290, 0 ] ]
if not numpy.allclose(dists, expected, rtol=0.01):
raise ValueError("Seattle, Portland, Spokane distance matrix in miles\n" \
" expect: %s\n"
" found: %s" % (str(expected), str(dists)))
print("Seattle, Portland, Spokane distance matrix: PASS")
print()
lons = ( austin[0], houston[0], dallas[0] )
lons1, lons2 = numpy.meshgrid(lons, lons)
lats = ( austin[1], houston[1], dallas[1] )
lats1, lats2 = numpy.meshgrid(lats, lats)
dists = lonlatdistance(lons1, lats1, lons2, lats2)
dists *= DEG2RAD * EARTH_MR * KM2MI
expected = [ [ 0, 145, 184 ],
[ 145, 0, 224 ],
[ 184, 224, 0 ] ]
if not numpy.allclose(dists, expected, rtol=0.01):
raise ValueError("Austin, Houston, Dallas distance matrix in miles\n" \
" expect: %s\n"
" found: %s" % (str(expected), str(dists)))
print("Austin, Houston, Dallas distance matrix: PASS")
print()
# Test lonlatintersect
# Intersections of the equator with meridians
((pt1lons, pt1lats), (pt2lons, pt2lats)) = \
lonlatintersect(0.0, 0.0, tenten, 0.0, \
0.0, -90.0, tenten, tenten)
# First of the first great circle and last of the second great circle are not well-defined
expvalid = numpy.array([ True ] + ([ False ]*8) + [ True ])
validity = numpy.isnan(pt1lons)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of pt1lons: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
validity = numpy.isnan(pt1lats)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of pt1lats: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
validity = numpy.isnan(pt2lons)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of pt2lons: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
validity = numpy.isnan(pt2lats)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of pt2lats: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
if not numpy.allclose(pt1lons[1:-1], tenten[1:-1]):
raise ValueError("Valid pt1lons: expect: %s, found: %s" %\
(str(tenten[1:-1]), str(pt1lons[1:-1])))
if not numpy.allclose(pt1lats[1:-1], 0.0):
raise ValueError("Valid pt1lats: expect: all zeros, found: %s" %\
str(pt1lats[1:-1]))
if not numpy.allclose(pt2lons[1:-1], tenten[1:-1]-180.0):
raise ValueError("Valid pt2lons: expect: %s, found %s" %\
(str(tenten[1:-1]-180.0), str(pt2lons[1:-1])))
if not numpy.allclose(pt2lats[1:-1], 0.0):
raise ValueError("Valid pt2lats: expect: all zeros, found %s" %\
str(pt2lats[1:-1]))
print("Equator/meridian intersections: PASS")
print()
((pt1lons, pt1lats), (pt2lons, pt2lats)) = \
lonlatintersect( 0.0, 89.99, 180.0, 89.99,
90.0, 89.99, -90.0, 89.99)
# longitudes could actually be anything, but this algorithm gives 45.0 and -135.0
if (abs(pt1lons - 45.0) > 1.0E-8) or (abs(pt1lats - 90.0) > 1.0E-8) or \
(abs(pt2lons + 135.0) > 1.0E-8) or (abs(pt2lats + 90.0) > 1.0E-8):
raise ValueError("Mini north pole cross intersections: expect: %s, found %s" % \
(str([45.0, 90.0, 135.0, -90.0]),
str([float(pt1lons), float(pt1lats),
float(pt2lons), float(pt2lats)])))
print("Mini north pole cross intersections: PASS")
print()
# Test lonlatfwdpt
lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 0.0)
if not ( numpy.allclose(lons, portland[0]) and numpy.allclose(lats, portland[1]) ):
raise ValueError("Zero forward from portland to spokane: expect %s, found %s" % \
(str(portland), str((lons, lats))))
print("Zero forward: PASS")
print()
lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 1.0)
if not ( numpy.allclose(lons, spokane[0]) and numpy.allclose(lats, spokane[1]) ):
raise ValueError("One forward from portland to spokane: expect %s, found %s" % \
(str(spokane), str((lons, lats))))
print("One forward: PASS")
print()
lons, lats = lonlatfwdpt(0.0, 0.0, tenten, 0.0, 3.0)
expectlons = 3.0 * tenten
expectlons[ expectlons > 180.0 ] -= 360.0
# The first great circle is not well-defined
expvalid = numpy.array([ True ] + ([ False ]*9))
validity = numpy.isnan(lons)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of fwd equator lons: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
validity = numpy.isnan(lats)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of fwd equator lats: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
if not numpy.allclose(lons[1:], expectlons[1:]):
raise ValueError("Valid fwd equator lons: expect: %s, found: %s" %\
(str(expectlons[1:]), str(lons[1:])))
if not numpy.allclose(lats[1:], 0.0):
raise ValueError("Valid fwd equator lats: expect: all zeros, found: %s" %\
str(lats[1:]))
print("Fwd equator: PASS")
print()
lons, lats = lonlatfwdpt(0.0, -90.0, 0.0, tenten, 2.0)
# First longitude could be anything, but this algorithm gives 0.0
expectlats = 90.0 - 2.0 * tenten
# The last great circle is not well-defined
expvalid = numpy.array(([ False ]*9) + [ True ])
validity = numpy.isnan(lons)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of fwd prime meridian lons: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
validity = numpy.isnan(lats)
if not numpy.allclose(validity, expvalid):
raise ValueError("Validity of fwd prime meridian lats: expect: %s, found: %s" % \
(str(expvalid), str(validity)))
# First longitude could be anything so ignore it
# Others should be either 180 == -180
poslons = lons[1:-1]
poslons[(poslons < 0.0)] += 360.0
if not numpy.allclose(poslons, 180.0):
raise ValueError("Valid fwd prime meridian lons: expect: all 180.0 or -180.0, found: %s" %\
str(poslons))
if not numpy.allclose(lats[:-1], expectlats[:-1]):
raise ValueError("Valid fwd prime meridian lats: expect: %s, found: %s" %\
(str(expectlats[:-1]), str(lats[:-1])))
print("Fwd prime meridian: PASS")
print()
lons, lats = lonlatfwdpt(0.0, 0.0, 45.0, 45.0, (2.0, 3.0, 4.0, 5.0))
expectlons = [ 135.0, 180.0, -135.0, -45.0 ]
expectlats = [ 45.0, 0.0, -45.0, -45.0 ]
if not numpy.allclose(lons, expectlons):
raise ValueError("Fwd diagonal lons: expect: %s, found: %s" %\
(str(expectlons), str(lons)))
if not numpy.allclose(lats, expectlats):
raise ValueError("Fwd diagonal lats: expect: %s, found: %s" %\
(str(expectlats), str(lats)))
print("Fwd diagonal: PASS")
print()
# Test equdistscatter
lons, lats = equidistscatter(0.0, 0.0, 0.0, 0.0, 1.0)
if (lons.shape != (1,)) or (lons[0] != 0.0) or \
(lats.shape != (1,)) or (lats[0] != 0.0):
raise ValueError("Equidistscatter single-point FAIL; \n" \
" expect: ([0.0],[0.0]), \n" \
" found (%s,%s)" % (str(lons), str(lats)))
print("Equidistscatter single-point PASS")
print()
lons, lats = equidistscatter(0.0, 90.0, 90.0, 90.0, 1.0)
if (lons.shape != (1,)) or (lons[0] != 45.0) or \
(lats.shape != (1,)) or (lats[0] != 90.0):
raise ValueError("Equidistscatter pole-point FAIL; \n" \
" expect: ([45.0],[90.0]), \n" \
" found (%s,%s)" % (str(lons), str(lats)))
print("Equidistscatter pole-point PASS")
print()
lons, lats = equidistscatter(0.0, 0.0, 90.0, 0.0, 1.0)
if not numpy.all( lats == 0.0 ):
raise ValueError("Equidistscatter equatorial FAIL; \n" \
" expect: all zero latitudes, \n" \
" found %s" % str(lats))
deltas = lons[1:] - lons[:-1]
if not numpy.all( deltas >= 1.0 ):
raise ValueError("Equidistscatter equatorial FAIL; \n" \
" expect: longitudes monotonic increasing by at least 1.0 degrees, \n" \
" found %s" % str(lons))
if not numpy.all( deltas < 1.0001 ):
raise ValueError("Equidistscatter equatorial FAIL; \n" \
" expect: longitudes monotonic increasing by less than 1.0001 degrees, \n" \
" found %s" % str(lons))
print("Equidistscatter equatorial PASS")
print()
lons, lats = equidistscatter(0.0, 0.0, 0.0, 90.0, 1.0)
if not numpy.all( lons == 0.0 ):
raise ValueError("Equidistscatter meridional FAIL; \n" \
" expect: all zero longitudes, \n" \
" found %s" % str(lons))
deltas = lats[1:] - lats[:-1]
if not numpy.all( deltas >= 1.0 ):
raise ValueError("Equidistscatter meridional FAIL; \n" \
" expect: latitudes monotonic increasing by at least 1.0 degrees, \n" \
" found %s" % str(lats))
if not numpy.all( deltas < 1.0001 ):
raise ValueError("Equidistscatter meridional FAIL; \n" \
" expect: latitudes monotonic increasing by less than 1.0001 degrees, \n" \
" found %s" % str(lats))
print("Equidistscatter meridional PASS")
print()
lons, lats = equidistscatter(0.0, 0.0, 90.0, 90.0, 5.0, 15.0)
nndists = [ ]
for j in range(len(lons)):
gcdists = lonlatdistance(lons[j], lats[j], lons, lats)
gcdists[j] = 180.0
if not numpy.all( gcdists >= 5.0 ):
raise ValueError("Equidistscatter region FAIL; \n" \
" expect distances[%d] >= 2.0, \n" \
" found %s" % (j, str(gcdists)))
nndists.append(gcdists.min())
nndists = numpy.array(nndists)
if not numpy.all( nndists < 10.0 ):
raise ValueError("Equidistscatter region FAIL; \n" \
" expect nearest neighbor distances < 10.0, \n" \
" found %s" % str(nndists))
print("Nearest neighbor distances: \n" \
" min = %f, max = %f, mean = %f, stdev = %f" % \
(nndists.min(), nndists.max(), nndists.mean(), nndists.std()))
print("Equidistscatter region PASS")
print()
|