This file is indexed.

/usr/lib/python2.7/dist-packages/gcircle.py is in python-ferret 7.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""
Module of functions involving great circles
(thus assuming spheroid model of the earth)
with points given in longitudes and latitudes.
"""

from __future__ import print_function

import math
import numpy
import numpy.random

# Equatorial radius of the earth in kilometers
EARTH_ER = 6378.137

# Authalic radius of the earth in kilometers
EARTH_AR = 6371.007

# Meridional radius of the earth in kilometers
EARTH_MR = 6367.449

# Polar radius of the earth in kilometers
EARTH_PR = 6356.752

DEG2RAD = math.pi / 180.0
RAD2DEG = 180.0 / math.pi
KM2MI = 0.6213712
MI2KM = 1.609344


def lonlatdistance(pt1lon, pt1lat, pt2lon, pt2lat):
    """
    Compute the great circle distance between two points
    on a sphere using the haversine formula.

    Arguments:
        pt1lon - longitude(s) of the first point
        pt1lat - latitude(s) of the first point
        pt2lon - longitude(s) of the second point
        pt2lat - latitude(s) of the second point
    Returns:
        The great circle distance(s) in degrees [0.0, 180.0]
    """
    lon1 = numpy.deg2rad(numpy.asarray(pt1lon, dtype=float))
    lat1 = numpy.deg2rad(numpy.asarray(pt1lat, dtype=float))
    lon2 = numpy.deg2rad(numpy.asarray(pt2lon, dtype=float))
    lat2 = numpy.deg2rad(numpy.asarray(pt2lat, dtype=float))
    dellat = numpy.power(numpy.sin(0.5 * (lat2 - lat1)), 2.0)
    dellon = numpy.cos(lat1) * numpy.cos(lat2) * \
             numpy.power(numpy.sin(0.5 * (lon2 - lon1)), 2.0)
    dist = 2.0 * numpy.arcsin(numpy.power(dellon + dellat, 0.5))
    return numpy.rad2deg(dist)


def lonlatintersect(gc1lon1, gc1lat1, gc1lon2, gc1lat2,
                    gc2lon1, gc2lat1, gc2lon2, gc2lat2):
    """
    Compute the intersections of two great circles.  Uses the line of
    intersection between the two planes of the great circles.

    Arguments:
        gc1lon1 - longitude(s) of the first point on the first great circle
        gc1lat1 - latitude(s) of the first point on the first great circle
        gc1lon2 - longitude(s) of the second point on the first great circle
        gc1lat2 - latitude(s) of the second point on the first great circle
        gc2lon1 - longitude(s) of the first point on the second great circle
        gc2lat1 - latitude(s) of the first point on the second great circle
        gc2lon2 - longitude(s) of the second point on the second great circle
        gc2lat2 - latitude(s) of the second point on the second great circle
    Returns:
        ( (pt1lon, pt1lat), (pt2lon, pt2lat) ) - the longitudes and latitudes
                  of the two intersections of the two great circles.  NaN will
                  be returned for both longitudes and latitudes if a great
                  circle is not well-defined, or the two great-circles coincide.
    """
    # Minimum acceptable norm of a cross product
    # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth
    MIN_NORM = 1.0E-7
    # Convert longitudes and latitudes to points on a unit sphere
    # The "+ 0.0 * ptlonr" is to broadcast gcz if needed
    ptlonr = numpy.deg2rad(numpy.asarray(gc1lon1, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(gc1lat1, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    gc1xyz1 = numpy.array([gcx, gcy, gcz])
    #
    ptlonr = numpy.deg2rad(numpy.asarray(gc1lon2, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(gc1lat2, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    gc1xyz2 = numpy.array([gcx, gcy, gcz])
    #
    ptlonr = numpy.deg2rad(numpy.asarray(gc2lon1, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(gc2lat1, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    gc2xyz1 = numpy.array([gcx, gcy, gcz])
    #
    ptlonr = numpy.deg2rad(numpy.asarray(gc2lon2, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(gc2lat2, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    gc2xyz2 = numpy.array([gcx, gcy, gcz])
    # Get the unit-perpendicular to the plane going through the
    # origin and the two points on each great circle.  If the
    # norm of the cross product is too small, the great circle
    # is not well-defined, so zero it out so NaN is produced.
    gc1pp = numpy.cross(gc1xyz1, gc1xyz2, axis=0)
    norm = (gc1pp[0]**2 + gc1pp[1]**2 + gc1pp[2]**2)**0.5
    if len(norm.shape) == 0:
        if numpy.fabs(norm) < MIN_NORM:
            norm = 0.0
    else:
        norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
    gc1pp /= norm
    gc2pp = numpy.cross(gc2xyz1, gc2xyz2, axis=0)
    norm = (gc2pp[0]**2 + gc2pp[1]**2 + gc2pp[2]**2)**0.5
    if len(norm.shape) == 0:
        if numpy.fabs(norm) < MIN_NORM:
            norm = 0.0
    else:
        norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
    gc2pp /= norm
    # The line of intersection of the two planes is perpendicular
    # to the two plane-perpendiculars and goes through the origin.
    # Points of intersection are the points on this line one unit
    # from the origin.  If the norm of the cross product is too
    # small, the two planes are practically indistinguishable from
    # each other (coincide).
    pt1xyz = numpy.cross(gc1pp, gc2pp, axis=0)
    norm = (pt1xyz[0]**2 + pt1xyz[1]**2 + pt1xyz[2]**2)**0.5
    if len(norm.shape) == 0:
        if numpy.fabs(norm) < MIN_NORM:
            norm = 0.0
    else:
        norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
    pt1xyz /= norm
    pt2xyz = -1.0 * pt1xyz
    # Convert back to longitudes and latitudes
    pt1lats = numpy.rad2deg(numpy.arcsin(pt1xyz[2]))
    pt1lons = numpy.rad2deg(numpy.arctan2(pt1xyz[1], pt1xyz[0]))
    pt2lats = numpy.rad2deg(numpy.arcsin(pt2xyz[2]))
    pt2lons = numpy.rad2deg(numpy.arctan2(pt2xyz[1], pt2xyz[0]))
    return ( (pt1lons, pt1lats), (pt2lons, pt2lats) )


def lonlatfwdpt(origlon, origlat, endlon, endlat, fwdfact):
    """
    Find the longitude and latitude of a point that is a given factor
    times the distance along the great circle from an origination point
    to an ending point.

    Note that the shorter great circle arc from the origination point
    to the ending point is always used.

    If O is the origination point, E is the ending point, and P is
    the point returned from this computation, a factor value of:
        0.5: P bisects the great circle arc between O and E
        2.0: E bisects the great circle arc between O and P
       -1.0: O bisects the great circle arc between P and E

    Arguments:
        origlon - longitude(s) of the origination point
        origlat - latitude(s) of the origination point
        endlon  - longitude(s) of the ending point
        endlat  - latitude(s) of the ending point
        fwdfact - forward distance factor(s)

    Returns:
        (ptlon, ptlat) - longitude and latitude of the computed point(s).
                         NaN will be returned for both the longitude and
                         latitude if the great circle is not well-defined.
    """
    # Minimum acceptable norm of a cross product
    # arcsin(1.0E-7) = 0.02" or 0.64 m on the Earth
    MIN_NORM = 1.0E-7
    # Convert longitudes and latitudes to points on a unit sphere
    # The "+ 0.0 * ptlonr" is to broadcast gcz if needed
    ptlonr = numpy.deg2rad(numpy.asarray(origlon, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(origlat, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    origxyz = numpy.array([gcx, gcy, gcz])
    #
    ptlonr = numpy.deg2rad(numpy.asarray(endlon, dtype=float))
    ptlatr = numpy.deg2rad(numpy.asarray(endlat, dtype=float))
    gcz = numpy.sin(ptlatr) + 0.0 * ptlonr
    coslat = numpy.cos(ptlatr)
    gcy = coslat * numpy.sin(ptlonr)
    gcx = coslat * numpy.cos(ptlonr)
    endxyz = numpy.array([gcx, gcy, gcz])
    # Determine the rotation matrix about the origin that takes
    # origxyz to (1,0,0) (equator and prime meridian) and endxyz
    # to (x,y,0) with y > 0 (equator in eastern hemisphere).
    #
    # The first row of the matrix is origxyz.
    #
    # The third row of the matrix is the normalized cross product
    # of origxyz and endxyz.  (The great circle plane perpendicular.)
    # If the norm of this cross product is too small, the great
    # circle is not well-defined, so zero it out so NaN is produced.
    gcpp = numpy.cross(origxyz, endxyz, axis=0)
    norm = (gcpp[0]**2 + gcpp[1]**2 + gcpp[2]**2)**0.5
    if len(norm.shape) == 0:
        if numpy.fabs(norm) < MIN_NORM:
            norm = 0.0
    else:
        norm[ numpy.fabs(norm) < MIN_NORM ] = 0.0
    gcpp /= norm
    # The second row of the matrix is the cross product of the
    # third row (gcpp) and the first row (origxyz).  This will
    # have norm 1.0 since gcpp and origxyz are perpendicular
    # unit vectors.
    fwdax = numpy.cross(gcpp, origxyz, axis=0)
    # Get the coordinates of the rotated end point.
    endtrx = origxyz[0] * endxyz[0] + origxyz[1] * endxyz[1] + origxyz[2] * endxyz[2]
    endtry = fwdax[0]   * endxyz[0] + fwdax[1]   * endxyz[1] + fwdax[2]   * endxyz[2]
    # Get the angle along the equator of the rotated end point, multiply
    # by the given factor, and convert this new angle back to coordinates.
    fwdang  = numpy.arctan2(endtry, endtrx)
    fwdang *= numpy.asarray(fwdfact, dtype=float)
    fwdtrx  = numpy.cos(fwdang)
    fwdtry  = numpy.sin(fwdang)
    # Rotate the new point back to the original coordinate system
    # The inverse rotation matrix is the transpose of that matrix.
    fwdx = origxyz[0] * fwdtrx + fwdax[0] * fwdtry
    fwdy = origxyz[1] * fwdtrx + fwdax[1] * fwdtry
    fwdz = origxyz[2] * fwdtrx + fwdax[2] * fwdtry
    # Convert the point coordinates into longitudes and latitudes
    ptlat = numpy.rad2deg(numpy.arcsin(fwdz))
    ptlon = numpy.rad2deg(numpy.arctan2(fwdy, fwdx))
    return (ptlon, ptlat)


def equidistscatter(min_lon, min_lat, max_lon, max_lat, min_gcdist, dfactor=5.0):
    """
    Create a roughly equidistant set of points in a specified region.

    This is done by creating a dense "grid" of points, then repeatedly
    randomly selecting a point from that collection and eliminating
    points too close to that selected point.  For the special cases
    where min_lon and max_lon, or min_lat and max_lat, are very close
    relative to min_gcdist, the maximum number of evenly spaced points
    that can be put on the line described is computed and assigned.

    Arguments:
        min_lon - minimum longitude of the region
        min_lat - minimum latitude of the region
        max_lon - maximum longitude of the region
        max_lat - maximum latitude of the region
        min_gcdist - minimum distance, in great circle degrees,
                  between returned points
        dfactor - the number of axis points in the dense "grid"
                  compared to the desired "grid".  Larger value will
                  generally increase the uniformity of the returned
                  points but will also increase the time required
                  for the calculation.
    Returns:
        (pt_lons, pt_lats) - ptlons is an array of longitudes and ptlats
                  is an array of latitudes of (somewhat random) points in
                  the specified region that are roughly equidistant from
                  each other but not closer than min_gcdist to each other.
    """
    lonmin = float(min_lon)
    lonmax = float(max_lon)
    if math.fabs(lonmax - lonmin) > 180.0:
        raise ValueError("Difference between max_lon and min_lon is more than 180.0")
    latmin = float(min_lat)
    if math.fabs(latmin) > 90.0:
        raise ValueError("min_lat is not in [-90.0,90.0]")
    latmax = float(max_lat)
    if math.fabs(latmax) > 90.0:
        raise ValueError("max_lat is not in [-90.0,90.0]")
    mindeg = float(min_gcdist)
    if (mindeg <= 0.0) or (mindeg >= 90.0):
        raise ValueError("min_gcdist is not in (0.0,90.0)")
    dfact = float(dfactor)
    if dfact < 1.0:
        raise ValueError("dfactor is less than one");

    # If lonmin is relatively close to lonmax, directly
    # compute the points.  Distance on a meridian is the
    # difference in latitudes.
    if math.fabs(lonmax - lonmin) < (0.05 * mindeg):
        lon = 0.5 * (lonmax + lonmin)
        dellat = mindeg
        numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat )
        if latmax < latmin:
            dellat *= -1.0
        hdiff = 0.5 * ( (latmax - latmin) - (numlats - 1) * dellat )
        latvals = numpy.linspace(latmin + hdiff, latmax - hdiff, numlats)
        lonvals = numpy.ones((numlats,), dtype=float) * lon
        return (lonvals, latvals)

    # If latmin is relatively close to latmax, directly
    # compute the points.  Distance depends on the latitude
    # as well as the difference in longitudes.
    if math.fabs(latmax - latmin) < (0.05 * mindeg):
        lat = 0.5 * (latmax + latmin)
        numer = math.sin(0.5 * DEG2RAD * mindeg)
        denom = math.cos(lat * DEG2RAD)
        if numer < denom:
            dellon = math.asin(numer / denom) * 2.0 * RAD2DEG
            numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon )
        else:
            # everything too close to a pole - just select one point
            dellon = 180.0
            numlons = 1
        if lonmax < lonmin:
            dellon *= -1.0
        hdiff = 0.5 * ( (lonmax - lonmin) - (numlons - 1) * dellon )
        lonvals = numpy.linspace(lonmin + hdiff, lonmax - hdiff, numlons)
        latvals = numpy.ones((numlons,), dtype=float) * lat
        return (lonvals, latvals)

    # Get the number of latitudes for the dense grid
    # Always use latmin and latmax, even if they are too close
    dellat = mindeg / dfact
    numlats = int( (math.fabs(latmax - latmin) + dellat) / dellat )
    if numlats < 2:
         numlats = 2
    latvals = numpy.linspace(latmin, latmax, numlats)

    # Create the dense grid of longitudes and latitudes
    denslons = [ ]
    denslats = [ ]
    numer = math.sin(0.5 * DEG2RAD * mindeg / dfact)
    for lat in latvals:
        # Get the number of longitudes for the dense grid
        # Always use lonmin and lonmax, even if they are too close
        denom = math.cos(lat * DEG2RAD)
        if numer < denom:
            dellon = math.asin(numer / denom) * 2.0 * RAD2DEG
            numlons = int( (math.fabs(lonmax - lonmin) + dellon) / dellon )
            if numlons < 2:
                numlons = 2
        else:
            # too close to a pole
            numlons = 2
        lonvals = numpy.linspace(lonmin, lonmax, numlons)
        # Add each lon,lat pair to the dense grid
        for lon in lonvals:
            denslons.append(lon)
            denslats.append(lat)
    denslons = numpy.asarray(denslons)
    denslats = numpy.asarray(denslats)

    # create a random permutation of the indices to use for the selection order
    availinds = numpy.random.permutation(len(denslats))
    selectinds = [ ]
    while len(availinds) > 0:
        # Get the index of the next available point
        ind = availinds[0]
        selectinds.append(ind)
        # Compute the distance of the available points to the selected point
        gcdists = lonlatdistance(denslons[ind], denslats[ind],
                                 denslons[availinds], denslats[availinds])
        # Remove indices of any available points too close to this point
        availinds = availinds[ gcdists >= mindeg ]
    # sort the selected indices so the longitudes and latitudes have some order
    selectinds = numpy.sort(selectinds)
    # get the selected longitudes and latitudes
    selectlons = denslons[selectinds]
    selectlats = denslats[selectinds]
    # return the selected longitudes and latitudes arrays
    return (selectlons, selectlats)

#
# The following is just for testing "by-hand" and to serve as examples.
#

if __name__ == "__main__":
    # Test lonlatdistance
    tenten = numpy.linspace(0.0,90.0,10)
    # On the equator, distance = delta longitude
    dists = lonlatdistance(0.0, 0.0, tenten, 0.0)
    if not numpy.allclose(dists, tenten):
        raise ValueError("Equatorial distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists)))
    print("Equatorial distance: PASS")
    print()

    # On any meridian, distance = delta latitude
    dists = lonlatdistance(20.0, 0.0, 20.0, tenten)
    if not numpy.allclose(dists, tenten):
        raise ValueError("Meridional distances FAIL; expect: %s; found: %s" % (str(tenten), str(dists)))
    print("Meridional distance: PASS")
    print()

    # Play with some distances between cities (deg W, deg N)
    seattle =  (122.0 + (20.0 / 60.0), 47.0 + (37.0 / 60.0))
    portland = (122.0 + (41.0 / 60.0), 45.0 + (31.0 / 60.0))
    spokane =  (117.0 + (26.0 / 60.0), 47.0 + (40.0 / 60.0))
    austin =   ( 97.0 + (45.0 / 60.0), 30.0 + (15.0 / 60.0))
    houston =  ( 95.0 + (23.0 / 60.0), 29.0 + (46.0 / 60.0))
    dallas =   ( 96.0 + (48.0 / 60.0), 32.0 + (47.0 / 60.0))

    lons = ( seattle[0], portland[0], spokane[0] )
    lons1, lons2 = numpy.meshgrid(lons, lons)
    lats = ( seattle[1], portland[1], spokane[1] )
    lats1, lats2 = numpy.meshgrid(lats, lats)
    dists = lonlatdistance(lons1, lats1, lons2, lats2)
    dists *= DEG2RAD * EARTH_MR * KM2MI
    expected = [ [   0, 146, 228 ],
                 [ 146,   0, 290 ],
                 [ 228, 290,   0 ] ]
    if not numpy.allclose(dists, expected, rtol=0.01):
        raise ValueError("Seattle, Portland, Spokane distance matrix in miles\n" \
                         "    expect: %s\n"
                         "    found:  %s" % (str(expected), str(dists)))
    print("Seattle, Portland, Spokane distance matrix: PASS")
    print()

    lons = ( austin[0], houston[0], dallas[0] )
    lons1, lons2 = numpy.meshgrid(lons, lons)
    lats = ( austin[1], houston[1], dallas[1] )
    lats1, lats2 = numpy.meshgrid(lats, lats)
    dists = lonlatdistance(lons1, lats1, lons2, lats2)
    dists *= DEG2RAD * EARTH_MR * KM2MI
    expected = [ [   0, 145, 184 ],
                 [ 145,   0, 224 ],
                 [ 184, 224,   0 ] ]
    if not numpy.allclose(dists, expected, rtol=0.01):
        raise ValueError("Austin, Houston, Dallas distance matrix in miles\n" \
                         "    expect: %s\n"
                         "    found:  %s" % (str(expected), str(dists)))
    print("Austin, Houston, Dallas distance matrix: PASS")
    print()

    # Test lonlatintersect
    # Intersections of the equator with meridians
    ((pt1lons, pt1lats), (pt2lons, pt2lats)) = \
            lonlatintersect(0.0, 0.0, tenten, 0.0, \
                            0.0, -90.0, tenten, tenten)
    # First of the first great circle and last of the second great circle are not well-defined
    expvalid = numpy.array([ True ] + ([ False ]*8) + [ True ])
    validity = numpy.isnan(pt1lons)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of pt1lons: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    validity = numpy.isnan(pt1lats)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of pt1lats: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    validity = numpy.isnan(pt2lons)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of pt2lons: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    validity = numpy.isnan(pt2lats)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of pt2lats: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    if not numpy.allclose(pt1lons[1:-1], tenten[1:-1]):
        raise ValueError("Valid pt1lons: expect: %s, found: %s" %\
                          (str(tenten[1:-1]), str(pt1lons[1:-1])))
    if not numpy.allclose(pt1lats[1:-1], 0.0):
        raise ValueError("Valid pt1lats: expect: all zeros, found: %s" %\
                          str(pt1lats[1:-1]))
    if not numpy.allclose(pt2lons[1:-1], tenten[1:-1]-180.0):
        raise ValueError("Valid pt2lons: expect: %s, found %s" %\
                          (str(tenten[1:-1]-180.0), str(pt2lons[1:-1])))
    if not numpy.allclose(pt2lats[1:-1], 0.0):
        raise ValueError("Valid pt2lats: expect: all zeros, found %s" %\
                          str(pt2lats[1:-1]))
    print("Equator/meridian intersections: PASS")
    print()

    ((pt1lons, pt1lats), (pt2lons, pt2lats)) = \
            lonlatintersect( 0.0, 89.99, 180.0, 89.99,
                            90.0, 89.99, -90.0, 89.99)
    # longitudes could actually be anything, but this algorithm gives 45.0 and -135.0
    if (abs(pt1lons -  45.0) > 1.0E-8) or (abs(pt1lats - 90.0) > 1.0E-8) or \
       (abs(pt2lons + 135.0) > 1.0E-8) or (abs(pt2lats + 90.0) > 1.0E-8):
        raise ValueError("Mini north pole cross intersections: expect: %s, found %s" % \
                         (str([45.0, 90.0, 135.0, -90.0]),
                          str([float(pt1lons), float(pt1lats),
                               float(pt2lons), float(pt2lats)])))
    print("Mini north pole cross intersections: PASS")
    print()


    # Test lonlatfwdpt
    lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 0.0)
    if not ( numpy.allclose(lons, portland[0]) and numpy.allclose(lats, portland[1]) ):
        raise ValueError("Zero forward from portland to spokane: expect %s, found %s" % \
                         (str(portland), str((lons, lats))))
    print("Zero forward: PASS")
    print()

    lons, lats = lonlatfwdpt(portland[0], portland[1], spokane[0], spokane[1], 1.0)
    if not ( numpy.allclose(lons, spokane[0]) and numpy.allclose(lats, spokane[1]) ):
        raise ValueError("One forward from portland to spokane: expect %s, found %s" % \
                         (str(spokane), str((lons, lats))))
    print("One forward: PASS")
    print()

    lons, lats = lonlatfwdpt(0.0, 0.0, tenten, 0.0, 3.0)
    expectlons = 3.0 * tenten
    expectlons[ expectlons > 180.0 ] -= 360.0
    # The first great circle is not well-defined
    expvalid = numpy.array([ True ] + ([ False ]*9))
    validity = numpy.isnan(lons)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of fwd equator lons: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    validity = numpy.isnan(lats)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of fwd equator lats: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    if not numpy.allclose(lons[1:], expectlons[1:]):
        raise ValueError("Valid fwd equator lons: expect: %s, found: %s" %\
                          (str(expectlons[1:]), str(lons[1:])))
    if not numpy.allclose(lats[1:], 0.0):
        raise ValueError("Valid fwd equator lats: expect: all zeros, found: %s" %\
                          str(lats[1:]))
    print("Fwd equator: PASS")
    print()

    lons, lats = lonlatfwdpt(0.0, -90.0, 0.0, tenten, 2.0)
    # First longitude could be anything, but this algorithm gives 0.0
    expectlats = 90.0 - 2.0 * tenten
    # The last great circle is not well-defined
    expvalid = numpy.array(([ False ]*9) + [ True ])
    validity = numpy.isnan(lons)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of fwd prime meridian lons: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    validity = numpy.isnan(lats)
    if not numpy.allclose(validity, expvalid):
        raise ValueError("Validity of fwd prime meridian lats: expect: %s, found: %s" % \
                          (str(expvalid), str(validity)))
    # First longitude could be anything so ignore it
    # Others should be either 180 == -180
    poslons = lons[1:-1]
    poslons[(poslons < 0.0)] += 360.0
    if not numpy.allclose(poslons, 180.0):
        raise ValueError("Valid fwd prime meridian lons: expect: all 180.0 or -180.0, found: %s" %\
                          str(poslons))
    if not numpy.allclose(lats[:-1], expectlats[:-1]):
        raise ValueError("Valid fwd prime meridian lats: expect: %s, found: %s" %\
                          (str(expectlats[:-1]), str(lats[:-1])))
    print("Fwd prime meridian: PASS")
    print()

    lons, lats = lonlatfwdpt(0.0, 0.0, 45.0, 45.0, (2.0, 3.0, 4.0, 5.0))
    expectlons = [ 135.0, 180.0, -135.0, -45.0 ]
    expectlats = [  45.0,   0.0,  -45.0, -45.0 ]
    if not numpy.allclose(lons, expectlons):
        raise ValueError("Fwd diagonal lons: expect: %s, found: %s" %\
                          (str(expectlons), str(lons)))
    if not numpy.allclose(lats, expectlats):
        raise ValueError("Fwd diagonal lats: expect: %s, found: %s" %\
                          (str(expectlats), str(lats)))
    print("Fwd diagonal: PASS")
    print()

    # Test equdistscatter
    lons, lats = equidistscatter(0.0, 0.0, 0.0, 0.0, 1.0)
    if (lons.shape != (1,)) or (lons[0] != 0.0) or \
       (lats.shape != (1,)) or (lats[0] != 0.0):
        raise ValueError("Equidistscatter single-point FAIL; \n" \
                         "  expect: ([0.0],[0.0]), \n" \
                         "  found (%s,%s)" % (str(lons), str(lats)))
    print("Equidistscatter single-point PASS")
    print()

    lons, lats = equidistscatter(0.0, 90.0, 90.0, 90.0, 1.0)
    if (lons.shape != (1,)) or (lons[0] != 45.0) or \
       (lats.shape != (1,)) or (lats[0] != 90.0):
        raise ValueError("Equidistscatter pole-point FAIL; \n" \
                         "  expect: ([45.0],[90.0]), \n" \
                         "  found (%s,%s)" % (str(lons), str(lats)))
    print("Equidistscatter pole-point PASS")
    print()

    lons, lats = equidistscatter(0.0, 0.0, 90.0, 0.0, 1.0)
    if not numpy.all( lats == 0.0 ):
        raise ValueError("Equidistscatter equatorial FAIL; \n" \
                         "  expect: all zero latitudes, \n" \
                         "  found %s" % str(lats))
    deltas = lons[1:] - lons[:-1]
    if not numpy.all( deltas >= 1.0 ):
        raise ValueError("Equidistscatter equatorial FAIL; \n" \
                         "  expect: longitudes monotonic increasing by at least 1.0 degrees, \n" \
                         "  found %s" % str(lons))
    if not numpy.all( deltas < 1.0001 ):
        raise ValueError("Equidistscatter equatorial FAIL; \n" \
                         "  expect: longitudes monotonic increasing by less than 1.0001 degrees, \n" \
                         "  found %s" % str(lons))
    print("Equidistscatter equatorial PASS")
    print()

    lons, lats = equidistscatter(0.0, 0.0, 0.0, 90.0, 1.0)
    if not numpy.all( lons == 0.0 ):
        raise ValueError("Equidistscatter meridional FAIL; \n" \
                         "  expect: all zero longitudes, \n" \
                         "  found %s" % str(lons))
    deltas = lats[1:] - lats[:-1]
    if not numpy.all( deltas >= 1.0 ):
        raise ValueError("Equidistscatter meridional FAIL; \n" \
                         "  expect: latitudes monotonic increasing by at least 1.0 degrees, \n" \
                         "  found %s" % str(lats))
    if not numpy.all( deltas < 1.0001 ):
        raise ValueError("Equidistscatter meridional FAIL; \n" \
                         "  expect: latitudes monotonic increasing by less than 1.0001 degrees, \n" \
                         "  found %s" % str(lats))
    print("Equidistscatter meridional PASS")
    print()

    lons, lats = equidistscatter(0.0, 0.0, 90.0, 90.0, 5.0, 15.0)
    nndists = [ ]
    for j in range(len(lons)):
        gcdists = lonlatdistance(lons[j], lats[j], lons, lats)
        gcdists[j] = 180.0
        if not numpy.all( gcdists >= 5.0 ):
            raise ValueError("Equidistscatter region FAIL; \n" \
                             "  expect distances[%d] >= 2.0, \n" \
                             "  found %s" % (j, str(gcdists)))
        nndists.append(gcdists.min())
    nndists = numpy.array(nndists)
    if not numpy.all( nndists < 10.0 ):
        raise ValueError("Equidistscatter region FAIL; \n" \
                         "  expect nearest neighbor distances < 10.0, \n" \
                         "  found %s" % str(nndists))
    print("Nearest neighbor distances: \n" \
          "    min = %f, max = %f, mean = %f, stdev = %f" % \
          (nndists.min(), nndists.max(), nndists.mean(), nndists.std()))

    print("Equidistscatter region PASS")
    print()