/usr/lib/python2.7/dist-packages/fann2/libfann.py is in python-fann2 1:1.0.7-6build2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 3.0.10
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
from sys import version_info as _swig_python_version_info
if _swig_python_version_info >= (2, 7, 0):
def swig_import_helper():
import importlib
pkg = __name__.rpartition('.')[0]
mname = '.'.join((pkg, '_libfann')).lstrip('.')
try:
return importlib.import_module(mname)
except ImportError:
return importlib.import_module('_libfann')
_libfann = swig_import_helper()
del swig_import_helper
elif _swig_python_version_info >= (2, 6, 0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_libfann', [dirname(__file__)])
except ImportError:
import _libfann
return _libfann
if fp is not None:
try:
_mod = imp.load_module('_libfann', fp, pathname, description)
finally:
fp.close()
return _mod
_libfann = swig_import_helper()
del swig_import_helper
else:
import _libfann
del _swig_python_version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
try:
import builtins as __builtin__
except ImportError:
import __builtin__
def _swig_setattr_nondynamic(self, class_type, name, value, static=1):
if (name == "thisown"):
return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name, None)
if method:
return method(self, value)
if (not static):
if _newclass:
object.__setattr__(self, name, value)
else:
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self, class_type, name, value):
return _swig_setattr_nondynamic(self, class_type, name, value, 0)
def _swig_getattr(self, class_type, name):
if (name == "thisown"):
return self.this.own()
method = class_type.__swig_getmethods__.get(name, None)
if method:
return method(self)
raise AttributeError("'%s' object has no attribute '%s'" % (class_type.__name__, name))
def _swig_repr(self):
try:
strthis = "proxy of " + self.this.__repr__()
except __builtin__.Exception:
strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except __builtin__.Exception:
class _object:
pass
_newclass = 0
class SwigPyIterator(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs):
raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _libfann.delete_SwigPyIterator
__del__ = lambda self: None
def value(self):
return _libfann.SwigPyIterator_value(self)
def incr(self, n=1):
return _libfann.SwigPyIterator_incr(self, n)
def decr(self, n=1):
return _libfann.SwigPyIterator_decr(self, n)
def distance(self, x):
return _libfann.SwigPyIterator_distance(self, x)
def equal(self, x):
return _libfann.SwigPyIterator_equal(self, x)
def copy(self):
return _libfann.SwigPyIterator_copy(self)
def next(self):
return _libfann.SwigPyIterator_next(self)
def __next__(self):
return _libfann.SwigPyIterator___next__(self)
def previous(self):
return _libfann.SwigPyIterator_previous(self)
def advance(self, n):
return _libfann.SwigPyIterator_advance(self, n)
def __eq__(self, x):
return _libfann.SwigPyIterator___eq__(self, x)
def __ne__(self, x):
return _libfann.SwigPyIterator___ne__(self, x)
def __iadd__(self, n):
return _libfann.SwigPyIterator___iadd__(self, n)
def __isub__(self, n):
return _libfann.SwigPyIterator___isub__(self, n)
def __add__(self, n):
return _libfann.SwigPyIterator___add__(self, n)
def __sub__(self, *args):
return _libfann.SwigPyIterator___sub__(self, *args)
def __iter__(self):
return self
SwigPyIterator_swigregister = _libfann.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
ERRORFUNC_LINEAR = _libfann.ERRORFUNC_LINEAR
ERRORFUNC_TANH = _libfann.ERRORFUNC_TANH
STOPFUNC_MSE = _libfann.STOPFUNC_MSE
STOPFUNC_BIT = _libfann.STOPFUNC_BIT
TRAIN_INCREMENTAL = _libfann.TRAIN_INCREMENTAL
TRAIN_BATCH = _libfann.TRAIN_BATCH
TRAIN_RPROP = _libfann.TRAIN_RPROP
TRAIN_QUICKPROP = _libfann.TRAIN_QUICKPROP
TRAIN_SARPROP = _libfann.TRAIN_SARPROP
LINEAR = _libfann.LINEAR
THRESHOLD = _libfann.THRESHOLD
THRESHOLD_SYMMETRIC = _libfann.THRESHOLD_SYMMETRIC
SIGMOID = _libfann.SIGMOID
SIGMOID_STEPWISE = _libfann.SIGMOID_STEPWISE
SIGMOID_SYMMETRIC = _libfann.SIGMOID_SYMMETRIC
SIGMOID_SYMMETRIC_STEPWISE = _libfann.SIGMOID_SYMMETRIC_STEPWISE
GAUSSIAN = _libfann.GAUSSIAN
GAUSSIAN_SYMMETRIC = _libfann.GAUSSIAN_SYMMETRIC
GAUSSIAN_STEPWISE = _libfann.GAUSSIAN_STEPWISE
ELLIOT = _libfann.ELLIOT
ELLIOT_SYMMETRIC = _libfann.ELLIOT_SYMMETRIC
LINEAR_PIECE = _libfann.LINEAR_PIECE
LINEAR_PIECE_SYMMETRIC = _libfann.LINEAR_PIECE_SYMMETRIC
SIN_SYMMETRIC = _libfann.SIN_SYMMETRIC
COS_SYMMETRIC = _libfann.COS_SYMMETRIC
LAYER = _libfann.LAYER
SHORTCUT = _libfann.SHORTCUT
class training_data_parent(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, training_data_parent, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, training_data_parent, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _libfann.new_training_data_parent(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _libfann.delete_training_data_parent
__del__ = lambda self: None
def destroy_train(self):
return _libfann.training_data_parent_destroy_train(self)
def read_train_from_file(self, filename):
return _libfann.training_data_parent_read_train_from_file(self, filename)
def save_train(self, filename):
return _libfann.training_data_parent_save_train(self, filename)
def save_train_to_fixed(self, filename, decimal_point):
return _libfann.training_data_parent_save_train_to_fixed(self, filename, decimal_point)
def shuffle_train_data(self):
return _libfann.training_data_parent_shuffle_train_data(self)
def merge_train_data(self, data):
return _libfann.training_data_parent_merge_train_data(self, data)
def length_train_data(self):
return _libfann.training_data_parent_length_train_data(self)
def num_input_train_data(self):
return _libfann.training_data_parent_num_input_train_data(self)
def num_output_train_data(self):
return _libfann.training_data_parent_num_output_train_data(self)
def get_input(self):
return _libfann.training_data_parent_get_input(self)
def get_output(self):
return _libfann.training_data_parent_get_output(self)
def set_train_data(self, num_data, num_input, input, num_output, output):
return _libfann.training_data_parent_set_train_data(self, num_data, num_input, input, num_output, output)
def create_train_from_callback(self, num_data, num_input, num_output, user_function):
return _libfann.training_data_parent_create_train_from_callback(self, num_data, num_input, num_output, user_function)
def scale_input_train_data(self, new_min, new_max):
return _libfann.training_data_parent_scale_input_train_data(self, new_min, new_max)
def scale_output_train_data(self, new_min, new_max):
return _libfann.training_data_parent_scale_output_train_data(self, new_min, new_max)
def scale_train_data(self, new_min, new_max):
return _libfann.training_data_parent_scale_train_data(self, new_min, new_max)
def subset_train_data(self, pos, length):
return _libfann.training_data_parent_subset_train_data(self, pos, length)
training_data_parent_swigregister = _libfann.training_data_parent_swigregister
training_data_parent_swigregister(training_data_parent)
class neural_net_parent(_object):
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, neural_net_parent, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, neural_net_parent, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _libfann.new_neural_net_parent(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
def copy_from_struct_fann(self, other):
return _libfann.neural_net_parent_copy_from_struct_fann(self, other)
__swig_destroy__ = _libfann.delete_neural_net_parent
__del__ = lambda self: None
def destroy(self):
return _libfann.neural_net_parent_destroy(self)
def create_standard(self, num_layers):
return _libfann.neural_net_parent_create_standard(self, num_layers)
def create_standard_array(self, num_layers, layers):
return _libfann.neural_net_parent_create_standard_array(self, num_layers, layers)
def create_sparse(self, connection_rate, num_layers):
return _libfann.neural_net_parent_create_sparse(self, connection_rate, num_layers)
def create_sparse_array(self, connection_rate, num_layers, layers):
return _libfann.neural_net_parent_create_sparse_array(self, connection_rate, num_layers, layers)
def create_shortcut(self, num_layers):
return _libfann.neural_net_parent_create_shortcut(self, num_layers)
def create_shortcut_array(self, num_layers, layers):
return _libfann.neural_net_parent_create_shortcut_array(self, num_layers, layers)
def run(self, input):
return _libfann.neural_net_parent_run(self, input)
def randomize_weights(self, min_weight, max_weight):
return _libfann.neural_net_parent_randomize_weights(self, min_weight, max_weight)
def init_weights(self, data):
return _libfann.neural_net_parent_init_weights(self, data)
def print_connections(self):
return _libfann.neural_net_parent_print_connections(self)
def create_from_file(self, configuration_file):
return _libfann.neural_net_parent_create_from_file(self, configuration_file)
def save(self, configuration_file):
return _libfann.neural_net_parent_save(self, configuration_file)
def save_to_fixed(self, configuration_file):
return _libfann.neural_net_parent_save_to_fixed(self, configuration_file)
def train(self, input, desired_output):
return _libfann.neural_net_parent_train(self, input, desired_output)
def train_epoch(self, data):
return _libfann.neural_net_parent_train_epoch(self, data)
def train_on_data(self, data, max_epochs, epochs_between_reports, desired_error):
return _libfann.neural_net_parent_train_on_data(self, data, max_epochs, epochs_between_reports, desired_error)
def train_on_file(self, filename, max_epochs, epochs_between_reports, desired_error):
return _libfann.neural_net_parent_train_on_file(self, filename, max_epochs, epochs_between_reports, desired_error)
def test(self, input, desired_output):
return _libfann.neural_net_parent_test(self, input, desired_output)
def test_data(self, data):
return _libfann.neural_net_parent_test_data(self, data)
def get_MSE(self):
return _libfann.neural_net_parent_get_MSE(self)
def reset_MSE(self):
return _libfann.neural_net_parent_reset_MSE(self)
def set_callback(self, callback, user_data):
return _libfann.neural_net_parent_set_callback(self, callback, user_data)
def print_parameters(self):
return _libfann.neural_net_parent_print_parameters(self)
def get_training_algorithm(self):
return _libfann.neural_net_parent_get_training_algorithm(self)
def set_training_algorithm(self, training_algorithm):
return _libfann.neural_net_parent_set_training_algorithm(self, training_algorithm)
def get_learning_rate(self):
return _libfann.neural_net_parent_get_learning_rate(self)
def set_learning_rate(self, learning_rate):
return _libfann.neural_net_parent_set_learning_rate(self, learning_rate)
def get_activation_function(self, layer, neuron):
return _libfann.neural_net_parent_get_activation_function(self, layer, neuron)
def set_activation_function(self, activation_function, layer, neuron):
return _libfann.neural_net_parent_set_activation_function(self, activation_function, layer, neuron)
def set_activation_function_layer(self, activation_function, layer):
return _libfann.neural_net_parent_set_activation_function_layer(self, activation_function, layer)
def set_activation_function_hidden(self, activation_function):
return _libfann.neural_net_parent_set_activation_function_hidden(self, activation_function)
def set_activation_function_output(self, activation_function):
return _libfann.neural_net_parent_set_activation_function_output(self, activation_function)
def get_activation_steepness(self, layer, neuron):
return _libfann.neural_net_parent_get_activation_steepness(self, layer, neuron)
def set_activation_steepness(self, steepness, layer, neuron):
return _libfann.neural_net_parent_set_activation_steepness(self, steepness, layer, neuron)
def set_activation_steepness_layer(self, steepness, layer):
return _libfann.neural_net_parent_set_activation_steepness_layer(self, steepness, layer)
def set_activation_steepness_hidden(self, steepness):
return _libfann.neural_net_parent_set_activation_steepness_hidden(self, steepness)
def set_activation_steepness_output(self, steepness):
return _libfann.neural_net_parent_set_activation_steepness_output(self, steepness)
def get_train_error_function(self):
return _libfann.neural_net_parent_get_train_error_function(self)
def set_train_error_function(self, train_error_function):
return _libfann.neural_net_parent_set_train_error_function(self, train_error_function)
def get_quickprop_decay(self):
return _libfann.neural_net_parent_get_quickprop_decay(self)
def set_quickprop_decay(self, quickprop_decay):
return _libfann.neural_net_parent_set_quickprop_decay(self, quickprop_decay)
def get_quickprop_mu(self):
return _libfann.neural_net_parent_get_quickprop_mu(self)
def set_quickprop_mu(self, quickprop_mu):
return _libfann.neural_net_parent_set_quickprop_mu(self, quickprop_mu)
def get_rprop_increase_factor(self):
return _libfann.neural_net_parent_get_rprop_increase_factor(self)
def set_rprop_increase_factor(self, rprop_increase_factor):
return _libfann.neural_net_parent_set_rprop_increase_factor(self, rprop_increase_factor)
def get_rprop_decrease_factor(self):
return _libfann.neural_net_parent_get_rprop_decrease_factor(self)
def set_rprop_decrease_factor(self, rprop_decrease_factor):
return _libfann.neural_net_parent_set_rprop_decrease_factor(self, rprop_decrease_factor)
def get_rprop_delta_zero(self):
return _libfann.neural_net_parent_get_rprop_delta_zero(self)
def set_rprop_delta_zero(self, rprop_delta_zero):
return _libfann.neural_net_parent_set_rprop_delta_zero(self, rprop_delta_zero)
def get_rprop_delta_min(self):
return _libfann.neural_net_parent_get_rprop_delta_min(self)
def set_rprop_delta_min(self, rprop_delta_min):
return _libfann.neural_net_parent_set_rprop_delta_min(self, rprop_delta_min)
def get_rprop_delta_max(self):
return _libfann.neural_net_parent_get_rprop_delta_max(self)
def set_rprop_delta_max(self, rprop_delta_max):
return _libfann.neural_net_parent_set_rprop_delta_max(self, rprop_delta_max)
def get_sarprop_weight_decay_shift(self):
return _libfann.neural_net_parent_get_sarprop_weight_decay_shift(self)
def set_sarprop_weight_decay_shift(self, sarprop_weight_decay_shift):
return _libfann.neural_net_parent_set_sarprop_weight_decay_shift(self, sarprop_weight_decay_shift)
def get_sarprop_step_error_threshold_factor(self):
return _libfann.neural_net_parent_get_sarprop_step_error_threshold_factor(self)
def set_sarprop_step_error_threshold_factor(self, sarprop_step_error_threshold_factor):
return _libfann.neural_net_parent_set_sarprop_step_error_threshold_factor(self, sarprop_step_error_threshold_factor)
def get_sarprop_step_error_shift(self):
return _libfann.neural_net_parent_get_sarprop_step_error_shift(self)
def set_sarprop_step_error_shift(self, sarprop_step_error_shift):
return _libfann.neural_net_parent_set_sarprop_step_error_shift(self, sarprop_step_error_shift)
def get_sarprop_temperature(self):
return _libfann.neural_net_parent_get_sarprop_temperature(self)
def set_sarprop_temperature(self, sarprop_temperature):
return _libfann.neural_net_parent_set_sarprop_temperature(self, sarprop_temperature)
def get_num_input(self):
return _libfann.neural_net_parent_get_num_input(self)
def get_num_output(self):
return _libfann.neural_net_parent_get_num_output(self)
def get_total_neurons(self):
return _libfann.neural_net_parent_get_total_neurons(self)
def get_total_connections(self):
return _libfann.neural_net_parent_get_total_connections(self)
def get_network_type(self):
return _libfann.neural_net_parent_get_network_type(self)
def get_connection_rate(self):
return _libfann.neural_net_parent_get_connection_rate(self)
def get_num_layers(self):
return _libfann.neural_net_parent_get_num_layers(self)
def get_layer_array(self, layers):
return _libfann.neural_net_parent_get_layer_array(self, layers)
def get_bias_array(self, bias):
return _libfann.neural_net_parent_get_bias_array(self, bias)
def get_connection_array(self, connections):
return _libfann.neural_net_parent_get_connection_array(self, connections)
def set_weight_array(self, connections, num_connections):
return _libfann.neural_net_parent_set_weight_array(self, connections, num_connections)
def set_weight(self, from_neuron, to_neuron, weight):
return _libfann.neural_net_parent_set_weight(self, from_neuron, to_neuron, weight)
def get_learning_momentum(self):
return _libfann.neural_net_parent_get_learning_momentum(self)
def set_learning_momentum(self, learning_momentum):
return _libfann.neural_net_parent_set_learning_momentum(self, learning_momentum)
def get_train_stop_function(self):
return _libfann.neural_net_parent_get_train_stop_function(self)
def set_train_stop_function(self, train_stop_function):
return _libfann.neural_net_parent_set_train_stop_function(self, train_stop_function)
def get_bit_fail_limit(self):
return _libfann.neural_net_parent_get_bit_fail_limit(self)
def set_bit_fail_limit(self, bit_fail_limit):
return _libfann.neural_net_parent_set_bit_fail_limit(self, bit_fail_limit)
def get_bit_fail(self):
return _libfann.neural_net_parent_get_bit_fail(self)
def cascadetrain_on_data(self, data, max_neurons, neurons_between_reports, desired_error):
return _libfann.neural_net_parent_cascadetrain_on_data(self, data, max_neurons, neurons_between_reports, desired_error)
def cascadetrain_on_file(self, filename, max_neurons, neurons_between_reports, desired_error):
return _libfann.neural_net_parent_cascadetrain_on_file(self, filename, max_neurons, neurons_between_reports, desired_error)
def get_cascade_output_change_fraction(self):
return _libfann.neural_net_parent_get_cascade_output_change_fraction(self)
def set_cascade_output_change_fraction(self, cascade_output_change_fraction):
return _libfann.neural_net_parent_set_cascade_output_change_fraction(self, cascade_output_change_fraction)
def get_cascade_output_stagnation_epochs(self):
return _libfann.neural_net_parent_get_cascade_output_stagnation_epochs(self)
def set_cascade_output_stagnation_epochs(self, cascade_output_stagnation_epochs):
return _libfann.neural_net_parent_set_cascade_output_stagnation_epochs(self, cascade_output_stagnation_epochs)
def get_cascade_candidate_change_fraction(self):
return _libfann.neural_net_parent_get_cascade_candidate_change_fraction(self)
def set_cascade_candidate_change_fraction(self, cascade_candidate_change_fraction):
return _libfann.neural_net_parent_set_cascade_candidate_change_fraction(self, cascade_candidate_change_fraction)
def get_cascade_candidate_stagnation_epochs(self):
return _libfann.neural_net_parent_get_cascade_candidate_stagnation_epochs(self)
def set_cascade_candidate_stagnation_epochs(self, cascade_candidate_stagnation_epochs):
return _libfann.neural_net_parent_set_cascade_candidate_stagnation_epochs(self, cascade_candidate_stagnation_epochs)
def get_cascade_weight_multiplier(self):
return _libfann.neural_net_parent_get_cascade_weight_multiplier(self)
def set_cascade_weight_multiplier(self, cascade_weight_multiplier):
return _libfann.neural_net_parent_set_cascade_weight_multiplier(self, cascade_weight_multiplier)
def get_cascade_candidate_limit(self):
return _libfann.neural_net_parent_get_cascade_candidate_limit(self)
def set_cascade_candidate_limit(self, cascade_candidate_limit):
return _libfann.neural_net_parent_set_cascade_candidate_limit(self, cascade_candidate_limit)
def get_cascade_max_out_epochs(self):
return _libfann.neural_net_parent_get_cascade_max_out_epochs(self)
def set_cascade_max_out_epochs(self, cascade_max_out_epochs):
return _libfann.neural_net_parent_set_cascade_max_out_epochs(self, cascade_max_out_epochs)
def get_cascade_max_cand_epochs(self):
return _libfann.neural_net_parent_get_cascade_max_cand_epochs(self)
def set_cascade_max_cand_epochs(self, cascade_max_cand_epochs):
return _libfann.neural_net_parent_set_cascade_max_cand_epochs(self, cascade_max_cand_epochs)
def get_cascade_num_candidates(self):
return _libfann.neural_net_parent_get_cascade_num_candidates(self)
def get_cascade_activation_functions_count(self):
return _libfann.neural_net_parent_get_cascade_activation_functions_count(self)
def get_cascade_activation_functions(self):
return _libfann.neural_net_parent_get_cascade_activation_functions(self)
def set_cascade_activation_functions(self, cascade_activation_functions, cascade_activation_functions_count):
return _libfann.neural_net_parent_set_cascade_activation_functions(self, cascade_activation_functions, cascade_activation_functions_count)
def get_cascade_activation_steepnesses_count(self):
return _libfann.neural_net_parent_get_cascade_activation_steepnesses_count(self)
def get_cascade_activation_steepnesses(self):
return _libfann.neural_net_parent_get_cascade_activation_steepnesses(self)
def set_cascade_activation_steepnesses(self, cascade_activation_steepnesses, cascade_activation_steepnesses_count):
return _libfann.neural_net_parent_set_cascade_activation_steepnesses(self, cascade_activation_steepnesses, cascade_activation_steepnesses_count)
def get_cascade_num_candidate_groups(self):
return _libfann.neural_net_parent_get_cascade_num_candidate_groups(self)
def set_cascade_num_candidate_groups(self, cascade_num_candidate_groups):
return _libfann.neural_net_parent_set_cascade_num_candidate_groups(self, cascade_num_candidate_groups)
def scale_train(self, data):
return _libfann.neural_net_parent_scale_train(self, data)
def descale_train(self, data):
return _libfann.neural_net_parent_descale_train(self, data)
def set_input_scaling_params(self, data, new_input_min, new_input_max):
return _libfann.neural_net_parent_set_input_scaling_params(self, data, new_input_min, new_input_max)
def set_output_scaling_params(self, data, new_output_min, new_output_max):
return _libfann.neural_net_parent_set_output_scaling_params(self, data, new_output_min, new_output_max)
def set_scaling_params(self, data, new_input_min, new_input_max, new_output_min, new_output_max):
return _libfann.neural_net_parent_set_scaling_params(self, data, new_input_min, new_input_max, new_output_min, new_output_max)
def clear_scaling_params(self):
return _libfann.neural_net_parent_clear_scaling_params(self)
def scale_input(self, input_vector):
return _libfann.neural_net_parent_scale_input(self, input_vector)
def scale_output(self, output_vector):
return _libfann.neural_net_parent_scale_output(self, output_vector)
def descale_input(self, input_vector):
return _libfann.neural_net_parent_descale_input(self, input_vector)
def descale_output(self, output_vector):
return _libfann.neural_net_parent_descale_output(self, output_vector)
def set_error_log(self, log_file):
return _libfann.neural_net_parent_set_error_log(self, log_file)
def get_errno(self):
return _libfann.neural_net_parent_get_errno(self)
def reset_errno(self):
return _libfann.neural_net_parent_reset_errno(self)
def reset_errstr(self):
return _libfann.neural_net_parent_reset_errstr(self)
def get_errstr(self):
return _libfann.neural_net_parent_get_errstr(self)
def print_error(self):
return _libfann.neural_net_parent_print_error(self)
neural_net_parent_swigregister = _libfann.neural_net_parent_swigregister
neural_net_parent_swigregister(neural_net_parent)
class training_data(training_data_parent):
__swig_setmethods__ = {}
for _s in [training_data_parent]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, training_data, name, value)
__swig_getmethods__ = {}
for _s in [training_data_parent]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, training_data, name)
__repr__ = _swig_repr
def __init__(self, *args):
this = _libfann.new_training_data(*args)
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _libfann.delete_training_data
__del__ = lambda self: None
def get_input(self):
return _libfann.training_data_get_input(self)
def get_output(self):
return _libfann.training_data_get_output(self)
def set_train_data(self, input, output):
return _libfann.training_data_set_train_data(self, input, output)
training_data_swigregister = _libfann.training_data_swigregister
training_data_swigregister(training_data)
class neural_net(neural_net_parent):
__swig_setmethods__ = {}
for _s in [neural_net_parent]:
__swig_setmethods__.update(getattr(_s, '__swig_setmethods__', {}))
__setattr__ = lambda self, name, value: _swig_setattr(self, neural_net, name, value)
__swig_getmethods__ = {}
for _s in [neural_net_parent]:
__swig_getmethods__.update(getattr(_s, '__swig_getmethods__', {}))
__getattr__ = lambda self, name: _swig_getattr(self, neural_net, name)
__repr__ = _swig_repr
def __init__(self):
this = _libfann.new_neural_net()
try:
self.this.append(this)
except __builtin__.Exception:
self.this = this
__swig_destroy__ = _libfann.delete_neural_net
__del__ = lambda self: None
def create_standard_array(self, layers):
return _libfann.neural_net_create_standard_array(self, layers)
def create_sparse_array(self, connection_rate, layers):
return _libfann.neural_net_create_sparse_array(self, connection_rate, layers)
def create_shortcut_array(self, layers):
return _libfann.neural_net_create_shortcut_array(self, layers)
def run(self, input):
return _libfann.neural_net_run(self, input)
def train(self, input, desired_output):
return _libfann.neural_net_train(self, input, desired_output)
def test(self, input, desired_output):
return _libfann.neural_net_test(self, input, desired_output)
def get_layer_array(self, ARGOUT):
return _libfann.neural_net_get_layer_array(self, ARGOUT)
def get_bias_array(self, ARGOUT):
return _libfann.neural_net_get_bias_array(self, ARGOUT)
def get_connection_array(self, ARGOUT):
return _libfann.neural_net_get_connection_array(self, ARGOUT)
def set_weight_array(self, connections):
return _libfann.neural_net_set_weight_array(self, connections)
def get_cascade_activation_steepnesses(self):
return _libfann.neural_net_get_cascade_activation_steepnesses(self)
def set_cascade_activation_steepnesses(self, cascade_activation_steepnesses):
return _libfann.neural_net_set_cascade_activation_steepnesses(self, cascade_activation_steepnesses)
neural_net_swigregister = _libfann.neural_net_swigregister
neural_net_swigregister(neural_net)
# This file is compatible with both classic and new-style classes.
|