/usr/lib/python2.7/dist-packages/chaco/plot.py is in python-chaco 4.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 | """ Defines the Plot class.
"""
# Major library imports
import itertools
import warnings
from numpy import arange, array, ndarray, linspace
from types import FunctionType
# Enthought library imports
from traits.api import Delegate, Dict, Instance, Int, List, Property, Str
# Local, relative imports
from abstract_colormap import AbstractColormap
from abstract_data_source import AbstractDataSource
from abstract_plot_data import AbstractPlotData
from array_data_source import ArrayDataSource
from array_plot_data import ArrayPlotData
from base_xy_plot import BaseXYPlot
from barplot import BarPlot
from candle_plot import CandlePlot
from colormapped_scatterplot import ColormappedScatterPlot
from contour_line_plot import ContourLinePlot
from contour_poly_plot import ContourPolyPlot
from cmap_image_plot import CMapImagePlot
from data_range_1d import DataRange1D
from data_view import DataView
from default_colormaps import Spectral
from grid_data_source import GridDataSource
from grid_mapper import GridMapper
from image_data import ImageData
from image_plot import ImagePlot
from legend import Legend
from lineplot import LinePlot
from linear_mapper import LinearMapper
from log_mapper import LogMapper
from plot_label import PlotLabel
from polygon_plot import PolygonPlot
from scatterplot import ScatterPlot
from filled_line_plot import FilledLinePlot
from quiverplot import QuiverPlot
#-----------------------------------------------------------------------------
# The Plot class
#-----------------------------------------------------------------------------
class Plot(DataView):
""" Represents a correlated set of data, renderers, and axes in a single
screen region.
A Plot can reference an arbitrary amount of data and can have an
unlimited number of renderers on it, but it has a single X-axis and a
single Y-axis for all of its associated data. Therefore, there is a single
range in X and Y, although there can be many different data series. A Plot
also has a single set of grids and a single background layer for all of its
renderers. It cannot be split horizontally or vertically; to do so,
create a VPlotContainer or HPlotContainer and put the Plots inside those.
Plots can be overlaid as well; be sure to set the **bgcolor** of the
overlaying plots to "none" or "transparent".
A Plot consists of composable sub-plots. Each of these is created
or destroyed using the plot() or delplot() methods. Every time that
new data is used to drive these sub-plots, it is added to the Plot's
list of data and data sources. Data sources are reused whenever
possible; in order to have the same actual array drive two de-coupled
data sources, create those data sources before handing them to the Plot.
"""
#------------------------------------------------------------------------
# Data-related traits
#------------------------------------------------------------------------
# The PlotData instance that drives this plot.
data = Instance(AbstractPlotData)
# Mapping of data names from self.data to their respective datasources.
datasources = Dict(Str, Instance(AbstractDataSource))
#------------------------------------------------------------------------
# General plotting traits
#------------------------------------------------------------------------
# Mapping of plot names to *lists* of plot renderers.
plots = Dict(Str, List)
# The default index to use when adding new subplots.
default_index = Instance(AbstractDataSource)
# Optional mapper for the color axis. Not instantiated until first use;
# destroyed if no color plots are on the plot.
color_mapper = Instance(AbstractColormap)
# List of colors to cycle through when auto-coloring is requested. Picked
# and ordered to be red-green color-blind friendly, though should not
# be an issue for blue-yellow.
auto_colors = List(["green", "lightgreen", "blue", "lightblue", "red",
"pink", "darkgray", "silver"])
# index into auto_colors list
_auto_color_idx = Int(-1)
_auto_edge_color_idx = Int(-1)
_auto_face_color_idx = Int(-1)
# Mapping of renderer type string to renderer class
# This can be overriden to customize what renderer type the Plot
# will instantiate for its various plotting methods.
renderer_map = Dict(dict(line = LinePlot,
bar = BarPlot,
scatter = ScatterPlot,
polygon = PolygonPlot,
filled_line = FilledLinePlot,
cmap_scatter = ColormappedScatterPlot,
img_plot = ImagePlot,
cmap_img_plot = CMapImagePlot,
contour_line_plot = ContourLinePlot,
contour_poly_plot = ContourPolyPlot,
candle = CandlePlot,
quiver = QuiverPlot,))
#------------------------------------------------------------------------
# Annotations and decorations
#------------------------------------------------------------------------
# The title of the plot.
title = Property()
# The font to use for the title.
title_font = Property()
# Convenience attribute for title.overlay_position; can be "top",
# "bottom", "left", or "right".
title_position = Property()
# Use delegates to expose the other PlotLabel attributes of the plot title
title_text = Delegate("_title", prefix="text", modify=True)
title_color = Delegate("_title", prefix="color", modify=True)
title_angle = Delegate("_title", prefix="angle", modify=True)
# The PlotLabel object that contains the title.
_title = Instance(PlotLabel)
# The legend on the plot.
legend = Instance(Legend)
# Convenience attribute for legend.align; can be "ur", "ul", "ll", "lr".
legend_alignment = Property
#------------------------------------------------------------------------
# Public methods
#------------------------------------------------------------------------
def __init__(self, data=None, **kwtraits):
if 'origin' in kwtraits:
self.default_origin = kwtraits.pop('origin')
if "title" in kwtraits:
title = kwtraits.pop("title")
else:
title = None
super(Plot, self).__init__(**kwtraits)
if data is not None:
if isinstance(data, AbstractPlotData):
self.data = data
elif type(data) in (ndarray, tuple, list):
self.data = ArrayPlotData(data)
else:
raise ValueError, "Don't know how to create PlotData for data" \
"of type " + str(type(data))
if not self._title:
self._title = PlotLabel(font="swiss 16", visible=False,
overlay_position="top", component=self)
if title is not None:
self.title = title
if not self.legend:
self.legend = Legend(visible=False, align="ur", error_icon="blank",
padding=10, component=self)
# ensure that we only get displayed once by new_window()
self._plot_ui_info = None
return
def add_xy_plot(self, index_name, value_name, renderer_factory, name=None,
origin=None, **kwds):
""" Add a BaseXYPlot renderer subclass to this Plot.
Parameters
----------
index_name : str
The name of the index datasource.
value_name : str
The name of the value datasource.
renderer_factory : callable
The callable that creates the renderer.
name : string (optional)
The name of the plot. If None, then a default one is created
(usually "plotNNN").
origin : string (optional)
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
**kwds :
Additional keywords to pass to the factory.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
index = self._get_or_create_datasource(index_name)
self.index_range.add(index)
value = self._get_or_create_datasource(value_name)
self.value_range.add(value)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range)
else:
imap = LogMapper(range=self.index_range)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range)
else:
vmap = LogMapper(range=self.value_range)
renderer = renderer_factory(
index = index,
value = value,
index_mapper = imap,
value_mapper = vmap,
orientation = self.orientation,
origin = origin,
**kwds
)
self.add(renderer)
self.plots[name] = [renderer]
self.invalidate_and_redraw()
return self.plots[name]
def plot(self, data, type="line", name=None, index_scale="linear",
value_scale="linear", origin=None, **styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : string, tuple(string), list(string)
The data to be plotted. The type of plot and the number of
arguments determines how the arguments are interpreted:
one item: (line/scatter)
The data is treated as the value and self.default_index is
used as the index. If **default_index** does not exist, one is
created from arange(len(*data*))
two or more items: (line/scatter)
Interpreted as (index, value1, value2, ...). Each index,value
pair forms a new plot of the type specified.
two items: (cmap_scatter)
Interpreted as (value, color_values). Uses **default_index**.
three or more items: (cmap_scatter)
Interpreted as (index, val1, color_val1, val2, color_val2, ...)
type : comma-delimited string of "line", "scatter", "cmap_scatter"
The types of plots to add.
name : string
The name of the plot. If None, then a default one is created
(usually "plotNNN").
index_scale : string
The type of scale to use for the index axis. If not "linear", then
a log scale is used.
value_scale : string
The type of scale to use for the value axis. If not "linear", then
a log scale is used.
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
styles : series of keyword arguments
attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
Examples
--------
::
plot("my_data", type="line", name="myplot", color=lightblue)
plot(("x-data", "y-data"), type="scatter")
plot(("x", "y1", "y2", "y3"))
Returns
-------
[renderers] -> list of renderers created in response to this call to plot()
"""
if len(data) == 0:
return
if isinstance(data, basestring):
data = (data,)
self.index_scale = index_scale
self.value_scale = value_scale
# TODO: support lists of plot types
plot_type = type
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
if plot_type in ("line", "scatter", "polygon", "bar", "filled_line"):
# Tie data to the index range
if len(data) == 1:
if self.default_index is None:
# Create the default index based on the length of the first
# data series
value = self._get_or_create_datasource(data[0])
self.default_index = ArrayDataSource(arange(len(value.get_data())),
sort_order="none")
self.index_range.add(self.default_index)
index = self.default_index
else:
index = self._get_or_create_datasource(data[0])
if self.default_index is None:
self.default_index = index
self.index_range.add(index)
data = data[1:]
# Tie data to the value_range and create the renderer for each data
new_plots = []
simple_plot_types = ("line", "scatter")
for value_name in data:
value = self._get_or_create_datasource(value_name)
self.value_range.add(value)
if plot_type in simple_plot_types:
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["color"] = self.auto_colors[self._auto_color_idx]
elif plot_type in ("polygon", "filled_line"):
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("edge_color") == "auto":
self._auto_edge_color_idx = \
(self._auto_edge_color_idx + 1) % len(self.auto_colors)
styles["edge_color"] = self.auto_colors[self._auto_edge_color_idx]
if styles.get("face_color") == "auto":
self._auto_face_color_idx = \
(self._auto_face_color_idx + 1) % len(self.auto_colors)
styles["face_color"] = self.auto_colors[self._auto_face_color_idx]
elif plot_type == 'bar':
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["fill_color"] = self.auto_colors[self._auto_color_idx]
else:
raise ValueError("Unhandled plot type: " + plot_type)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
plot = cls(index=index,
value=value,
index_mapper=imap,
value_mapper=vmap,
orientation=self.orientation,
origin = origin,
**styles)
self.add(plot)
new_plots.append(plot)
if plot_type == 'bar':
# For bar plots, compute the ranges from the data to make the
# plot look clean.
def custom_index_func(data_low, data_high, margin, tight_bounds):
""" Compute custom bounds of the plot along index (in
data space).
"""
bar_width = styles.get('bar_width', cls().bar_width)
plot_low = data_low - bar_width
plot_high = data_high + bar_width
return plot_low, plot_high
if self.index_range.bounds_func is None:
self.index_range.bounds_func = custom_index_func
def custom_value_func(data_low, data_high, margin, tight_bounds):
""" Compute custom bounds of the plot along value (in
data space).
"""
plot_low = data_low - (data_high-data_low)*0.1
plot_high = data_high + (data_high-data_low)*0.1
return plot_low, plot_high
if self.value_range.bounds_func is None:
self.value_range.bounds_func = custom_value_func
self.index_range.tight_bounds = False
self.value_range.tight_bounds = False
self.index_range.refresh()
self.value_range.refresh()
self.plots[name] = new_plots
elif plot_type == "cmap_scatter":
if len(data) != 3:
raise ValueError("Colormapped scatter plots require (index, value, color) data")
else:
index = self._get_or_create_datasource(data[0])
if self.default_index is None:
self.default_index = index
self.index_range.add(index)
value = self._get_or_create_datasource(data[1])
self.value_range.add(value)
color = self._get_or_create_datasource(data[2])
if not styles.has_key("color_mapper"):
raise ValueError("Scalar 2D data requires a color_mapper.")
colormap = styles.pop("color_mapper", None)
if self.color_mapper is not None and self.color_mapper.range is not None:
color_range = self.color_mapper.range
else:
color_range = DataRange1D()
if isinstance(colormap, AbstractColormap):
self.color_mapper = colormap
if colormap.range is None:
color_range.add(color)
colormap.range = color_range
elif callable(colormap):
color_range.add(color)
self.color_mapper = colormap(color_range)
else:
raise ValueError("Unexpected colormap %r in plot()." % colormap)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["cmap_scatter"]
plot = cls(index=index,
index_mapper=imap,
value=value,
value_mapper=vmap,
color_data=color,
color_mapper=self.color_mapper,
orientation=self.orientation,
origin=origin,
**styles)
self.add(plot)
self.plots[name] = [plot]
else:
raise ValueError("Unknown plot type: " + plot_type)
return self.plots[name]
def img_plot(self, data, name=None, colormap=None,
xbounds=None, ybounds=None, origin=None, hide_grids=True, **styles):
""" Adds image plots to this Plot object.
If *data* has shape (N, M, 3) or (N, M, 4), then it is treated as RGB or
RGBA (respectively) and *colormap* is ignored.
If *data* is an array of floating-point data, then a colormap can
be provided via the *colormap* argument, or the default of 'Spectral'
will be used.
*Data* should be in row-major order, so that xbounds corresponds to
*data*'s second axis, and ybounds corresponds to the first axis.
Parameters
----------
data : string
The name of the data array in self.plot_data
name : string
The name of the plot; if omitted, then a name is generated.
xbounds, ybounds : string, tuple, or ndarray
Bounds where this image resides. Bound may be: a) names of
data in the plot data; b) tuples of (low, high) in data space,
c) 1D arrays of values representing the pixel boundaries (must
be 1 element larger than underlying data), or
d) 2D arrays as obtained from a meshgrid operation
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
hide_grids : bool, default True
Whether or not to automatically hide the grid lines on the plot
styles : series of keyword arguments
Attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
value = self._get_or_create_datasource(data)
array_data = value.get_data()
if len(array_data.shape) == 3:
if array_data.shape[2] not in (3,4):
raise ValueError("Image plots require color depth of 3 or 4.")
cls = self.renderer_map["img_plot"]
kwargs = dict(**styles)
else:
if colormap is None:
if self.color_mapper is None:
colormap = Spectral(DataRange1D(value))
else:
colormap = self.color_mapper
elif isinstance(colormap, AbstractColormap):
if colormap.range is None:
colormap.range = DataRange1D(value)
else:
colormap = colormap(DataRange1D(value))
self.color_mapper = colormap
cls = self.renderer_map["cmap_img_plot"]
kwargs = dict(value_mapper=colormap, **styles)
return self._create_2d_plot(cls, name, origin, xbounds, ybounds, value,
hide_grids, **kwargs)
def contour_plot(self, data, type="line", name=None, poly_cmap=None,
xbounds=None, ybounds=None, origin=None, hide_grids=True, **styles):
""" Adds contour plots to this Plot object.
Parameters
----------
data : string
The name of the data array in self.plot_data, which must be
floating point data.
type : comma-delimited string of "line", "poly"
The type of contour plot to add. If the value is "poly"
and no colormap is provided via the *poly_cmap* argument, then
a default colormap of 'Spectral' is used.
name : string
The name of the plot; if omitted, then a name is generated.
poly_cmap : string
The name of the color-map function to call (in
chaco.default_colormaps) or an AbstractColormap instance
to use for contour poly plots (ignored for contour line plots)
xbounds, ybounds : string, tuple, or ndarray
Bounds where this image resides. Bound may be: a) names of
data in the plot data; b) tuples of (low, high) in data space,
c) 1D arrays of values representing the pixel boundaries (must
be 1 element larger than underlying data), or
d) 2D arrays as obtained from a meshgrid operation
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
hide_grids : bool, default True
Whether or not to automatically hide the grid lines on the plot
styles : series of keyword arguments
Attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
value = self._get_or_create_datasource(data)
if value.value_depth != 1:
raise ValueError("Contour plots require 2D scalar field")
if type == "line":
cls = self.renderer_map["contour_line_plot"]
kwargs = dict(**styles)
# if colors is given as a factory func, use it to make a
# concrete colormapper. Better way to do this?
if "colors" in kwargs:
cmap = kwargs["colors"]
if isinstance(cmap, FunctionType):
kwargs["colors"] = cmap(DataRange1D(value))
elif getattr(cmap, 'range', 'dummy') is None:
cmap.range = DataRange1D(value)
elif type == "poly":
if poly_cmap is None:
poly_cmap = Spectral(DataRange1D(value))
elif isinstance(poly_cmap, FunctionType):
poly_cmap = poly_cmap(DataRange1D(value))
elif getattr(poly_cmap, 'range', 'dummy') is None:
poly_cmap.range = DataRange1D(value)
cls = self.renderer_map["contour_poly_plot"]
kwargs = dict(color_mapper=poly_cmap, **styles)
else:
raise ValueError("Unhandled contour plot type: " + type)
return self._create_2d_plot(cls, name, origin, xbounds, ybounds, value,
hide_grids, **kwargs)
def _process_2d_bounds(self, bounds, array_data, axis):
"""Transform an arbitrary bounds definition into a linspace.
Process all the ways the user could have defined the x- or y-bounds
of a 2d plot and return a linspace between the lower and upper
range of the bounds.
Parameters
----------
bounds : any
User bounds definition
array_data : 2D array
The 2D plot data
axis : int
The axis along which the bounds are to be set
"""
num_ticks = array_data.shape[axis] + 1
if bounds is None:
return arange(num_ticks)
if type(bounds) is tuple:
# create a linspace with the bounds limits
return linspace(bounds[0], bounds[1], num_ticks)
if type(bounds) is ndarray and len(bounds.shape) == 1:
# bounds is 1D, but of the wrong size
if len(bounds) != num_ticks:
msg = ("1D bounds of an image plot needs to have 1 more "
"element than its corresponding data shape, because "
"they represent the locations of pixel boundaries.")
raise ValueError(msg)
else:
return linspace(bounds[0], bounds[-1], num_ticks)
if type(bounds) is ndarray and len(bounds.shape) == 2:
# bounds is 2D, assumed to be a meshgrid
# This is triggered when doing something like
# >>> xbounds, ybounds = meshgrid(...)
# >>> z = f(xbounds, ybounds)
if bounds.shape != array_data.shape:
msg = ("2D bounds of an image plot needs to have the same "
"shape as the underlying data, because "
"they are assumed to be generated from meshgrids.")
raise ValueError(msg)
else:
if axis == 0: bounds = bounds[:,0]
else: bounds = bounds[0,:]
interval = bounds[1] - bounds[0]
return linspace(bounds[0], bounds[-1]+interval, num_ticks)
raise ValueError("bounds must be None, a tuple, an array, "
"or a PlotData name")
def _create_2d_plot(self, cls, name, origin, xbounds, ybounds, value_ds,
hide_grids, **kwargs):
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
array_data = value_ds.get_data()
# process bounds to get linspaces
if isinstance(xbounds, basestring):
xbounds = self._get_or_create_datasource(xbounds).get_data()
xs = self._process_2d_bounds(xbounds, array_data, 1)
if isinstance(ybounds, basestring):
ybounds = self._get_or_create_datasource(ybounds).get_data()
ys = self._process_2d_bounds(ybounds, array_data, 0)
# Create the index and add its datasources to the appropriate ranges
index = GridDataSource(xs, ys, sort_order=('ascending', 'ascending'))
self.range2d.add(index)
mapper = GridMapper(range=self.range2d,
stretch_data_x=self.x_mapper.stretch_data,
stretch_data_y=self.y_mapper.stretch_data)
plot = cls(index=index,
value=value_ds,
index_mapper=mapper,
orientation=self.orientation,
origin=origin,
**kwargs)
if hide_grids:
self.x_grid.visible = False
self.y_grid.visible = False
self.add(plot)
self.plots[name] = [plot]
return self.plots[name]
def candle_plot(self, data, name=None, value_scale="linear", origin=None,
**styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : list(string), tuple(string)
The names of the data to be plotted in the ArrayDataSource. The
number of arguments determines how they are interpreted:
(index, bar_min, bar_max)
filled or outline-only bar extending from **bar_min** to
**bar_max**
(index, bar_min, center, bar_max)
above, plus a center line of a different color at **center**
(index, min, bar_min, bar_max, max)
bar extending from **bar_min** to **bar_max**, with thin
bars at **min** and **max** connected to the bar by a long
stem
(index, min, bar_min, center, bar_max, max)
like above, plus a center line of a different color and
configurable thickness at **center**
name : string
The name of the plot. If None, then a default one is created.
value_scale : string
The type of scale to use for the value axis. If not "linear",
then a log scale is used.
Styles
------
These are all optional keyword arguments.
bar_color : string, 3- or 4-tuple
The fill color of the bar; defaults to "auto".
bar_line_color : string, 3- or 4-tuple
The color of the rectangular box forming the bar.
stem_color : string, 3- or 4-tuple (default = bar_line_color)
The color of the stems reaching from the bar to the min and
max values.
center_color : string, 3- or 4-tuple (default = bar_line_color)
The color of the line drawn across the bar at the center values.
line_width : int (default = 1)
The thickness, in pixels, of the outline around the bar.
stem_width : int (default = line_width)
The thickness, in pixels, of the stem lines
center_width : int (default = line_width)
The width, in pixels, of the line drawn across the bar at the
center values.
end_cap : bool (default = True)
Whether or not to draw bars at the min and max extents of the
error bar.
Returns
-------
[renderers] -> list of renderers created in response to this call.
"""
if len(data) == 0:
return
self.value_scale = value_scale
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
# Create the datasources
if len(data) == 3:
index, bar_min, bar_max = map(self._get_or_create_datasource, data)
self.value_range.add(bar_min, bar_max)
center = None
min = None
max = None
elif len(data) == 4:
index, bar_min, center, bar_max = map(self._get_or_create_datasource, data)
self.value_range.add(bar_min, center, bar_max)
min = None
max = None
elif len(data) == 5:
index, min, bar_min, bar_max, max = \
map(self._get_or_create_datasource, data)
self.value_range.add(min, bar_min, bar_max, max)
center = None
elif len(data) == 6:
index, min, bar_min, center, bar_max, max = \
map(self._get_or_create_datasource, data)
self.value_range.add(min, bar_min, center, bar_max, max)
self.index_range.add(index)
if styles.get("bar_color") == "auto" or styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["color"] = self.auto_colors[self._auto_color_idx]
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["candle"]
plot = cls(index = index,
min_values = min,
bar_min = bar_min,
center_values = center,
bar_max = bar_max,
max_values = max,
index_mapper = imap,
value_mapper = vmap,
orientation = self.orientation,
origin = self.origin,
**styles)
self.add(plot)
self.plots[name] = [plot]
return [plot]
def quiverplot(self, data, name=None, origin=None,
**styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : list(string), tuple(string)
The names of the data to be plotted in the ArrayDataSource. There
is only one combination accepted by this function:
(index, value, vectors)
index and value together determine the start coordinates of
each vector. The vectors are an Nx2
name : string
The name of the plot. If None, then a default one is created.
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
Styles
------
These are all optional keyword arguments.
line_color : string (default = "black")
The color of the arrows
line_width : float (default = 1.0)
The thickness, in pixels, of the arrows.
arrow_size : int (default = 5)
The length, in pixels, of the arrowhead
Returns
-------
[renderers] -> list of renderers created in response to this call.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
index, value, vectors = map(self._get_or_create_datasource, data)
self.index_range.add(index)
self.value_range.add(value)
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["quiver"]
plot = cls(index = index,
value = value,
vectors = vectors,
index_mapper = imap,
value_mapper = vmap,
name = name,
origin = origin,
**styles
)
self.add(plot)
self.plots[name] = [plot]
return [plot]
def delplot(self, *names):
""" Removes the named sub-plots. """
# This process involves removing the plots, then checking the index range
# and value range for leftover datasources, and removing those if necessary.
# Remove all the renderers from us (container) and create a set of the
# datasources that we might have to remove from the ranges
deleted_sources = set()
for renderer in itertools.chain(*[self.plots.pop(name) for name in names]):
self.remove(renderer)
deleted_sources.add(renderer.index)
deleted_sources.add(renderer.value)
# Cull the candidate list of sources to remove by checking the other plots
sources_in_use = set()
for p in itertools.chain(*self.plots.values()):
sources_in_use.add(p.index)
sources_in_use.add(p.value)
unused_sources = deleted_sources - sources_in_use - set([None])
# Remove the unused sources from all ranges
for source in unused_sources:
if source.index_dimension == "scalar":
# Try both index and range, it doesn't hurt
self.index_range.remove(source)
self.value_range.remove(source)
elif source.index_dimension == "image":
self.range2d.remove(source)
else:
warnings.warn("Couldn't remove datasource from datarange.")
return
def hideplot(self, *names):
""" Convenience function to sets the named plots to be invisible. Their
renderers are not removed, and they are still in the list of plots.
"""
for renderer in itertools.chain(*[self.plots[name] for name in names]):
renderer.visible = False
return
def showplot(self, *names):
""" Convenience function to sets the named plots to be visible.
"""
for renderer in itertools.chain(*[self.plots[name] for name in names]):
renderer.visible = True
return
def new_window(self, configure=False):
"""Convenience function that creates a window containing the Plot
Don't call this if the plot is already displayed in a window.
"""
from chaco.ui.plot_window import PlotWindow
if self._plot_ui_info is None:
if configure:
self._plot_ui_info = PlotWindow(plot=self).configure_traits()
else:
self._plot_ui_info = PlotWindow(plot=self).edit_traits()
return self._plot_ui_info
#------------------------------------------------------------------------
# Private methods
#------------------------------------------------------------------------
def _make_new_plot_name(self):
""" Returns a string that is not already used as a plot title.
"""
n = len(self.plots)
plot_template = "plot%d"
while 1:
name = plot_template % n
if name not in self.plots:
break
else:
n += 1
return name
def _get_or_create_datasource(self, name):
""" Returns the data source associated with the given name, or creates
it if it doesn't exist.
"""
if name not in self.datasources:
data = self.data.get_data(name)
if type(data) in (list, tuple):
data = array(data)
if isinstance(data, ndarray):
if len(data.shape) == 1:
ds = ArrayDataSource(data, sort_order="none")
elif len(data.shape) == 2:
ds = ImageData(data=data, value_depth=1)
elif len(data.shape) == 3 and data.shape[2] in (3,4):
ds = ImageData(data=data, value_depth=int(data.shape[2]))
else:
raise ValueError("Unhandled array shape in creating new "
"plot: %s" % str(data.shape))
elif isinstance(data, AbstractDataSource):
ds = data
else:
raise ValueError("Couldn't create datasource for data of "
"type %s" % type(data))
self.datasources[name] = ds
return self.datasources[name]
#------------------------------------------------------------------------
# Event handlers
#------------------------------------------------------------------------
def _color_mapper_changed(self):
for plist in self.plots.values():
for plot in plist:
plot.color_mapper = self.color_mapper
self.invalidate_draw()
def _data_changed(self, old, new):
if old:
old.on_trait_change(self._data_update_handler, "data_changed",
remove=True)
if new:
new.on_trait_change(self._data_update_handler, "data_changed")
def _data_update_handler(self, name, event):
# event should be a dict with keys "added", "removed", and "changed",
# per the comments in AbstractPlotData.
if "removed" in event:
for name in event["removed"]:
del self.datasources[name]
if "added" in event:
for name in event["added"]:
self._get_or_create_datasource(name)
if "changed" in event:
for name in event["changed"]:
if name in self.datasources:
source = self.datasources[name]
source.set_data(self.data.get_data(name))
def _plots_items_changed(self, event):
if self.legend:
self.legend.plots = self.plots
def _index_scale_changed(self, old, new):
if old is None: return
if new == old: return
if not self.range2d: return
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
screen_bounds=self.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
screen_bounds=self.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
self.index_mapper = imap
for key in self.plots:
for plot in self.plots[key]:
if not isinstance(plot, BaseXYPlot):
raise ValueError("log scale only supported on XY plots")
if self.index_scale == "linear":
imap = LinearMapper(range=plot.index_range,
screen_bounds=plot.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=plot.index_range,
screen_bounds=plot.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
plot.index_mapper = imap
def _value_scale_changed(self, old, new):
if old is None: return
if new == old: return
if not self.range2d: return
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
screen_bounds=self.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
screen_bounds=self.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
self.value_mapper = vmap
for key in self.plots:
for plot in self.plots[key]:
if not isinstance(plot, BaseXYPlot):
raise ValueError("log scale only supported on XY plots")
if self.value_scale == "linear":
vmap = LinearMapper(range=plot.value_range,
screen_bounds=plot.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=plot.value_range,
screen_bounds=plot.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
plot.value_mapper = vmap
def __title_changed(self, old, new):
self._overlay_change_helper(old, new)
def _legend_changed(self, old, new):
self._overlay_change_helper(old, new)
if new:
new.plots = self.plots
def _handle_range_changed(self, name, old, new):
""" Overrides the DataView default behavior.
Primarily changes how the list of renderers is looked up.
"""
mapper = getattr(self, name+"_mapper")
if mapper.range == old:
mapper.range = new
if old is not None:
for datasource in old.sources[:]:
old.remove(datasource)
if new is not None:
new.add(datasource)
range_name = name + "_range"
for renderer in itertools.chain(*self.plots.values()):
if hasattr(renderer, range_name):
setattr(renderer, range_name, new)
#------------------------------------------------------------------------
# Property getters and setters
#------------------------------------------------------------------------
def _set_legend_alignment(self, align):
if self.legend:
self.legend.align = align
def _get_legend_alignment(self):
if self.legend:
return self.legend.align
else:
return None
def _set_title(self, text):
self._title.text = text
if text.strip() != "":
self._title.visible = True
else:
self._title.visible = False
def _get_title(self):
return self._title.text
def _set_title_position(self, pos):
if self._title is not None:
self._title.overlay_position = pos
def _get_title_position(self):
if self._title is not None:
return self._title.overlay_position
else:
return None
def _set_title_font(self, font):
old_font = self._title.font
self._title.font = font
self.trait_property_changed("title_font", old_font, font)
def _get_title_font(self):
return self._title.font
|