/usr/lib/python2.7/dist-packages/chaco/jitterplot.py is in python-chaco 4.5.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 | from __future__ import with_statement
from itertools import izip
from math import sqrt
import numpy as np
from enable.api import black_color_trait, MarkerTrait
from traits.api import (Any, Bool, Callable, Enum, Float,
Instance, Int, Property, Str, Trait, on_trait_change)
from abstract_plot_renderer import AbstractPlotRenderer
from abstract_mapper import AbstractMapper
from array_data_source import ArrayDataSource
from base import reverse_map_1d
from scatterplot import render_markers
class JitterPlot(AbstractPlotRenderer):
"""A renderer for a jitter plot, a 1D plot with some width in the
dimension perpendicular to the primary axis. Useful for understanding
dense collections of points.
"""
# The data source of values
index = Instance(ArrayDataSource)
# The single mapper that this plot uses
mapper = Instance(AbstractMapper)
# Just an alias for "mapper"
index_mapper = Property(lambda obj,attr: getattr(obj, "mapper"),
lambda obj,attr,val: setattr(obj, "mapper", val))
x_mapper = Property()
y_mapper = Property()
orientation = Enum("h", "v")
# The size, in pixels, of the area over which to spread the data points
# along the dimension orthogonal to the index direction.
jitter_width = Int(50)
# How the plot should center itself along the orthogonal dimension if the
# component's width is greater than the jitter_width
#align = Enum("center", "left", "right", "top", "bottom")
# The type of marker to use. This is a mapped trait using strings as the
# keys.
marker = MarkerTrait
# The pixel size of the marker, not including the thickness of the outline.
marker_size = Float(4.0)
# The CompiledPath to use if **marker** is set to "custom". This attribute
# must be a compiled path for the Kiva context onto which this plot will
# be rendered. Usually, importing kiva.GraphicsContext will do
# the right thing.
custom_symbol = Any
# The function which actually renders the markers
render_markers_func = Callable(render_markers)
# The thickness, in pixels, of the outline to draw around the marker. If
# this is 0, no outline is drawn.
line_width = Float(1.0)
# The fill color of the marker.
color = black_color_trait
# The color of the outline to draw around the marker.
outline_color = black_color_trait
#------------------------------------------------------------------------
# Built-in selection handling
#------------------------------------------------------------------------
# The name of the metadata attribute to look for on the datasource for
# determine which points are selected and which are not. The metadata
# value returned should be a *list* of numpy arrays suitable for masking
# the values returned by index.get_data().
selection_metadata_name = Str("selections")
# The color to use to render selected points
selected_color = black_color_trait
# Alpha value to apply to points that are not in the set of "selected"
# points
unselected_alpha = Float(0.3)
unselected_line_width = Float(0.0)
#------------------------------------------------------------------------
# Private traits
#------------------------------------------------------------------------
_cache_valid = Bool(False)
_cached_data_pts = Any()
_cached_data_pts_sorted = Any()
_cached_data_argsort = Any()
_screen_cache_valid = Bool(False)
_cached_screen_pts = Any()
_cached_screen_map = Any() # dict mapping index to value points
# The random number seed used to generate the jitter. We store this
# so that the jittering is stable as the data is replotted.
_jitter_seed = Trait(None, None, Int)
#------------------------------------------------------------------------
# Component/AbstractPlotRenderer interface
#------------------------------------------------------------------------
def map_screen(self, data_array):
""" Maps an array of data points into screen space and returns it as
an array. Although the orthogonal (non-scaled) axis does not have
a mapper, this method returns the scattered values in that dimension.
Implements the AbstractPlotRenderer interface.
"""
if len(data_array) == 0:
return np.zeros(0)
if self._screen_cache_valid:
sm = self._cached_screen_map
new_x = [x for x in data_array if x not in sm]
if new_x:
new_y = self._make_jitter_vals(len(new_x))
sm.update(dict((new_x[i], new_y[i]) for i in range(len(new_x))))
xs = self.mapper.map_screen(data_array)
ys = [sm[x] for x in xs]
else:
if self._jitter_seed is None:
self._set_seed(data_array)
xs = self.mapper.map_screen(data_array)
ys = self._make_jitter_vals(len(data_array))
if self.orientation == "h":
return np.vstack((xs, ys)).T
else:
return np.vstack((ys, xs)).T
def _make_jitter_vals(self, numpts):
vals = np.random.uniform(0, self.jitter_width, numpts)
if self.orientation == "h":
ymin = self.y
height = self.height
vals += ymin + height/2 - self.jitter_width/2
else:
xmin = self.x
width = self.width
vals += xmin + width/2 - self.jitter_width/2
return vals
def map_data(self, screen_pt):
""" Maps a screen space point into the index space of the plot.
"""
x, y = screen_pt
if self.orientation == "v":
x, y = y, x
return self.mapper.map_data(x)
def map_index(self, screen_pt, threshold=2.0, outside_returns_none=True, \
index_only = True):
""" Maps a screen space point to an index into the plot's index array(s).
"""
screen_points = self._cached_screen_pts
if len(screen_points) == 0:
return None
data_pt = self.map_data(screen_pt)
if ((data_pt < self.mapper.range.low) or \
(data_pt > self.mapper.range.high)) and outside_returns_none:
return None
if self._cached_data_pts_sorted is None:
self._cached_data_argsort = np.argsort(self._cached_data_pts)
self._cached_data_pts_sorted = self._cached_data_pts[self._cached_data_argsort]
data = self._cached_data_pts_sorted
try:
ndx = reverse_map_1d(data, data_pt, "ascending")
except IndexError, e:
if outside_returns_none:
return None
else:
if data_pt < data[0]:
return 0
else:
return len(data) - 1
orig_ndx = self._cached_data_argsort[ndx]
if threshold == 0.0:
return orig_ndx
sx, sy = screen_points[orig_ndx]
if sqrt((screen_pt[0] - sx)**2 + (screen_pt[1] - sy)**2) <= threshold:
return orig_ndx
else:
return None
def _draw_plot(self, gc, view_bounds=None, mode="normal"):
pts = self.get_screen_points()
self._render(gc, pts)
#------------------------------------------------------------------------
# Private methods
#------------------------------------------------------------------------
def get_screen_points(self):
if not self._screen_cache_valid:
self._gather_points()
pts = self.map_screen(self._cached_data_pts)
if self.orientation == "h":
self._cached_screen_map = dict((x,y) for x,y in izip(pts[:,0], pts[:,1]))
else:
self._cached_screen_map = dict((y,x) for x,y in izip(pts[:,0], pts[:,1]))
self._cached_screen_pts = pts
self._screen_cache_valid = True
self._cached_data_pts_sorted = None
self._cached_data_argsort = None
return self._cached_screen_pts
def _gather_points(self):
if self._cache_valid:
return
if not self.index:
return
index, index_mask = self.index.get_data_mask()
if len(index) == 0:
self._cached_data_pts = []
self._cache_valid = True
return
# For the jitter plot, we do not mask or compress the data in any
# way, because if we do, we have no way of transforming from screen
# points back into dataspace. (Tools will be able to find an index
# into the screen points array, but won't be able to go from that
# back into the original data points array.)
#index_range_mask = self.mapper.range.mask_data(index)
#self._cached_data_pts = np.compress(index_mask & index_range_mask, index)
self._cached_data_pts = index
self._cache_valid = True
self._cached_screen_pts = None
self._screen_cache_valid = False
def _render(self, gc, pts):
with gc:
gc.clip_to_rect(self.x, self.y, self.width, self.height)
if not self.index:
return
name = self.selection_metadata_name
md = self.index.metadata
if name in md and md[name] is not None and len(md[name]) > 0:
# FIXME: when will we ever encounter multiple masks in the list?
sel_mask = md[name][0]
sel_pts = np.compress(sel_mask, pts, axis=0)
unsel_pts = np.compress(~sel_mask, pts, axis=0)
color = list(self.color_)
color[3] *= self.unselected_alpha
outline_color = list(self.outline_color_)
outline_color[3] *= self.unselected_alpha
if unsel_pts.size > 0:
self.render_markers_func(gc, unsel_pts, self.marker, self.marker_size,
tuple(color), self.unselected_line_width, tuple(outline_color),
self.custom_symbol)
if sel_pts.size > 0:
self.render_markers_func(gc, sel_pts, self.marker, self.marker_size,
self.selected_color_, self.line_width, self.outline_color_,
self.custom_symbol)
else:
self.render_markers_func(gc, pts, self.marker, self.marker_size,
self.color_, self.line_width, self.outline_color_,
self.custom_symbol)
def _set_seed(self, data_array):
""" Sets the internal random seed based on some input data """
if isinstance(data_array, np.ndarray):
seed = np.random.seed(data_array.size)
else:
seed = np.random.seed(map(int, data_array[:100]))
self._jitter_seed = seed
@on_trait_change("index.data_changed")
def _invalidate(self):
self._cache_valid = False
self._screen_cache_valid = False
@on_trait_change("mapper.updated")
def _invalidate_screen(self):
self._screen_cache_valid = False
#------------------------------------------------------------------------
# Event handlers
#------------------------------------------------------------------------
def _get_x_mapper(self):
if self.orientation == "h":
return self.mapper
else:
return None
def _set_x_mapper(self, val):
if self.orientation == "h":
self.mapper = val
else:
raise ValueError("x_mapper is not defined for a vertical jitter plot")
def _get_y_mapper(self):
if self.orientation == "v":
return self.mapper
else:
return None
def _set_y_mapper(self, val):
if self.orientation == "v":
self.mapper = val
else:
raise ValueError("y_mapper is not defined for a horizontal jitter plot")
def _update_mappers(self):
mapper = self.mapper
if mapper is None:
return
x = self.x
x2 = self.x2
y = self.y
y2 = self.y2
if "left" in self.origin and self.orientation == 'h':
mapper.screen_bounds = (x, x2)
elif "right" in self.origin and self.orientation == 'h':
mapper.screen_bounds = (x2, x)
elif "bottom" in self.origin and self.orientation == 'v':
mapper.screen_bounds = (y, y2)
elif "top" in self.origin and self.orientation == 'v':
mapper.screen_bounds = (y2, y)
self.invalidate_draw()
self._cache_valid = False
self._screen_cache_valid = False
def _bounds_changed(self, old, new):
super(JitterPlot, self)._bounds_changed(old, new)
self._update_mappers()
def _bounds_items_changed(self, event):
super(JitterPlot, self)._bounds_items_changed(event)
self._update_mappers()
def _orientation_changed(self):
self._update_mappers()
|