This file is indexed.

/usr/lib/python2.7/dist-packages/chaco/jitterplot.py is in python-chaco 4.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from __future__ import with_statement

from itertools import izip
from math import sqrt
import numpy as np

from enable.api import black_color_trait, MarkerTrait
from traits.api import (Any, Bool, Callable, Enum, Float,
        Instance, Int, Property, Str, Trait, on_trait_change)

from abstract_plot_renderer import AbstractPlotRenderer
from abstract_mapper import AbstractMapper
from array_data_source import ArrayDataSource
from base import reverse_map_1d
from scatterplot import render_markers


class JitterPlot(AbstractPlotRenderer):
    """A renderer for a jitter plot, a 1D plot with some width in the
    dimension perpendicular to the primary axis.  Useful for understanding
    dense collections of points.
    """

    # The data source of values
    index = Instance(ArrayDataSource)

    # The single mapper that this plot uses
    mapper = Instance(AbstractMapper)

    # Just an alias for "mapper"
    index_mapper = Property(lambda obj,attr: getattr(obj, "mapper"),
                            lambda obj,attr,val: setattr(obj, "mapper", val))

    x_mapper = Property()
    y_mapper = Property()

    orientation = Enum("h", "v")

    # The size, in pixels, of the area over which to spread the data points
    # along the dimension orthogonal to the index direction.
    jitter_width = Int(50)

    # How the plot should center itself along the orthogonal dimension if the
    # component's width is greater than the jitter_width
    #align = Enum("center", "left", "right", "top", "bottom")

    # The type of marker to use.  This is a mapped trait using strings as the
    # keys.
    marker = MarkerTrait

    # The pixel size of the marker, not including the thickness of the outline.
    marker_size = Float(4.0)

    # The CompiledPath to use if **marker** is set to "custom". This attribute
    # must be a compiled path for the Kiva context onto which this plot will
    # be rendered.  Usually, importing kiva.GraphicsContext will do
    # the right thing.
    custom_symbol = Any

    # The function which actually renders the markers
    render_markers_func = Callable(render_markers)

    # The thickness, in pixels, of the outline to draw around the marker.  If
    # this is 0, no outline is drawn.
    line_width = Float(1.0)

    # The fill color of the marker.
    color = black_color_trait

    # The color of the outline to draw around the marker.
    outline_color = black_color_trait

    #------------------------------------------------------------------------
    # Built-in selection handling
    #------------------------------------------------------------------------

    # The name of the metadata attribute to look for on the datasource for
    # determine which points are selected and which are not.  The metadata
    # value returned should be a *list* of numpy arrays suitable for masking
    # the values returned by index.get_data().
    selection_metadata_name = Str("selections")

    # The color to use to render selected points
    selected_color = black_color_trait

    # Alpha value to apply to points that are not in the set of "selected"
    # points
    unselected_alpha = Float(0.3)
    unselected_line_width = Float(0.0)

    #------------------------------------------------------------------------
    # Private traits
    #------------------------------------------------------------------------

    _cache_valid = Bool(False)

    _cached_data_pts = Any()
    _cached_data_pts_sorted = Any()
    _cached_data_argsort = Any()

    _screen_cache_valid = Bool(False)
    _cached_screen_pts = Any()
    _cached_screen_map = Any()  # dict mapping index to value points

    # The random number seed used to generate the jitter.  We store this
    # so that the jittering is stable as the data is replotted.
    _jitter_seed = Trait(None, None, Int)

    #------------------------------------------------------------------------
    # Component/AbstractPlotRenderer interface
    #------------------------------------------------------------------------

    def map_screen(self, data_array):
        """ Maps an array of data points into screen space and returns it as
        an array.  Although the orthogonal (non-scaled) axis does not have
        a mapper, this method returns the scattered values in that dimension.

        Implements the AbstractPlotRenderer interface.
        """
        if len(data_array) == 0:
            return np.zeros(0)

        if self._screen_cache_valid:
            sm = self._cached_screen_map
            new_x = [x for x in data_array if x not in sm]
            if new_x:
                new_y = self._make_jitter_vals(len(new_x))
                sm.update(dict((new_x[i], new_y[i]) for i in range(len(new_x))))
            xs = self.mapper.map_screen(data_array)
            ys = [sm[x] for x in xs]

        else:
            if self._jitter_seed is None:
                self._set_seed(data_array)
            xs = self.mapper.map_screen(data_array)
            ys = self._make_jitter_vals(len(data_array))

        if self.orientation == "h":
            return np.vstack((xs, ys)).T
        else:
            return np.vstack((ys, xs)).T

    def _make_jitter_vals(self, numpts):
        vals = np.random.uniform(0, self.jitter_width, numpts)
        if self.orientation == "h":
            ymin = self.y
            height = self.height
            vals += ymin + height/2 - self.jitter_width/2
        else:
            xmin = self.x
            width = self.width
            vals += xmin + width/2 - self.jitter_width/2
        return vals

    def map_data(self, screen_pt):
        """ Maps a screen space point into the index space of the plot.
        """
        x, y = screen_pt
        if self.orientation == "v":
            x, y = y, x
        return self.mapper.map_data(x)

    def map_index(self, screen_pt, threshold=2.0, outside_returns_none=True, \
                  index_only = True):
        """ Maps a screen space point to an index into the plot's index array(s).
        """
        screen_points = self._cached_screen_pts

        if len(screen_points) == 0:
            return None

        data_pt = self.map_data(screen_pt)
        if ((data_pt < self.mapper.range.low) or \
            (data_pt > self.mapper.range.high)) and outside_returns_none:
            return None

        if self._cached_data_pts_sorted is None:
            self._cached_data_argsort = np.argsort(self._cached_data_pts)
            self._cached_data_pts_sorted = self._cached_data_pts[self._cached_data_argsort]

        data = self._cached_data_pts_sorted
        try:
            ndx = reverse_map_1d(data, data_pt, "ascending")
        except IndexError, e:
            if outside_returns_none:
                return None
            else:
                if data_pt < data[0]:
                    return 0
                else:
                    return len(data) - 1

        orig_ndx = self._cached_data_argsort[ndx]

        if threshold == 0.0:
            return orig_ndx

        sx, sy = screen_points[orig_ndx]
        if sqrt((screen_pt[0] - sx)**2 + (screen_pt[1] - sy)**2) <= threshold:
            return orig_ndx
        else:
            return None


    def _draw_plot(self, gc, view_bounds=None, mode="normal"):
        pts = self.get_screen_points()
        self._render(gc, pts)


    #------------------------------------------------------------------------
    # Private methods
    #------------------------------------------------------------------------

    def get_screen_points(self):
        if not self._screen_cache_valid:
            self._gather_points()
            pts = self.map_screen(self._cached_data_pts)
            if self.orientation == "h":
                self._cached_screen_map = dict((x,y) for x,y in izip(pts[:,0], pts[:,1]))
            else:
                self._cached_screen_map = dict((y,x) for x,y in izip(pts[:,0], pts[:,1]))
            self._cached_screen_pts = pts
            self._screen_cache_valid = True
            self._cached_data_pts_sorted = None
            self._cached_data_argsort = None
        return self._cached_screen_pts

    def _gather_points(self):
        if self._cache_valid:
            return

        if not self.index:
            return

        index, index_mask = self.index.get_data_mask()
        if len(index) == 0:
            self._cached_data_pts = []
            self._cache_valid = True
            return

        # For the jitter plot, we do not mask or compress the data in any
        # way, because if we do, we have no way of transforming from screen
        # points back into dataspace.  (Tools will be able to find an index
        # into the screen points array, but won't be able to go from that
        # back into the original data points array.)

        #index_range_mask = self.mapper.range.mask_data(index)
        #self._cached_data_pts = np.compress(index_mask & index_range_mask, index)
        self._cached_data_pts = index
        self._cache_valid = True
        self._cached_screen_pts = None
        self._screen_cache_valid = False

    def _render(self, gc, pts):
        with gc:
            gc.clip_to_rect(self.x, self.y, self.width, self.height)
            if not self.index:
                return
            name = self.selection_metadata_name
            md = self.index.metadata
            if name in md and md[name] is not None and len(md[name]) > 0:
                # FIXME: when will we ever encounter multiple masks in the list?
                sel_mask = md[name][0]
                sel_pts = np.compress(sel_mask, pts, axis=0)
                unsel_pts = np.compress(~sel_mask, pts, axis=0)
                color = list(self.color_)
                color[3] *= self.unselected_alpha
                outline_color = list(self.outline_color_)
                outline_color[3] *= self.unselected_alpha
                if unsel_pts.size > 0:
                    self.render_markers_func(gc, unsel_pts, self.marker, self.marker_size,
                            tuple(color), self.unselected_line_width, tuple(outline_color),
                            self.custom_symbol)
                if sel_pts.size > 0:
                    self.render_markers_func(gc, sel_pts, self.marker, self.marker_size,
                            self.selected_color_, self.line_width, self.outline_color_,
                            self.custom_symbol)
            else:
                self.render_markers_func(gc, pts, self.marker, self.marker_size,
                        self.color_, self.line_width, self.outline_color_,
                        self.custom_symbol)

    def _set_seed(self, data_array):
        """ Sets the internal random seed based on some input data """
        if isinstance(data_array, np.ndarray):
            seed = np.random.seed(data_array.size)
        else:
            seed = np.random.seed(map(int, data_array[:100]))

        self._jitter_seed = seed

    @on_trait_change("index.data_changed")
    def _invalidate(self):
        self._cache_valid = False
        self._screen_cache_valid = False

    @on_trait_change("mapper.updated")
    def _invalidate_screen(self):
        self._screen_cache_valid = False

    #------------------------------------------------------------------------
    # Event handlers
    #------------------------------------------------------------------------

    def _get_x_mapper(self):
        if self.orientation == "h":
            return self.mapper
        else:
            return None

    def _set_x_mapper(self, val):
        if self.orientation == "h":
            self.mapper = val
        else:
            raise ValueError("x_mapper is not defined for a vertical jitter plot")

    def _get_y_mapper(self):
        if self.orientation == "v":
            return self.mapper
        else:
            return None

    def _set_y_mapper(self, val):
        if self.orientation == "v":
            self.mapper = val
        else:
            raise ValueError("y_mapper is not defined for a horizontal jitter plot")

    def _update_mappers(self):
        mapper = self.mapper
        if mapper is None:
            return

        x = self.x
        x2 = self.x2
        y = self.y
        y2 = self.y2

        if "left" in self.origin and self.orientation == 'h':
            mapper.screen_bounds = (x, x2)
        elif "right" in self.origin and self.orientation == 'h':
            mapper.screen_bounds = (x2, x)
        elif "bottom" in self.origin  and self.orientation == 'v':
            mapper.screen_bounds = (y, y2)
        elif "top" in self.origin  and self.orientation == 'v':
            mapper.screen_bounds = (y2, y)

        self.invalidate_draw()
        self._cache_valid = False
        self._screen_cache_valid = False

    def _bounds_changed(self, old, new):
        super(JitterPlot, self)._bounds_changed(old, new)
        self._update_mappers()

    def _bounds_items_changed(self, event):
        super(JitterPlot, self)._bounds_items_changed(event)
        self._update_mappers()

    def _orientation_changed(self):
        self._update_mappers()