This file is indexed.

/usr/lib/python2.7/dist-packages/brial/parallel.py is in python-brial 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
# -*- python -*-
# coding=utf-8

#  parallel.py
#  PolyBoRi
#
#  Created by Michael Brickenstein on 2008-10-31.
#  Copyright 2008 The PolyBoRi Team
#

from .PyPolyBoRi import if_then_else, CCuddNavigator, BooleSet
from .PyPolyBoRi import (Polynomial, Ring, WeakRingRef, Monomial,
    Variable)
from .gbcore import groebner_basis
from zlib import compress, decompress
try:
    import copy_reg as copyreg
except ImportError:
    import copyreg


def to_fast_pickable(l):
    """
    to_fast_pickable(l) converts a list of polynomials into a builtin Python value, which is fast pickable and compact.
    INPUT:
        - a list of Boolean polynomials
    OUTPUT:
        It is converted to a tuple consisting of
        - codes referring to the polynomials
        - list of conversions of nodes.
            The nodes are sorted, that
            n occurs before n.else_branch(), n.then_branch()
            Nodes are only listed, if they are not constant.

        A node is converted in this way:
            0 -> 0
            1 -> 1
            if_then_else(v,t,e) -> (v, index of then branch +2, index of else branch +2)
            The shift of +2 is for the constant values implicitly contained in the list.
        Each code c refers to the c-2-th position in the conversion list, if c >=2, else to
        the corresponding Boolean constant if c in {0, 1}
    EXAMPLES:
        >>> from brial.PyPolyBoRi import Ring
        >>> r=Ring(1000)
        >>> x=r.variable
        >>> to_fast_pickable([Polynomial(1, r)])
        [[1], []]
        >>> to_fast_pickable([Polynomial(0, r)])
        [[0], []]
        >>> to_fast_pickable([x(0)])
        [[2], [(0, 1, 0)]]
        >>> to_fast_pickable([x(0)*x(1)+x(1)])
        [[2], [(0, 3, 3), (1, 1, 0)]]
        >>> to_fast_pickable([x(1)])
        [[2], [(1, 1, 0)]]
        >>> to_fast_pickable([x(0)+1])
        [[2], [(0, 1, 1)]]
        >>> to_fast_pickable([x(0)*x(1)])
        [[2], [(0, 3, 0), (1, 1, 0)]]
        >>> to_fast_pickable([x(0)*x(1)+x(1)])
        [[2], [(0, 3, 3), (1, 1, 0)]]
        >>> to_fast_pickable([x(0)*x(1)+x(2)])
        [[2], [(0, 3, 4), (1, 1, 0), (2, 1, 0)]]
        >>> p=x(5)*x(23) + x(5)*x(24)*x(59) + x(5) + x(6)*x(23)*x(89) + x(6)*x(60)*x(89) + x(23) + x(24)*x(89) + x(24) + x(60)*x(89) + x(89) + 1
        >>> from_fast_pickable(to_fast_pickable([p]), r)==[p]
        True
        >>> to_fast_pickable([x(0)*x(1), Polynomial(0, r), Polynomial(1, r), x(3)])
        [[2, 0, 1, 4], [(0, 3, 0), (1, 1, 0), (3, 1, 0)]]
    """
    if len(l) == 0:
        return [[], []]

    f = l[0]
    f = f.set()
    r = f.ring()
    one = r.one().navigation()
    zero = r.zero().navigation()
    nodes = set()

    def find_navs(nav):
        if not nav in nodes and not nav.constant():
            nodes.add(nav)
            find_navs(nav.then_branch())
            find_navs(nav.else_branch())
    for f in l:
        f_nav = f.set().navigation()
        find_navs(f_nav)

    nodes_sorted = sorted(nodes, key=CCuddNavigator.value)
    nodes2i = {one: 1, zero: 0}
    for (i, n) in enumerate(nodes_sorted):
        nodes2i[n] = i + 2

    for i in range(len(nodes_sorted)):
        n = nodes_sorted[i]
        t = nodes2i[n.then_branch()]
        e = nodes2i[n.else_branch()]
        nodes_sorted[i] = (n.value(), t, e)

    return [[nodes2i[f.set().navigation()] for f in  l], nodes_sorted]


def from_fast_pickable(l, r):
    """from_fast_pickable(l, ring) undoes the operation to_fast_pickable. The first argument is an object created by to_fast_pickable.
    For the specified format, see the documentation of to_fast_pickable.
    The second argument is ring, in which this polynomial should be created.
    INPUT:
        see OUTPUT of to_fast_pickable
    OUTPUT:
        a list of Boolean polynomials
    EXAMPLES:
        >>> from brial.PyPolyBoRi import Ring
        >>> r=Ring(1000)
        >>> x = r.variable
        >>> from_fast_pickable([[1], []], r)
        [1]
        >>> from_fast_pickable([[0], []], r)
        [0]
        >>> from_fast_pickable([[2], [(0, 1, 0)]], r)
        [x(0)]
        >>> from_fast_pickable([[2], [(1, 1, 0)]], r)
        [x(1)]
        >>> from_fast_pickable([[2], [(0, 1, 1)]], r)
        [x(0) + 1]
        >>> from_fast_pickable([[2], [(0, 3, 0), (1, 1, 0)]], r)
        [x(0)*x(1)]
        >>> from_fast_pickable([[2], [(0, 3, 3), (1, 1, 0)]], r)
        [x(0)*x(1) + x(1)]
        >>> from_fast_pickable([[2], [(0, 3, 4), (1, 1, 0), (2, 1, 0)]], r)
        [x(0)*x(1) + x(2)]
        >>> from_fast_pickable([[2, 0, 1, 4], [(0, 3, 0), (1, 1, 0), (3, 1, 0)]], r)
        [x(0)*x(1), 0, 1, x(3)]
    """
    i2poly = {0: r.zero(), 1: r.one()}
    (indices, terms) = l

    for i in reversed(range(len(terms))):
        (v, t, e) = terms[i]
        t = i2poly[t]
        e = i2poly[e]
        terms[i] = if_then_else(v, t, e)
        i2poly[i + 2] = terms[i]
    return [Polynomial(i2poly[i]) for i in indices]


def _calculate_gb_with_keywords(args):
    (I, kwds_as_single_arg) = args
    import traceback
    try:
        return groebner_basis(I, **kwds_as_single_arg)
    except:
        raise ValueError(traceback.format_exc())


def _decode_polynomial(code):
    return from_fast_pickable(*code)[0]


def _encode_polynomial(poly):
    return (to_fast_pickable([poly]), poly.ring())


def pickle_polynomial(self):
    return (_decode_polynomial, (_encode_polynomial(self), ))

copyreg.pickle(Polynomial, pickle_polynomial)


def pickle_bset(self):
    return (BooleSet, (Polynomial(self), ))

copyreg.pickle(BooleSet, pickle_bset)


def pickle_monom(self):
    return (Monomial, ([var for var in self.variables()], ))

copyreg.pickle(Monomial, pickle_monom)


def pickle_var(self):
    return (Variable, (self.index(), self.ring()))

copyreg.pickle(Variable, pickle_var)


def _decode_ring(code):
    import os
    (identifier, data, varnames, blocks) = code

    global _polybori_parallel_rings
    try:
        _polybori_parallel_rings
    except NameError:
        _polybori_parallel_rings = dict()

    for key in [key for key in _polybori_parallel_rings
                if not _polybori_parallel_rings[key][0]()]:
        del _polybori_parallel_rings[key]

    if identifier in _polybori_parallel_rings:
        ring = _polybori_parallel_rings[identifier][0]()
    else:
        ring = None

    if not ring:
        varnames = decompress(varnames).split('\n')
        (nvars, ordercode) = data
        ring = Ring(nvars, ordercode, names=varnames, blocks=blocks)
        storage_data = (WeakRingRef(ring), code)
        _polybori_parallel_rings[identifier] = storage_data
        _polybori_parallel_rings[(ring.id(), os.getpid())] = storage_data

    return ring


def _encode_ring(ring):
    import os
    identifier = (ring.id(), os.getpid())

    global _polybori_parallel_rings
    try:
        _polybori_parallel_rings
    except NameError:
        _polybori_parallel_rings = dict()

    for key in [key for key in _polybori_parallel_rings
                if not _polybori_parallel_rings[key][0]()]:
        del _polybori_parallel_rings[key]

    if identifier in _polybori_parallel_rings:
        code = _polybori_parallel_rings[identifier][1]
    else:
        nvars = ring.n_variables()
        data = (nvars, ring.get_order_code())
        varnames = '\n'.join([str(ring.variable(idx)) for idx in range(nvars)
            ])
        blocks = list(ring.blocks())
        code = (identifier, data, compress(varnames), blocks[:-1])
        _polybori_parallel_rings[identifier] = (WeakRingRef(ring), code)

    return code


def pickle_ring(self):
    return (_decode_ring, (_encode_ring(self), ))

copyreg.pickle(Ring, pickle_ring)


def groebner_basis_first_finished(I, *l):
    """
    INPUT:
        - I ideal
        - l: keyword dictionaries, which will be keyword arguments to groebner_basis.
    OUTPUT:
        - tries to compute groebner_basis(I, **kwd) for kwd in l
        - returns the result of the first terminated computation
    EXAMPLES:
        >>> from brial.PyPolyBoRi import Ring
        >>> r=Ring(1000)
        >>> ideal = [r.variable(1)*r.variable(2)+r.variable(2)+r.variable(1)]
        >>> #groebner_basis_first_finished(ideal, dict(heuristic=True), dict(heuristic=False))
        [x(1), x(2)]
    """
    if not I:
        return []
    try:
        from multiprocessing import Pool
    except:
        from processing import Pool

    pool = Pool(processes=len(l))
    it = pool.imap_unordered(_calculate_gb_with_keywords,
                             [(I, kwds) for kwds in l])
    res = next(it)

    pool.terminate()

    return res


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()