This file is indexed.

/usr/lib/python2.7/dist-packages/brial/ll.py is in python-brial 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import print_function

from .PyPolyBoRi import *
from .statistics import used_vars_set

from .rank import rank

from functools import reduce

lead_index = top_index

#(p):
#  return iter(p.lex_lead()).next().index()#first index

def combine(reductors, p, reduce=None):
    p_nav = p.navigation()
    assert p_nav.value() < reductors.navigation().value()
    p_else = BooleSet(p_nav.else_branch(), p.ring())
    if reduce:
        p_else = reduce(p_else, reductors)
    return if_then_else(p_nav.value(), reductors, p_else)


def llredsb_Cudd_style(polys):

    if polys:
        reductors = Polynomial(polys[0].ring().one()).set()
    else:
        reductors = None

    linear_lead = sorted(polys, key=lead_index, reverse=True)
    assert len(set([p.lex_lead() for p in linear_lead])) == len(polys)
    assert len([p for p in polys if p.constant()]) == 0
    assert len([p for p in polys if p.lex_lead_deg() == 1]) == len(polys)
    assert len(set([p.navigation().value() for p in polys])) == len(polys)
    for p in linear_lead:
        reductors = combine(reductors, p, reduce=ll_red_nf_redsb)
    return reductors


def ll_encode(polys, reduce=False, prot=False, reduce_by_linear=True):
    polys = [Polynomial(p) for p in polys]
    linear_lead = sorted(polys, key=lead_index, reverse=True)
    assert len(set([p.lex_lead() for p in linear_lead])) == len(polys)
    assert len([p for p in polys if p.constant()]) == 0
    assert len([p for p in polys if p.lex_lead_deg() == 1]) == len(polys)
    assert len(set([p.navigation().value() for p in polys])) == len(polys)
    if (not reduce) and reduce_by_linear:
        linear_polys = [p for p in polys if p.deg() == 1]
        if linear_polys:
            linear_ll = ll_encode(linear_polys, reduce=True,
                reduce_by_linear=False)
            polys = [p.lex_lead() + ll_red_nf_redsb(p + p.lex_lead(),
                linear_ll) for p in polys]
    if reduce:
        reduce = ll_red_nf_redsb
    else:
        reduce = None


    if polys:
        reductors = Polynomial(polys[0].ring().one()).set()
    else:
        reductors = None

    last = None
    counter = 0
    for p in linear_lead:

        if prot:
            counter = counter + 1
            progress = (counter * 100) / len(linear_lead)
            if last != progress:
                print(str(progress) + "%")
            last = progress
        reductors = combine(reductors, p, reduce=reduce)
    return reductors


def eliminate(polys, on_the_fly=False, prot=False, reduction_function=None,
    optimized=True):
    """There exists an optimized variant, which reorders the variable in a different
  ring.
  """
    polys = [Polynomial(p) for p in polys]
    rest = []
    linear_leads = []
    linear_leading_monomials = set()
    for p in polys:
        if p.is_zero():
            continue
        lm = p.lex_lead()
        if lm.deg() == 1:

            if not (lm in linear_leading_monomials):
                linear_leading_monomials.add(lm)
                linear_leads.append(p)
            else:
                rest.append(p)
        else:
            rest.append(p)
    if len(linear_leads) == 0:
        def identity(p):
            return p
        return (linear_leads, identity, rest)
    if reduction_function is None:
        if on_the_fly:
            if optimized:
                reduction_function = ll_red_nf_noredsb_single_recursive_call
            else:
                reduction_function = ll_red_nf_noredsb
        else:
            reduction_function = ll_red_nf_redsb

    def llnf(p):
        return reduction_function(p, reductors)
    reduced_list = []
    if optimized:
        (llnf, reduced_list) = eliminate_ll_ranked(
        linear_leads,
        rest,
        reduction_function=reduction_function,
        reduce_ll_system=(not on_the_fly),
        prot=prot)
    else:
        reductors = ll_encode(linear_leads, reduce=(not on_the_fly), prot=prot)
        for p in rest:
            p = reduction_function(p, reductors)
            if p.is_one():
                reduced_list = [p]
                break
            else:
                reduced_list.append(p)

    return (linear_leads, llnf, reduced_list)


def construct_map_by_indices(to_ring, idx_mapping):
    v = BoolePolynomialVector((max(idx_mapping.keys()) + 1) * [to_ring.zero()])
    for (from_idx, to_idx) in idx_mapping.items():
        val = to_ring.variable(to_idx)
        v[from_idx] = val
    return v


def eliminate_ll_ranked(ll_system, to_reduce,
                        reduction_function=ll_red_nf_noredsb,
                        reduce_ll_system=False, prot=False):

    assert(ll_system)
    from_ring = ll_system[0].ring()

    ll_ranks = rank(ll_system)
    add_vars = set(used_vars_set(to_reduce).variables()).difference(ll_ranks.
        keys())
    for v in add_vars:
        ll_ranks[v] = -1

      #pushing variables ignored by ll to the front means,
      #that the routines will quickly eliminate them
      #and they won't give any overhead
    def sort_key(v):
        return (ll_ranks[v], v.index())
    sorted_vars = sorted(ll_ranks.keys(), key=sort_key)

    def var_index(v):
        return iter(Monomial(v).variables()).next().index()
  #sorted_var_indices=[var_index(v) for v in sorted_vars]
    to_ring = Ring(len(sorted_vars))
    map_back_indices = dict([(i, var_index(v)) for (i, v) in enumerate(
        sorted_vars)])
    map_from_indices = dict([(var_index(v), i) for (i, v) in enumerate(
        sorted_vars)])
  #dict([(v,k) for (k,v) in enumerate(sorted_var_indices)])
    var_names = [str(v) for v in sorted_vars]
    try:
        for (i, v) in enumerate(sorted_vars):
            assert var_names[i] == str(v), (var_names[i], v, var_index(v), i)
      #        _set_variable_name(to_ring, i, var_names[i] + "TO")
    finally:
        pass
    try:
        map_from_vec = construct_map_by_indices(to_ring, map_from_indices)
    finally:
        pass
    map_back_vec = construct_map_by_indices(from_ring, map_back_indices)

    def map_from(p):
        res = substitute_variables(to_ring, map_from_vec, p)
      # assert str(p)==str(res), (str(p), str(res), list(map_from_vec),
      # list(map_back_vec))
        return res

    def map_back(p):
        return substitute_variables(from_ring, map_back_vec, p)
    try:
        ll_opt_encoded = ll_encode([map_from(p) for p in ll_system],
            prot=False,
            reduce=reduce_ll_system)

        def llnf(p):
            return map_back(reduction_function(map_from(p), ll_opt_encoded))
        opt_eliminated = [llnf(p) for p in to_reduce]
    finally:
        pass
    return (llnf, opt_eliminated)


class RingMap(object):
    """Define a mapping between two rings by common variable names.

    >>> from brial.frontend import *
    >>> to_ring = declare_ring([Block("x", 10)], globals())
    >>> from_ring = declare_ring([Block("y", 5), Block("x", 10)], globals())
    >>> mapping = RingMap(to_ring, from_ring)
    >>> (x(1)+1).navigation().value()
    6
    >>> mapping(x(1)+1)
    x(1) + 1
    >>> mapping(x(1)+1).navigation().value()
    1
    >>> mapping.invert(mapping(x(1)+1))
    x(1) + 1
    >>> mapping.invert(mapping(x(1)+1)).navigation().value()
    6
    >>> mapping(y(1)+1)
    Traceback (most recent call last):
    ...
    RuntimeError: Operands come from different manager.
    """

    def __init__(self, to_ring, from_ring):
        """Initialize map by two given rings.

        >>> from brial.frontend import *
        >>> to_ring = declare_ring([Block("x", 10)], globals())
        >>> from_ring = declare_ring([Block("y", 5), Block("x", 10)], globals())
        >>> mapping = RingMap(to_ring, from_ring)
        >>> mapping(x(1)+1)
        x(1) + 1
        """

        def vars(ring):
            return [ring.variable(i) for i in range(ring.n_variables())]

        def indices(vars):
            return dict([(str(v), idx) for (idx, v) in enumerate(vars)])

        self.to_ring = to_ring
        self.from_ring = from_ring
        to_vars = vars(to_ring)
        from_vars = vars(from_ring)
        to_indices = indices(to_vars)
        from_indices = indices(from_vars)
        common = list(set(to_indices.keys()) & set(from_indices.keys()))

        to_map = list(from_vars)
        for elt in common:
            to_map[from_indices[elt]] = to_vars[to_indices[elt]]

        from_map = list(to_vars)
        for elt in common:
            from_map[to_indices[elt]] = from_vars[from_indices[elt]]

        self.to_map = BoolePolynomialVector(to_map)
        self.from_map = BoolePolynomialVector(from_map)

    def __call__(self, poly):
        """Execute the map to change rings.

        >>> from brial.frontend import *
        >>> to_ring = declare_ring([Block("x", 10)], globals())
        >>> from_ring = declare_ring([Block("y", 5), Block("x", 10)], globals())
        >>> mapping = RingMap(to_ring, from_ring)
        >>> mapping(x(1)+1)
        x(1) + 1
        """
        return substitute_variables(self.to_ring, self.to_map, poly)

    def invert(self, poly):
        """Inverted map to initial ring.

        >>> from brial.frontend import *
        >>> to_ring = declare_ring([Block("x", 10)], globals())
        >>> from_ring = declare_ring([Block("y", 5), Block("x", 10)], globals())
        >>> mapping = RingMap(to_ring, from_ring)
        >>> mapping.invert(mapping(x(1)+1))
        x(1) + 1
        """
        return substitute_variables(self.from_ring, self.from_map, poly)