This file is indexed.

/usr/lib/python2.7/dist-packages/brial/addition.py is in python-brial 1.2.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from .PyPolyBoRi import Polynomial, BooleSet, BooleConstant
from .partial import PartialFunction
from .specialsets import all_monomials_of_degree_d, power_set
from .ll import ll_encode, ll_red_nf_redsb


def add_bits_old(bits):
    """Adds n bits
    >>> from brial import *
    >>> r=Ring(10)
    >>> add_bits_old([r.variable(i) for i in xrange(3)])
    [x(0) + x(1) + x(2), x(0)*x(1) + x(0)*x(2) + x(1)*x(2)]
    >>> add_bits_old([r.variable(i) for i in xrange(4)])
    [x(0) + x(1) + x(2) + x(3), x(0)*x(1) + x(0)*x(2) + x(0)*x(3) + x(1)*x(2) + x(1)*x(3) + x(2)*x(3)]
    """
    bits = list(bits)
    n = len(bits)
    deg_d_monomials = [Polynomial(all_monomials_of_degree_d(i, bits)) for i in
        range(n + 1)]
    full = power_set(bits)
    bits_expr = []  # [sum(bits)]
    step = 0
    while n > 2 ** step:
        to_one = sum([deg_d_monomials[i] for i in range(n + 1) if i & 2 **
            step])
        to_one = Polynomial(to_one)
        fun = PartialFunction(ones=to_one, zeros=full.diff(to_one))
        poly = fun.interpolate_smallest_lex()
        bits_expr.append(poly)
        step = step + 1
    return bits_expr


def add_bits(bits):
    """Adds n bit variables, by Lucas theorem
    >>> from brial import *
    >>> r=Ring(10)
    >>> add_bits([r.variable(i) for i in xrange(3)])
    [x(0) + x(1) + x(2), x(0)*x(1) + x(0)*x(2) + x(1)*x(2)]
    >>> add_bits([r.variable(i) for i in xrange(4)])
    [x(0) + x(1) + x(2) + x(3), x(0)*x(1) + x(0)*x(2) + x(0)*x(3) + x(1)*x(2) + x(1)*x(3) + x(2)*x(3), x(0)*x(1)*x(2)*x(3)]
    >>> add_bits([r.variable(0)])
    [x(0)]
    """
    bits = list(bits)
    if len(bits) < 2:
        return bits
    n = len(bits)

    bits_expr = []  # [sum(bits)]
    step = 0
    while n >= 2 ** step:
        bits_expr.append(Polynomial(all_monomials_of_degree_d(2 ** step, bits)
            ))
        step = step + 1
    return bits_expr


def add_bit_expressions(bit_expressions):
    """Adds n bits, which can be arbitrary expressions, the first n variables of the ring    are reversed for usage in this function.

    >>> from brial import *
    >>> r=Ring(20)
    >>> add_bit_expressions([r.variable(i) for i in xrange(10,13)])
    [x(10) + x(11) + x(12), x(10)*x(11) + x(10)*x(12) + x(11)*x(12)]
    >>> add_bit_expressions([r.variable(i) for i in xrange(10,13)])
    [x(10) + x(11) + x(12), x(10)*x(11) + x(10)*x(12) + x(11)*x(12)]
    >>> add_bit_expressions([r.variable(11), r.variable(11)])
    [0, x(11)]
    >>> add_bit_expressions([r.variable(11),r.variable(12),r.variable(13)])
    [x(11) + x(12) + x(13), x(11)*x(12) + x(11)*x(13) + x(12)*x(13)]
    """

    bit_variables = []
    if bit_expressions:
        ring = bit_expressions[0].ring()
        bit_variables = [ring.variable(i) for i in range(len(bit_expressions)
            )]
    for expr in bit_expressions:
        assert BooleSet(expr).navigation().value() >= len(bit_variables)
    mapping = ll_encode([b + expr for (b, expr) in zip(bit_variables,
        bit_expressions)])
    return [ll_red_nf_redsb(p, mapping) for p in add_bits(bit_variables)]


def add_words(words):
    """def adds n words, this words are supposed to consists of list of their bits.
    >>> from brial import *
    >>> r=Ring(1000)
    >>> add_words([[r.variable(100+i*3+j) for i in xrange(2)] for j in xrange(3)])
    [x(100) + x(101) + x(102), x(100)*x(101) + x(100)*x(102) + x(101)*x(102) + x(103) + x(104) + x(105), x(100)*x(101)*x(103) + x(100)*x(101)*x(104) + x(100)*x(101)*x(105) + x(100)*x(102)*x(103) + x(100)*x(102)*x(104) + x(100)*x(102)*x(105) + x(101)*x(102)*x(103) + x(101)*x(102)*x(104) + x(101)*x(102)*x(105) + x(103)*x(104) + x(103)*x(105) + x(104)*x(105), x(100)*x(101)*x(103)*x(104)*x(105) + x(100)*x(102)*x(103)*x(104)*x(105) + x(101)*x(102)*x(103)*x(104)*x(105)]
    >>> res=add_words([[r.variable(100+i*9+j) for i in xrange(4)] for j in xrange(9)])
    >>> [len(p) for p in res]
    [9, 45, 495, 12870, 735462, 70285482, 1891358892, 6435]
    >>> [p.deg() for p in res]
    [1, 2, 4, 8, 12, 18, 25, 33]
    >>> [p.n_nodes() for p in res]
    [9, 25, 54, 100, 153, 211, 249, 100]
    """

    max_word_length = max((len(w) for w in words))
    res = []
    while len(words) > 0:
        words = [w for w in words if len(w) > 0]
        bits = add_bit_expressions([w[0] for w in words])
        words = [w[1:] for w in words]
        if len(bits) > 0:
            res.append(bits[0])
            words.append(bits[1:])
    return res


def multiply_by_addition(word_a, word_b):
    """Multiply two words
    >>> from brial import Ring
    >>> r=Ring(1000)
    >>> x = r.variable
    >>> n=7
    >>> res=multiply_by_addition([x(200+2*i)  for i in xrange(n)], [x(200+2*i+1)  for i in xrange(n)])
    >>> [p.n_nodes() for p in res]
    [2, 4, 7, 17, 38, 85, 222, 630, 1358, 1702, 1713, 1430, 875, 214, 0]
    """
    word_a = list(word_a)
    word_b = list(word_b)
    summands = []
    if word_a:
        zero = word_a[0].ring().zero()
    elif word_b:
        zero = word_b[0].ring().zero()
    else:
        zero = BooleConstant(0)

    for (i, a) in enumerate(word_a):
        summands.append(i * [zero] + [a * b for b in word_b])

    return add_words(summands)


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()