This file is indexed.

/usr/share/picolisp/src64/big.l is in picolisp 17.12+20180218-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
# 15jul17abu
# (c) Software Lab. Alexander Burger

### Destructive primitives ###
# Remove leading zeroes
(code 'zapZeroA_A 0)
   push A  # Save number
   ld C S  # Short-tail in C
   ld E C  # Null-tail in E
   do
      cnt (A BIG)  # Last cell?
   while z  # No
      null (A DIG)  # Null digit?
      if nz  # No
         ld E C  # New null-tail
      end
      lea C (A BIG)  # New short-tail
      ld A (C)  # Next cell
   loop
   cmp (A BIG) ZERO  # Trailing short zero?
   if eq  # Yes
      ld A (A DIG)
      null A  # Null digit?
      if nz  # No
         test A (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl A 4  # Make short number
            or A CNT
            ld (C) A  # Store in short-tail
         end
      else
         ld A ((E) DIG)  # Digit in null-tail
         test A (hex "F000000000000000")  # Fit in short number?
         if nz  # No
            ld ((E) BIG) ZERO  # Trim null-tail
         else
            shl A 4  # Make short number
            or A CNT
            ld (E) A  # Store in null-tail
         end
      end
   end
   pop A  # Result
   ret

# Multiply (unsigned) number by 2
(code 'twiceA_A 0)
   cnt A  # A short?
   if nz  # Yes
      xor A 3  # Prepare tag bit
      shl A 1  # Shift left
      jnx Ret  # Done
      rxr A 1  # Else normalize
      shr A 3
      jmp boxNumA_A  # Return bignum
   end
: twiceBigA_A
   push A  # Save bignum
   ld C (A DIG)  # Lowest digit
   shl C 1  # Shift left
   do
      push x  # Save x-bit
      ld (A DIG) C  # Store digit
      ld E (A BIG)  # Next cell
      cnt E  # End of bignum?
   while z  # No
      ld A E
      ld C (A DIG)  # Next digit
      pop x
      rxl C 1  # Rotate left
   loop
   shr E 4  # Normalize
   pop x
   rxl E 1  # Rotate left
   test E (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl E 4  # Make short number
      or E CNT
   else
      call boxNumE_E  # New cell
   end
   ld (A BIG) E  # Store in final cell
   pop A  # Return bignum
   ret

# Divide (unsigned) number by 2
(code 'halfA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 1  # Shift right
      off A 9  # Clear lowest bit and tag
      or A CNT  # Make short number
      ret
   end
   ld C (A DIG)  # Lowest digit
   ld E (A BIG)  # Next cell
   cnt E  # Any?
   if nz  # No
      shr E 5  # Normalize and shift right
      if nz  # Non-empty
         rxr C 1  # Rotate right
      else
         rxr C 1  # Rotate right
         test C (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl C 4  # Return short number
            or C CNT
            ld A C
            ret
         end
      end
      ld (A DIG) C  # Store lowest digit
      shl E 4  # Make short number
      or E CNT
      ld (A BIG) E  # Store in the cell
      ret
   end
   push A  # Save bignum
   do
      shr (E DIG) 1  # Shift bit
      rxr C 1  # Rotate right with x-bit
      shl (E DIG) 1
      ld (A DIG) C  # Store digit
      ld C (E BIG)  # More cells?
      cnt C
   while z  # Yes
      ld A E  # Advance pointers
      ld E C
      ld C (A DIG)  # Next digit
   loop
   shr C 5  # Normalize and shift right
   if nz  # Non-empty
      rxr (E DIG) 1  # Shift previous digit
      shl C 4  # Make short number
      or C CNT
   else
      ld C (E DIG)  # Shift previous digit
      rxr C 1
      test C (hex "F000000000000000")  # Fit in short number?
      if z  # Yes
         shl C 4  # Make short number
         or C CNT
         ld (A BIG) C
         pop A  # Return bignum
         ret
      end
      ld (E DIG) C
      ld C ZERO
   end
   ld (E BIG) C  # Store in the cell
   pop A  # Return bignum
   ret

# Multiply (unsigned) number by 10
(code 'tenfoldA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 4  # Normalize
      mul 10  # Multiply by 10
      test A (hex "F000000000000000")  # Fit in short number?
      jnz boxNumA_A  # No: Return bignum
      shl A 4  # Make short number
      or A CNT
      ret
   end
   push X
   push A  # Save bignum
   ld X A  # Bignum in X
   ld A (X DIG)  # Multiply lowest digit by 10
   mul 10
   do
      ld (X DIG) A  # Store lower word
      ld E C  # Keep upper word in E
      ld A (X BIG)  # Next cell
      cnt A  # End of bignum?
   while z  # No
      ld X A
      ld A (X DIG)  # Next digit
      mul 10  # Multiply by 10
      add D E  # Add previous upper word
   loop
   shr A 4  # Normalize
   mul 10  # Multiply by 10
   add A E  # Add previous upper word
   test A (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl A 4  # Make short number
      or A CNT
   else
      call boxNumA_A  # Return bignum
   end
   ld (X BIG) A  # Store in final cell
   pop A  # Return bignum
   pop X
   ret

### Non-destructive primitives ###
# Multiply (unsigned) number by 2
(code 'shluA_A 0)
   cnt A  # A short?
   if nz  # Yes
      xor A 3  # Prepare tag bit
      shl A 1  # Shift left
      jnx Ret  # Done
      rxr A 1  # Else normalize
      shr A 3
      jmp boxNumA_A  # Return bignum
   end
   call boxNum_E  # Build new head
   ld (E DIG) (A DIG)  # Lowest digit
   link
   push E  # <L I> Result
   link
   shl (E DIG) 1  # Shift left
   push x  # Save x-bit
   do
      ld A (A BIG)  # Next cell
      cnt A  # End of bignum?
   while z  # No
      call boxNum_C  # Build next cell
      ld (E BIG) C
      ld E (A DIG)  # Next digit
      pop x
      rxl E 1  # Rotate left
      push x  # Save x-bit
      ld (C DIG) E
      ld E C
   loop
   shr A 4  # Normalize
   pop x
   rxl A 1  # Rotate left
   test A (hex "F000000000000000")  # Fit in short number?
   if z  # Yes
      shl A 4  # Make short number
      or A CNT
   else
      call boxNumA_A  # New cell
   end
   ld (E BIG) A  # Store in final cell
   ld A (L I)  # Return bignum
   drop
   ret

# Divide (unsigned) number by 2
(code 'shruA_A 0)
   cnt A  # A short?
   if nz  # Yes
      shr A 1  # Shift right
      off A 9  # Clear lowest bit and tag
      or A CNT  # Make short number
      ret
   end
   ld E (A BIG)  # Next cell
   cnt E  # Any?
   if nz  # No
      ld C (A DIG)  # Lowest digit
      shr E 5  # Normalize and shift right
      if nz  # Non-empty
         rxr C 1  # Rotate right
      else
         rxr C 1  # Rotate right
         test C (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl C 4  # Return short number
            or C CNT
            ld A C
            ret
         end
      end
      shl E 4  # Make short number
      or E CNT
      jmp consNumCE_A  # Return bignum
   end
   call boxNum_C  # Build new head
   ld (C DIG) (A DIG)  # Lowest digit
   link
   push C  # <L I> Result
   link
   do
      ld A (E DIG)  # Shift bit
      shr A 1
      rxr (C DIG) 1  # Rotate right with x-bit
      cnt (E BIG)  # More cells?
   while z  # Yes
      call boxNum_A  # Build next digit
      ld (A DIG) (E DIG)
      ld (C BIG) A
      ld E (E BIG)  # Advance pointers
      ld C A
   loop
   ld A (E BIG)  # Final short number
   shr A 5  # Normalize and shift right
   if nz  # Non-empty
      ld E (E DIG)  # Shift previous digit
      rxr E 1
      shl A 4  # Make short number
      or A CNT
      call consNumEA_E  # Last cell
      ld (C BIG) E  # Store in the cell
   else
      ld E (E DIG)  # Shift previous digit
      rxr E 1
      test E (hex "F000000000000000")  # Fit in short number?
      if z  # Yes
         shl E 4  # Make short number
         or E CNT
         ld (C BIG) E
         ld A (L I)  # Return bignum
         drop
         ret
      end
      call boxNum_A  # New cell
      ld (A DIG) E
      ld (C BIG) A
   end
   ld A (L I)  # Return bignum
   drop
   ret

# Bitwise AND of two (unsigned) numbers
(code 'anduAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if z  # No
         ld E (E DIG)  # Get digit
         shl E 4  # Make short number
         or E CNT
      end
      and A E  # Return short number
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      ld A (A DIG)  # Get digit
      shl A 4  # Make short number
      or A CNT
      and A E  # Return short number
      ret
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # AND first digits
   and C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if z  # No
            ld E (E DIG)  # Get digit
            shl E 4  # Make short number
            or E CNT
         end
         and A E  # Concat short
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      cnt E  # End of E?
      if nz  # Yes
         ld A (A DIG)  # Get digit
         shl A 4  # Make short number
         or A CNT
         and A E  # Concat short
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      ld C (A DIG)  # AND digits
      and C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Bitwise OR of two (unsigned) numbers
(code 'oruAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         or A E  # Return short number
         ret
      end
      shr A 4  # Normalize
      or A (E DIG)  # OR digit
      ld E (E BIG)  # Rest of E
      jmp consNumAE_A  # Append rest
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      shr E 4  # Normalize
      or E (A DIG)  # OR digit
      ld A (A BIG)  # Rest of A
      jmp consNumEA_A  # Append rest
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # OR first digits
   or C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if nz  # Yes
            or A E  # Concat short number
         else
            shr A 4  # Normalize
            or A (E DIG)  # OR digit
            ld E (E BIG)  # Rest of E
            call consNumAE_A  # Append rest
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize
         or E (A DIG)  # OR digit
         ld A (A BIG)  # Rest of A
         call consNumEA_A  # Append rest
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      ld C (A DIG)  # OR digits
      or C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Bitwise XOR of two (unsigned) numbers
(code 'xoruAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         xor A E  # Return short number
         or A CNT
         ret
      end
      shr A 4  # Normalize
      xor A (E DIG)  # XOR digit
      ld E (E BIG)  # Rest of E
      call consNumAE_A  # Append rest
      jmp zapZeroA_A  # Remove leading zeroes
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      shr E 4  # Normalize
      xor E (A DIG)  # XOR digit
      ld A (A BIG)  # Rest of A
      call consNumEA_A  # Append rest
      jmp zapZeroA_A  # Remove leading zeroes
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # XOR first digits
   xor C (E DIG)
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         if nz  # Yes
            xor A E  # Concat short number
            or A CNT
         else
            shr A 4  # Normalize
            xor A (E DIG)  # XOR digit
            ld E (E BIG)  # Rest of E
            call consNumAE_A  # Append rest
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize
         xor E (A DIG)  # XOR digit
         ld A (A BIG)  # Rest of A
         call consNumEA_A  # Append rest
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         jmp zapZeroA_A  # Remove leading zeroes
      end
      ld C (A DIG)  # XOR digits
      xor C (E DIG)
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Add two (unsigned) numbers
(code 'adduAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      jz 10  # No: Jump
      off E CNT  # Else clear tag
      add A E  # Add short numbers
      jnc Ret  # Done
      addc A 0  # Get top bit
      ror A 1
      shr A 3  # Normalize
      jmp boxNumA_A  # Return bignum
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      xchg A E  # Exchange args
10    shr A 4  # Normalize short
      add A (E DIG)  # Add first digit
      ld E (E BIG)  # Tail in E
      jnc consNumAE_A  # Cons new cell if no carry
      call consNumAE_A  # Else build new head
      link
      push A  # <L I> Result
      link
      do
         cnt E  # Short number?
         if nz  # Yes
            add E (hex "10")  # Add carry
            if nc  # No further carry
               ld (A BIG) E  # Append it
            else  # Again carry
               addc E 0  # Get top bit
               ror E 1
               shr E 3  # Normalize
               call boxNum_C  # New cell
               ld (C DIG) E
               ld (A BIG) C  # Append it
            end
            ld A (L I)  # Return bignum
            drop
            ret
         end
         ld C (E DIG)  # Next digit
         ld E (E BIG)
         add C 1  # Add carry
         if nc  # None
            call consNumCE_E  # New last cell
            ld (A BIG) E
            ld A (L I)  # Return bignum
            drop
            ret
         end
         call consNumCE_C  # New cell
         ld (A BIG) C  # Append it
         ld A C  # Tail of result
      loop
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # Add first digits
   add C (E DIG)
   push zsc  # Save carry
   call boxNum_X  # Make bignum
   ld (X DIG) C
   ld (L I) X  # Init result
   do
      ld A (A BIG)  # Get tails
      ld E (E BIG)
      cnt A  # End of A?
      if nz  # Yes
         cnt E  # Also end of E?
         jz 20  # No: Jump
         shr A 4  # Normalize A
         shr E 4  # Normalize E
         pop zsc
         addc A E  # Add final shorts with carry
         shl A 4
         if nx
            or A CNT  # Make short number
         else  # Again carry
            add A 1  # Get top bit
            ror A 1
            shr A 3  # Normalize
            call boxNumA_A  # Make bignum
         end
         ld (X BIG) A
         ld A (L I)  # Return bignum
         drop
         pop X
         ret
      end
      cnt E  # End of E?
      if nz  # Yes
         xchg A E  # Exchange args
20       shr A 4  # Normalize A
         pop zsc
         addc A (E DIG)  # Add next digit with carry
         do
            ld E (E BIG)
            if nc  # No carry
               call consNumAE_A  # Append rest
               ld (X BIG) A
               ld A (L I)  # Return bignum
               drop
               pop X
               ret
            end
            call consNumAE_A  # New cell
            ld (X BIG) A  # Concat to result
            ld X A  # Pointer to last cell
            cnt E  # End of E?
            if nz  # Yes
               add E (hex "10")  # Add carry
               if nc  # No further carry
                  ld (X BIG) E  # Append it
               else  # Again carry
                  addc E 0  # Get top bit
                  ror E 1
                  shr E 3  # Normalize
                  call boxNum_C  # New cell
                  ld (C DIG) E
                  ld (X BIG) C  # Append it
               end
               ld A (L I)  # Return bignum
               drop
               pop X
               ret
            end
            ld A (E DIG)  # Add carry to next digit
            add A 1
         loop
      end
      ld C (A DIG)  # Add digits
      pop zsc
      addc C (E DIG)
      push zsc
      call consNumCE_C  # New bignum cell
      ld (X BIG) C  # Concat to result
      ld X C
   loop

# Subtract two (unsigned) numbers
(code 'subuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         off E CNT  # Clear tag
         sub A E  # Subtract short numbers
         jnb Ret  # Done
         xor A -16  # 2-complement
         add A (hex "18")
         ret
      end
      xchg A E  # Exchange args
      call subBigShort  # Subtract short from big
      cmp A ZERO  # Zero?
      if ne  # No
         or A SIGN  # Set negative
      end
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
: subBigShort
      shr E 4  # Normalize short
      ld C (A DIG)
      sub C E  # Subtract from first digit
      ld E (A BIG)  # Tail in E
      if nb  # No borrow
         cmp E ZERO  # Leading zero?
         jne consNumCE_A  # No: Cons new cell
         test C (hex "F000000000000000")  # Fit in short number?
         jnz consNumCE_A  # No: Cons new cell
         ld A C  # Get digit
         shl A 4  # Make short number
         or A CNT
         ret
      end
      call consNumCE_A  # Else build new head
      link
      push A  # <L I> Result
      link
      do
         cnt E  # Short number?
         if nz  # Yes
            sub E (hex "10")  # Subtract borrow
            if b  # Again borrow: Must be the first pass
               ld A C  # C still has lowest digit
               neg A  # Negate
               shl A 4
               or A (| SIGN CNT)  # Make short negative number
               drop
               ret
            end
            ld (A BIG) E  # Append it
            ld A (L I)  # Return bignum
            drop
            jmp zapZeroA_A  # Remove leading zeroes
         end
         ld C (E DIG)  # Next digit
         ld E (E BIG)
         sub C 1  # Subtract borrow
         if nb  # None
            call consNumCE_E  # New last cell
            ld (A BIG) E  # Append it
            ld A (L I)  # Return bignum
            drop
            jmp zapZeroA_A  # Remove leading zeroes
         end
         call consNumCE_C  # New cell
         ld (A BIG) C  # Append it
         ld A C  # Tail of result
      loop
   end
   # Both are big
   push X
   link
   push ZERO  # <L I> Result
   link
   ld C (A DIG)  # Subtract first digits
   sub C (E DIG)
   push zsc  # Save borrow
   ld A (A BIG)  # Get tail
   call consNumCA_C  # First bignum cell
   ld (L I) C  # Init result
   do
      ld X C  # Keep last cell in X
      ld E (E BIG)  # Get tail
      cnt E  # End of E?
      if nz  # Yes
         shr E 4  # Normalize E
         do
            cnt A  # Also end of A?
         while z  # No
            ld C (A DIG)  # Subtract final digit with borrow
            ld A (A BIG)  # Next cell
            pop zsc
            subb C E  # Borrow again?
            if nb  # No
               call consNumCA_C  # Final new bignum tail
               ld (X BIG) C  # Concat to result
20             ld A (L I)  # Return bignum
               drop
               pop X
               jmp zapZeroA_A  # Remove leading zeroes
            end
            push zsc  # Save borrow
            call consNumCA_C  # New bignum tail
            ld (X BIG) C  # Concat to result
            ld X C  # Keep last cell
            ld E 0
         loop
         shr A 4  # Normalize A
         break T
      end
      cnt A  # End of A?
      if nz  # Yes
         shr A 4  # Normalize A
         do
            pop zsc
            subb A (E DIG)  # Subtract next digit with borrow
            push zsc
            call boxNum_C  # New bignum tail
            ld (C DIG) A
            ld (X BIG) C  # Concat to result
            ld X C  # Keep last cell
            ld E (E BIG)  # Next cell
            ld A 0
            cnt E  # Also end of E?
         until nz  # Yes
         shr E 4  # Normalize E
         break T
      end
      ld C (A DIG)  # Subtract digits
      pop zsc
      subb C (E DIG)
      push zsc  # Save borrow
      ld A (A BIG)
      call consNumCA_C  # New bignum cell
      ld (X BIG) C  # Concat to result
   loop
   pop zsc
   subb A E  # Subtract final shorts with borrow
   push zsc  # Save borrow
   shl A 4
   or A CNT  # Make short number
   ld (X BIG) A
   pop zsc  # Borrow?
   jnb 20  # No
   ld A (L I)  # Get result
   ld E A  # 2-complement
   do
      not (E DIG)  # Invert
      ld C (E BIG)  # Next digit
      cnt C  # Done?
   while z  # No
      ld E C  # Next digit
   loop
   xor C -16  # Invert final short
   ld (E BIG) C
   ld E A  # Result again
   do
      add (E DIG) 1  # Increment
      jnc 90  # Skip if no carry
      ld C (E BIG)  # Next digit
      cnt C  # Done?
   while z  # No
      ld E C  # Next digit
   loop
   add C (hex "10")  # Increment final short
   ld (E BIG) C
90 drop
   pop X
   call zapZeroA_A  # Remove leading zeroes
   or A SIGN  # Set negative
   ret

# Multiply two (unsigned) numbers
(code 'muluAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cmp A ZERO  # Multiply with zero?
      jeq ret  # Yes: Return zero
      shr A 4  # Normalize
      cnt E  # E also short?
      if nz  # Yes
         xchg A E
         shr A 4  # Normalize
         mul E  # Multiply
         null C  # Only lower word?
         if z  # Yes
            test A (hex "F000000000000000")  # Fit in short number?
            if z  # Yes
               shl A 4  # Make short number
               or A CNT
               ret
            end
         end
         shl C 4  # Make short number
         or C CNT
         jmp consNumAC_A  # Return bignum
      end
10    push X
      push Y
      push Z
      ld Y A  # Save digit in Y
      mul (E DIG)  # Multiply lowest digit
      call boxNum_X  # First cell
      ld (X DIG) A
      link
      push X  # <L I> Safe
      link
      ld Z C  # Keep upper word in Z
      do
         ld E (E BIG)
         cnt E  # End of bignum?
      while z  # No
         ld A (E DIG)  # Get next digit
         mul Y  # Multiply digit
         add D Z  # Add previous upper word
         ld Z C
         call boxNum_C  # Next cell
         ld (C DIG) A
         ld (X BIG) C
         ld X C
      loop
      ld A Y  # Retrieve digit
      shr E 4  # Normalize
      mul E  # Multiply
      add D Z  # Add previous upper word
      if z  # Only lower word
         test A (hex "F000000000000000")  # Fit in short number?
         if z  # Yes
            shl A 4  # Make short number
            or A CNT
20          ld (X BIG) A  # Store in final cell
            ld A (L I)  # Return bignum
            drop
            pop Z
            pop Y
            pop X
            ret
         end
      end
      shl C 4  # Make short number
      or C CNT
      call consNumAC_A  # Return bignum
      jmp 20
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      xchg A E  # Exchange args
      cmp A ZERO  # Multiply with zero?
      jeq ret  # Yes: Return zero
      shr A 4  # Normalize
      jmp 10
   end
   # Both are big
   push X
   push Y
   push Z
   ld Y A  # Arg1 in Y
   ld Z E  # Arg2 in Z
   call boxNum_X  # Zero bignum
   ld (X DIG) 0
   link
   push X  # <L I> Safe
   link
   push X  # <L -I> Safe index
   push Y  # <L -II> Arg1 index
   do
      ld A (Y DIG)  # Multiply digits
      mul (Z DIG)
      add D (X DIG)  # Add lower word to safe
      do
         ld (X DIG) A  # Store lower word
         ld E C  # Keep upper word in E
         ld A (X BIG)  # Next safe cell
         cnt A  # End of safe?
         if nz  # Yes
            call boxNum_A  # Extend safe
            ld (A DIG) 0
            ld (X BIG) A
         end
         ld X A
         ld Y (Y BIG)  # Next cell of Arg1
         cnt Y #  End of bignum?
      while z  # No
         ld A (Y DIG)  # Multiply digits
         mul (Z DIG)
         add D (X DIG)  # Add safe
         addc D E  # plus carry
      loop
      ld A Y  # Final short number
      shr A 4  # Normalize
      mul (Z DIG)
      add D (X DIG)  # Add safe
      addc D E  # plus carry
      ld (X DIG) A
      if nz  # Uppper word
         ld A (X BIG)  # Next safe cell
         cnt A  # End of safe?
         if nz  # Yes
            call boxNum_A  # Extend safe
            ld (A DIG) 0
            ld (X BIG) A
         end
         ld (A DIG) C  # Store uppper word
      end
      ld Y (L -II)  # Get Arg1 index
      ld X ((L -I) BIG)  # Advance safe index
      ld (L -I) X
      ld Z (Z BIG)  # Next cell of Arg2
      cnt Z #  End of bignum?
   until nz  # Yes
   ld A Z
   shr A 4  # Normalize
   ld Z A
   mul (Y DIG)  # Multiply digit
   add D (X DIG)  # Add lower word to safe
   do
      ld (X DIG) A  # Store lower word
      ld E C  # Keep upper word in E
      ld A (X BIG)  # Next safe cell
      cnt A  # End of safe?
      if nz  # Yes
         call boxNum_A  # Extend safe
         ld (A DIG) 0
         ld (X BIG) A
      end
      ld X A
      ld Y (Y BIG)  # Next cell of Arg1
      cnt Y #  End of bignum?
   while z  # No
      ld A (Y DIG)  # Multiply digit
      mul Z
      add D (X DIG)  # Add safe
      addc D E  # plus carry
   loop
   ld A Y  # Final short number
   shr A 4  # Normalize
   mul Z  # Multiply digit
   add D (X DIG)  # Add safe
   addc D E  # plus carry
   ld (X DIG) A
   if nz  # Uppper word
      ld A (X BIG)  # Next safe cell
      cnt A  # End of safe?
      if nz  # Yes
         call boxNum_A  # Extend safe
         ld (A DIG) 0
         ld (X BIG) A
      end
      ld (A DIG) C  # Store uppper word
   end
   ld A (L I)  # Return bignum
   drop
   pop Z
   pop Y
   pop X
   jmp zapZeroA_A  # Remove leading zeroes

# Divide two (unsigned) numbers (Knuth Vol.2, p.257)
(code 'divuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         shr A 4  # Normalize A
         ld C 0
         shr E 4  # Normalize E
         div E  # Divide
         shl A 4  # Make short number
         or A CNT  # Quotient
         ret
      end
      ld A ZERO  # Else return zero
      ret
   end
   push X
   push Y
   push Z
   link
   push ZERO  # <L III> Quotient
   push A  # <L II> Dividend 'u'
   push E  # <L I> Divisor 'v'
   link
   ld E (A DIG)  # Copy dividend
   call boxNumE_E
   ld (L II) E  # Save new 'u'
   ld X 0  # Calculate 'm'
   do
      ld A (A BIG)  # Next cell of 'u'
      cnt A  # Last one?
   while z  # No
      call boxNum_C  # Copy next digit
      ld (C DIG) (A DIG)
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   loop
   cmp A ZERO  # Trailing short zero?
   if ne  # No
      shr A 4  # Normalize
      call boxNum_C  # Append in new cell
      ld (C DIG) A
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   end
   ld Z E  # Keep last cell in Z
   push X  # <L -I> 'm'
   ld Y 0  # Last cell
   ld C 0  # Calculate 'n'
   ld A (L I)  # Get divisor
   cnt A  # Short?
   if nz  # Yes
      shr A 4  # Normalize
      call boxNumA_A  # Make big
      ld (L I) A  # Save new 'v'
      ld X A  # Keep in X
      inc C  # 'n' = 1
   else
      call boxNum_X  # Copy divisor
      ld (X DIG) (A DIG)
      ld (L I) X  # Save new 'v'
      do
         inc C  # Increment 'n'
         ld A (A BIG)  # Next cell of 'v'
         cnt A  # Last one?
      while z  # No
         ld E (A DIG)  # Copy next digit
         call boxNumE_E
         ld (X BIG) E  # Append to 'v'
         ld Y X  # Keep last cell
         ld X E
         dec (L -I)  # Decrement 'm'
      loop
      cmp A ZERO  # Trailing short zero?
      if ne  # No
         shr A 4  # Normalize
         call boxNumA_A  # Append in new cell
         ld (X BIG) A  # Append to 'v'
         ld Y X  # Set last cell
         ld X A
         dec (L -I)  # Decrement 'm'
         inc C  # Increment 'n'
      end
      null (L -I)  # 'm' negative?
      js 90  # Yes
   end
   push C  # <L -II> 'n'
   ld A 0  # Append additional cell
   call boxNumA_A
   ld (Z BIG) A
   ld Z 0  # Calculate 'd'
   do
      null (X DIG)  # Max left position?
   while ns  # No
      ld A (L II)  # Shift left 'u'
      call twiceBigA_A
      ld A (L I)  # and 'v'
      call twiceBigA_A
      inc Z  # Increment 'd'
   loop
   push Z  # <L -III> 'd'
   push (X DIG)  # <L -IV> 'v1'
   null Y  # Last cell?
   if nz  # Yes
      ld Y (Y DIG)  # Yes: Get digit
   end
   push Y  # <L -V> Last cell 'v2'
   push 0  # <S> tmp
   do
      ld C (L -I)  # Get 'm'
      ld X (L II)  # and 'u'
      do
         sub C 1
      while ge
         ld X (X BIG)  # Index X -> u
      loop
      ld E (L -II)  # Get 'n' in E
      ld Y X
      ld C 0  # 'u1' in C
      ld A 0  # 'u2' in A
      do
         ld (S) A  # Save 'u3' im tmp
         ld A C  # Shift words
         ld C (Y DIG)
         ld Y (Y BIG)
         sub E 1
      until lt
      ld Z C  # Keep 'r' = 't' in Z,Y
      ld Y A
      cmp C (L -IV)  # 'u1' = 'v1'?
      if ne  # No
         div (L -IV)  # 'q' = 't' / 'v1'
      else
         ld A -1  # 'q' = MAX
      end
      ld E A  # Save 'q' in E
      mul (L -IV)  # 'q' * 'v1'
      sub Y A  # Subtract from 'r'
      subb Z C
      do
         null Z  # 'r' <= MAX?
      while z  # Yes
         ld A E  # 'q' * 'v2'
         mul (L -V)
         cmp C Y  # > lo(r), 'u3'?
      while ge
         if eq
            cmp A (S)  # 'u3' in tmp
            break le
         end
         dec E  # Yes: Decrement 'q'
         add Y (L -IV)  # Increment 'r' by 'v1'
         addc Z 0
      loop
      ld (S) E  # Save 'q' in tmp
      ld Z X  # Get 'x'
      ld Y (L I)  # 'v'
      ld A E  # and 'q'
      mul (Y DIG)  # Multiply lowest digit
      sub (Z DIG) A  # Subtract from 'x'
      ld E 0  # Borrow in E
      subb E C
      neg E
      do
         ld Y (Y BIG)  # More in 'v'?
         cnt Y
      while z  # Yes
         ld Z (Z BIG)  # Next 'x'
         ld A (S)  # Multiply with 'q' in tmp
         mul (Y DIG)  # 't' in D
         sub (Z DIG) E  # Subtract borrow
         subb E E  # New borrow
         sub (Z DIG) A  # Subtract lo(t)
         subb E C  # Adjust borrow plus hi(t)
         neg E
      loop
      null E  # Borrow?
      if nz  # Yes
         ld Z (Z BIG)  # Next 'x'
         sub (Z DIG) E  # Subtract borrow
         if b
            dec (S)  # Decrement 'q'
            null (L -I)  # 'm' ?
            if nz  # Yes
               ld Y (L I)  # Get 'v'
               add (X DIG) (Y DIG)  # 'x' += 'v'
               push zsc  # Save carry
               do
                  ld X (X BIG)  # More?
                  ld Y (Y BIG)
                  cnt Y
               while z  # Yes
                  pop zsc  # Get carry
                  addc (X DIG) (Y DIG)  # Add digits
                  push zsc
               loop
               pop zsc  # Final carry
               addc (X DIG) 0
            end
         end
      end
      ld A (S)  # Get 'q'
      ld C (L III)  # Quotient so far
      call consNumAC_A  # Prepend 'q'
      ld (L III) A  # Store result
      sub (L -I) 1  # Decrement 'm'
   until lt
   ld A (L III)  # Return quotient in A
   call zapZeroA_A
80 drop  # Done
   pop Z
   pop Y
   pop X
   ret
90 ld A ZERO  # Dividend smaller than divisor
   jmp 80  # Return quotient 0

# Remainder of two (unsigned) numbers
(code 'remuAE_A 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         shr A 4  # Normalize A
         ld C 0
         shr E 4  # Normalize E
         div E  # Divide
         ld A C  # Get remainder
         shl A 4  # Make short number
         or A CNT  # Quotient
         ret
      end
      ret  # Remainder is in A
   end
   push X
   push Y
   push Z
   link
   push ZERO  # <L III> Quotient
   push A  # <L II> Dividend 'u'
   push E  # <L I> Divisor 'v'
   link
   ld E (A DIG)  # Copy dividend
   call boxNumE_E
   ld (L II) E  # Save new 'u'
   ld X 0  # Calculate 'm'
   do
      ld A (A BIG)  # Next cell of 'u'
      cnt A  # Last one?
   while z  # No
      call boxNum_C  # Copy next digit
      ld (C DIG) (A DIG)
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   loop
   cmp A ZERO  # Trailing short zero?
   if ne  # No
      shr A 4  # Normalize
      call boxNum_C  # Append in new cell
      ld (C DIG) A
      ld (E BIG) C
      ld E C
      inc X  # Increment 'm'
   end
   ld Z E  # Keep last cell in Z
   push X  # <L -I> 'm'
   ld Y 0  # Last cell
   ld C 0  # Calculate 'n'
   ld A (L I)  # Get divisor
   cnt A  # Short?
   if nz  # Yes
      shr A 4  # Normalize
      call boxNumA_A  # Make big
      ld (L I) A  # Save new 'v'
      ld X A  # Keep in X
      inc C  # 'n' = 1
   else
      call boxNum_X  # Copy divisor
      ld (X DIG) (A DIG)
      ld (L I) X  # Save new 'v'
      do
         inc C  # Increment 'n'
         ld A (A BIG)  # Next cell of 'v'
         cnt A  # Last one?
      while z  # No
         ld E (A DIG)  # Copy next digit
         call boxNumE_E
         ld (X BIG) E  # Append to 'v'
         ld Y X  # Keep last cell
         ld X E
         dec (L -I)  # Decrement 'm'
      loop
      cmp A ZERO  # Trailing short zero?
      if ne  # No
         shr A 4  # Normalize
         call boxNumA_A  # Append in new cell
         ld (X BIG) A  # Append to 'v'
         ld Y X  # Set last cell
         ld X A
         dec (L -I)  # Decrement 'm'
         inc C  # Increment 'n'
      end
      null (L -I)  # 'm' negative?
      js 90  # Yes
   end
   push C  # <L -II> 'n'
   ld A 0  # Append additional cell
   call boxNumA_A
   ld (Z BIG) A
   ld Z 0  # Calculate 'd'
   do
      null (X DIG)  # Max left position?
   while ns  # No
      ld A (L II)  # Shift left 'u'
      call twiceBigA_A
      ld A (L I)  # and 'v'
      call twiceBigA_A
      inc Z  # Increment 'd'
   loop
   push Z  # <L -III> 'd'
   push (X DIG)  # <L -IV> 'v1'
   null Y  # Last cell?
   if nz  # Yes
      ld Y (Y DIG)  # Yes: Get digit
   end
   push Y  # <L -V> Last cell 'v2'
   push 0  # <S> tmp
   do
      ld C (L -I)  # Get 'm'
      ld X (L II)  # and 'u'
      do
         sub C 1
      while ge
         ld X (X BIG)  # Index X -> u
      loop
      ld E (L -II)  # Get 'n' in E
      ld Y X
      ld C 0  # 'u1' in C
      ld A 0  # 'u2' in A
      do
         ld (S) A  # Save 'u3' im tmp
         ld A C  # Shift words
         ld C (Y DIG)
         ld Y (Y BIG)
         sub E 1
      until lt
      ld Z C  # Keep 'r' = 't' in Z,Y
      ld Y A
      cmp C (L -IV)  # 'u1' = 'v1'?
      if ne  # No
         div (L -IV)  # 'q' = 't' / 'v1'
      else
         ld A -1  # 'q' = MAX
      end
      ld E A  # Save 'q' in E
      mul (L -IV)  # 'q' * 'v1'
      sub Y A  # Subtract from 'r'
      subb Z C
      do
         null Z  # 'r' <= MAX?
      while z  # Yes
         ld A E  # 'q' * 'v2'
         mul (L -V)
         cmp C Y  # > lo(r), 'u3'?
      while ge
         if eq
            cmp A (S)  # 'u3' in tmp
            break le
         end
         dec E  # Yes: Decrement 'q'
         add Y (L -IV)  # Increment 'r' by 'v1'
         addc Z 0
      loop
      ld (S) E  # Save 'q' in tmp
      ld Z X  # Get 'x'
      ld Y (L I)  # 'v'
      ld A E  # and 'q'
      mul (Y DIG)  # Multiply lowest digit
      sub (Z DIG) A  # Subtract from 'x'
      ld E 0  # Borrow in E
      subb E C
      neg E
      do
         ld Y (Y BIG)  # More in 'v'?
         cnt Y
      while z  # Yes
         ld Z (Z BIG)  # Next 'x'
         ld A (S)  # Multiply with 'q' in tmp
         mul (Y DIG)  # 't' in D
         sub (Z DIG) E  # Subtract borrow
         subb E E  # New borrow
         sub (Z DIG) A  # Subtract lo(t)
         subb E C  # Adjust borrow plus hi(t)
         neg E
      loop
      null E  # Borrow?
      if nz  # Yes
         ld Z (Z BIG)  # Next 'x'
         sub (Z DIG) E  # Subtract borrow
         if b
            dec (S)  # Decrement 'q'
            ld Y (L I)  # Get 'v'
            add (X DIG) (Y DIG)  # 'x' += 'v'
            push zsc  # Save carry
            do
               ld X (X BIG)  # More?
               ld Y (Y BIG)
               cnt Y
            while z  # Yes
               pop zsc  # Get carry
               addc (X DIG) (Y DIG)  # Add digits
               push zsc
            loop
            pop zsc  # Final carry
            addc (X DIG) 0
         end
      end
      ld A (S)  # Get 'q'
      ld C (L III)  # Quotient so far
      call consNumAC_A  # Prepend 'q'
      ld (L III) A  # Store result
      sub (L -I) 1  # Decrement 'm'
   until lt
   ld A (L II)  # Get remainder
   call zapZeroA_A
   do
      null (L -III)  # 'd'?
   while nz  # Yes
      call halfA_A  # Shift right (destructive)
      dec (L -III)  # Decrement 'd'
   loop
80 drop  # Done
   pop Z
   pop Y
   pop X
   ret
90 ld A (L II)  # Dividend smaller than divisor, get remainder
   call zapZeroA_A
   jmp 80

# Increment a (signed) number
(code 'incE_A 0)
   ld A ONE
   test E SIGN  # Positive?
   jz adduAE_A  # Increment
   off E SIGN  # Make positive
   call subuAE_A  # Subtract
   cmp A ZERO  # Zero?
   if ne  # No
      or A SIGN  # Negate again
   end
   ret

# Decrement a (signed) number
(code 'decE_A 0)
   ld A ONE
   test E SIGN  # Positive?
   if z  # Yes
      xchg A E
      jmp subuAE_A  # Decrement
   end
   off E SIGN  # Make positive
   call adduAE_A  # Add
   or A SIGN  # Negate again
   ret

# Add two (signed) numbers
(code 'addAE_A 0)
   test A SIGN  # Positive?
   if z  # Yes
      test E SIGN  # Arg also positive?
      jz adduAE_A  # Add [+ A E]
      off E SIGN  # [+ A -E]
      jmp subuAE_A  # Sub
   end
   # Result negatve
   test E SIGN  # Arg positive?
   if z  # [+ -A E]
      off A SIGN
      call subuAE_A  # Sub
   else  # [+ -A -E]
      off A SIGN
      off E SIGN
      call adduAE_A  # Add
   end
   cmp A ZERO  # Zero?
   if ne  # No
      xor A SIGN  # Negate
   end
   ret

# Subtract to (signed) numbers
(code 'subAE_A 0)
   test A SIGN  # Positive?
   if z  # Yes
      test E SIGN  # Arg also positive?
      jz subuAE_A  # Sub [- A E]
      off E SIGN  # [- A -E]
      jmp adduAE_A  # Add
   end
   # Result negatve
   test E SIGN  # Arg positive?
   if z  # [- -A E]
      off A SIGN
      call adduAE_A  # Add
   else  # [- -A -E]
      off A SIGN
      off E SIGN
      call subuAE_A  # Sub
   end
   cmp A ZERO  # Zero?
   if ne  # No
      xor A SIGN  # Negate
   end
   ret

### Comparisons ###
(code 'cmpNumAE_F 0)
   test A SIGN  # A positive?
   if z  # Yes
      test E SIGN  # E also positive?
      jz cmpuAE_F  # Yes [A E]
      gt  # [A -E]
      ret
   end
   # A negative
   test E SIGN  # E positive?
   if z  # Yes
      lt  # nz [-A E]
      ret
   end
   xchg A E  # [-A -E]
   off A SIGN
   off E SIGN

# Compare two (unsigned) numbers
(code 'cmpuAE_F 0)
   cnt A  # A short?
   if nz  # Yes
      cnt E  # E also short?
      if nz  # Yes
         cmp A E  # F
         ret
      end
      lt  # nz (E is big)
      ret
   end
   # A is big
   cnt E  # E short?
   if nz  # Yes
      gt  # (E is short)
      ret
   end
   # Both are big
   push X
   push Y
   ld X 0  # Clear reverse pointers
   ld Y 0
   do
      ld C (A BIG)  # Tails equal?
      cmp C (E BIG)
      if eq  # Yes
         do
            ld C (A DIG)  # Compare digits
            cmp C (E DIG)
         while eq
            null X  # End of reversed list?
            if z  # Yes
               pop Y  # eq
               pop X
               ret
            end
            ld C (X BIG)  # Restore A
            ld (X BIG) A
            ld A X
            ld X C
            ld C (Y BIG)  # Restore E
            ld (Y BIG) E
            ld E Y
            ld Y C
         loop
         push zsc
         break T
      end
      cnt C  # End of A?
      if nz  # Yes
         cnt (E BIG)  # Also end of E?
         if nz  # Yes
            cmp C (E BIG)  # F
         else
            lt  # nz (E is bigger)
         end
         push zsc
         break T
      end
      cnt (E BIG)  # End of E?
      if nz  # Yes
         gt
         push zsc
         break T
      end
      ld (A BIG) X  # Reverse A
      ld X A
      ld A C
      ld C (E BIG)  # Reverse E
      ld (E BIG) Y
      ld Y E
      ld E C
   loop
   do
      null X  # Reversed?
   while nz  # Yes
      ld C (X BIG)  # Restore A
      ld (X BIG) A
      ld A X
      ld X C
      ld C (Y BIG)  # Restore E
      ld (Y BIG) E
      ld E Y
      ld Y C
   loop
   pop zsc  # Return flags
   pop Y
   pop X
   ret

### Conversions ###
# Make number from symbol
(code 'symToNumXA_FE 0)
   link
   push ZERO  # <L I> Safe
   link
   push A  # <L -I> Scale
   push 0  # <L -II> Sign flag
   push 0  # <L -III> Fraction flag
   ld C 0
   call symByteCX_FACX  # Get first byte
   jz 99  # None
   do
      cmp B 32  # Skip white space
   while le
      call symByteCX_FACX  # Next byte
      jz 99  # None
   loop
   cmp B (char "+")  # Plus sign?
   jz 10  # Yes
   cmp B (char "-")  # Minus sign?
   if eq  # Yes
      or (L -II) 1  # Set Sign
10    call symByteCX_FACX  # Next byte
      jz 99  # None
   end
   sub A (char "0")  # First digit
   cmp A 10  # Too big?
   jge 99  # Return NO
   shl A 4  # Make short number
   or A CNT
   ld (L I) A  # Save
   do
      call symCharCX_FACX  # More?
   while nz  # Yes
      test (L -III) 1  # Fraction?
      if nz  # Yes
         null (L -I)  # Scale?
         if z  # No
            sub A (char "0")  # Next digit
            cmp A 10  # Too big?
            jge 99  # Return NO
            cmp A 5  # Round?
            if ge  # Yes
               ld A ONE  # Increment
               ld E (L I)
               push C
               call adduAE_A
               pop C
               ld (L I) A
            end
            do
               call symByteCX_FACX  # More?
            while nz  # Yes
               sub A (char "0")  # Next digit
               cmp A 10  # Too big?
               jge 99  # Return NO
            loop
            break T
         end
      end
      cmp A (Sep0)  # Decimal separator?
      if eq  # Yes
         test (L -III) 1  # Fraction?
         jnz 99  # Return NO
         or (L -III) 1  # Set Fraction
      else
         cmp A (Sep3)  # Thousand separator?
         if ne  # No
            sub A (char "0")  # Next digit
            cmp A 10  # Too big?
            jge 99  # Return NO
            push C  # Save symByte args
            push X
            push A  # Save digit
            ld A (L I)  # Multiply number by 10
            call tenfoldA_A
            ld (L I) A  # Save
            pop E  # Get digit
            shl E 4  # Make short number
            or E CNT
            call adduAE_A  # Add to number
            ld (L I) A  # Save again
            pop X  # Pop symByte args
            pop C
            test (L -III) 1  # Fraction?
            if nz  # Yes
               dec (L -I)  # Decrement Scale
            end
         end
      end
   loop
   test (L -III) 1  # Fraction?
   if nz  # Yes
      do
         sub (L -I) 1  # Decrement Scale
      while nb  # >= 0
         ld A (L I)  # Multiply number by 10
         call tenfoldA_A
         ld (L I) A  # Save
      loop
   end
   ld E (L I)  # Get result
   test (L -II) 1  # Sign?
   if nz  # Yes
      cmp E ZERO  # Zero?
      if ne  # No
         xor E SIGN  # Negate
      end
   end
   lt  # Return YES
99 drop
   ret

# Format number to output, length, or symbol
(code 'fmtNum0AE_E 0)
   ld (Sep3) 0  # Thousand separator 0
   ld (Sep0) 0  # Decimal separator 0
(code 'fmtNumAE_E)
   push C
   push X
   push Y
   push Z
   link
   push ZERO  # <L I> Name
   link
   push A  # <L -I> Scale
   ld A E  # Get number
   cnt A  # Short number?
   if nz  # Yes
      push 16  # <L -II> mask
   else
      push 1  # <L -II> mask
   end
   shr B 3  # Get sign bit
   push A  # <L -III> Sign flag
   off E SIGN
   # Calculate buffer size
   ld A 19  # Decimal length of 'cnt' (60 bit)
   ld C E  # Get number
   do
      cnt C  # Last digit?
   while z  # No
      add A 20  # Add decimal length of 'digit' (64 bit)
      ld C (C BIG)
   loop
   add A 17  # Round up
   ld C 0  # Divide by 18
   div 18
   shl A 3  # Word count
   sub S A  # Space for incrementor
   ld (S) 1  # Init to '1'
   ld X S  # Keep pointer to incrementor in X
   sub S A  # <S III> Accumulator
   cmp S (StkLimit)  # Stack check
   jlt stkErr
   ld (S) 0  # Init to '0'
   ld A S # <S II> Top of accumulator
   push A
   push X  # <S I> Pointer to incrementor
   push X  # <S> Top of incrementor
   do
      cnt E  # Short number?
      ldnz Z E  # Yes
      if z
         ld Z (E DIG)  # Digit in Z
      end
      do
         ld A Z  # Current digit
         test A (L -II)  # Test next bit with mask
         if nz
            # Add incrementor to accumulator
            ld C 0  # Carry for BCD addition
            lea X (S III)  # Accumulator
            ld Y (S I)  # Incrementor
            do
               cmp X (S II)  # X > Top of accumulator?
               if gt  # Yes
                  add (S II) 8  # Extend accumulator
                  ld (X) 0  # with '0'
               end
               ld A (X)
               add A (Y)  # Add BCD
               add A C  # Add BCD-Carry
               ld C 0  # Clear BCD-Carry
               cmp A 1000000000000000000  # BCD overflow?
               if ge  # Yes
                  sub A 1000000000000000000
                  ld C 1  # Set BCD-Carry
               end
               ld (X) A  # Store BCD digit in accumulator
               add X 8
               add Y 8
               cmp Y (S)  # Reached top of incrementor?
            until gt  # Yes
            null C  # BCD-Carry?
            if ne  # Yes
               add (S II) 8  # Extend accumulator
               ld (X) 1  # With '1'
            end
         end
         # Shift incrementor left
         ld C 0  # Clear BCD-Carry
         ld Y (S I)  # Incrementor
         do
            ld A (Y)
            add A A  # Double
            add A C  # Add BCD-Carry
            ld C 0  # Clear BCD-Carry
            cmp A 1000000000000000000  # BCD overflow?
            if ge  # Yes
               sub A 1000000000000000000
               ld C 1  # Set BCD-Carry
            end
            ld (Y) A  # Store BCD digit in incrementor
            add Y 8
            cmp Y (S)  # Reached top of incrementor?
         until gt  # Yes
         null C  # BCD-Carry?
         if ne  # Yes
            add (S) 8  # Extend incrementor
            ld (Y) 1  # With '1'
         end
         shl (L -II) 1  # Shift bit mask
      until z
      cnt E  # Short number?
   while z  # No
      ld E (E BIG)  # Next digit
      cnt E  # Short number?
      if nz  # Yes
         ld A 16  # Mask
      else
         ld A 1
      end
      ld (L -II) A  # Set bit mask
   loop
   ld Y (S II)  # Top of accumulator
   lea Z (S III)  # Accumulator
   null (L -I)  # Scale negative?
   if s  # Yes
      cmp (L -I) -1  # Direct print?
      if eq  # Yes
         test (L -III) 1  # Sign?
         if nz  # Yes
            ld B (char "-")  # Output sign
            call (PutB)
         end
         ld A (Y)  # Output highest word
         call outWordA
         do
            sub Y 8  # More?
            cmp Y Z
         while ge  # Yes
            ld A (Y)  # Output words in reverse order
            ld E 100000000000000000  # Digit scale
            do
               ld C 0  # Divide by digit scale
               div E
               push C  # Save remainder
               add B (char "0")  # Output next digit
               call (PutB)
               cmp E 1  # Done?
            while ne  # No
               ld C 0  # Divide digit scale by 10
               ld A E
               div 10
               ld E A
               pop A  # Get remainder
            loop
         loop
      else  # Calculate length
         ld A Y  # Top of accumulator
         sub A Z  # Accumulator
         shr A 3  # Number of accumulator words
         mul 18  # Number of digits
         ld E A
         ld A (Y)  # Length of highest word
         do
            inc E  # Increment length
            ld C 0  # Divide by 10
            div 10
            null A  # Done?
         until z  # Yes
         test (L -III) 1  # Sign?
         if nz  # Yes
            inc E  # Space for '-'
         end
         shl E 4  # Make short number
         or E CNT
      end
      drop
   else
      ld C 4  # Build name
      lea X (L I)
      test (L -III) 1  # Sign?
      if nz  # Yes
         ld B (char "-")  # Insert sign
         call byteSymBCX_CX
      end
      push C  # Save name index
      ld A Y  # Top of accumulator
      sub A Z  # Accumulator
      shr A 3  # Number of accumulator words
      mul 18  # Number of digits
      ld E A  # Calculate length-1
      ld A (Y)  # Highest word
      do
         ld C 0  # Divide by 10
         div 10
         null A  # Done?
      while nz  # No
         inc E  # Increment length
      loop
      pop C  # Restore name index
      sub E (L -I)  # Scale
      ld (L -I) E  # Decrement by Length-1
      if lt  # Scale < 0
         ld B (char "0")  # Prepend '0'
         call byteSymBCX_CX
         ld A (Sep0)  # Prepend decimal separator
         call charSymACX_CX
         do
            cmp (L -I) -1   # Scale
         while lt
            inc (L -I)  # Increment scale
            ld B (char "0")  # Ouput zeroes
            call byteSymBCX_CX
         loop
      end
      ld A (Y)  # Pack highest word
      call fmtWordACX_CX
      do
         sub Y 8  # More?
         cmp Y Z
      while ge  # Yes
         ld A (Y)  # Pack words in reverse order
         ld E 100000000000000000  # Digit scale
         do
            push A
            call fmtScaleCX_CX  # Handle scale character(s)
            pop A
            push C  # Save name index
            ld C 0  # Divide by digit scale
            div E
            xchg C (S)  # Save remainder, restore name index
            add B (char "0")  # Pack next digit
            call byteSymBCX_CX
            cmp E 1  # Done?
         while ne  # No
            push C  # Save name index
            ld C 0  # Divide digit scale by 10
            ld A E
            div 10
            pop C  # Restore name index
            ld E A
            pop A  # Get remainder
         loop
      loop
      ld X (L I)  # Get name
      drop
      call consSymX_E
   end
   pop Z
   pop Y
   pop X
   pop C
   ret

(code 'fmtWordACX_CX 0)
   cmp A 9  # Single digit?
   if gt  # No
      ld E C  # Save C
      ld C 0  # Divide by 10
      div 10
      push C  # Save remainder
      ld C E  # Restore C
      call fmtWordACX_CX  # Recurse
      call fmtScaleCX_CX  # Handle scale character(s)
      pop A
   end
   add B (char "0")  # Make ASCII digit
   jmp byteSymBCX_CX

(code 'fmtScaleCX_CX 0)
   null (L -I)  # Scale null?
   if z  # Yes
      ld A (Sep0)  # Output decimal separator
      call charSymACX_CX
   else
      null (Sep3)  # Thousand separator?
      if nz  # Yes
         ld A (L -I)  # Scale > 0?
         null A
         if nsz  # Yes
            push C
            ld C 0  # Modulus 3
            div 3
            null C
            pop C
            if z
               ld A (Sep3)  # Output thousand separator
               call charSymACX_CX
            end
         end
      end
   end
   dec (L -I)  # Decrement scale
   ret

# (format 'num ['cnt ['sym1 ['sym2]]]) -> sym
# (format 'sym|lst ['cnt ['sym1 ['sym2]]]) -> num
(code 'doFormat 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)  # Eval first
   eval
   link
   push E  # <L I> 'num' | 'sym'
   link
   ld Y (Y CDR)  # Second arg
   ld E (Y)
   eval  # Eval 'cnt'
   cmp E Nil  # Any?
   if eq  # No
      ld E 0  # Zero
   else
      call xCntEX_FE  # Extract 'cnt'
   end
   push E  # <L -I> Scale
   push (char ".")  # <L -II> Sep0
   push 0  # Sep3
   ld Y (Y CDR)  # Third arg?
   atom Y
   if z  # Yes
      ld E (Y)
      eval  # Eval 'sym1'
      num E  # Need symbol
      jnz symErrEX
      sym E
      jz symErrEX
      call firstCharE_A
      ld (L -II) A  # Sep0
      ld Y (Y CDR)  # Fourth arg?
      atom Y
      if z  # Yes
         ld E (Y)
         eval  # Eval 'sym2'
         num E  # Need symbol
         jnz symErrEX
         sym E
         jz symErrEX
         call firstCharE_A
         ld (S) A
      end
   end
   pop (Sep3)  # Get Sep3
   pop (Sep0)  # and Sep0
   ld E (L I)  # Get 'num' | 'sym'
   num E  # Number?
   if nz  # Yes
      pop A  # Get scale
      call fmtNumAE_E  # Convert to string
   else
      sym E  # Symbol?
      if nz  # Yes
         ld X (E TAIL)
         call nameX_X  # Get name
      else
         link
         push ZERO  # <L II> Number safe
         push ZERO  # <L I> Result
         ld C 4  # Build name
         ld X S
         link
         call packECX_CX
         ld X (L I)  # Get result
         drop
      end
      pop A  # Get scale
      call symToNumXA_FE  # Convert to number
      if ge  # Failed
         ld E Nil
      end
   end
   drop
   pop Y
   pop X
   ret

### Arithmetics ###
# (+ 'num ..) -> num
(code 'doAdd 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call addAE_A  # Add
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (- 'num ..) -> num
(code 'doSub 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld Y (Y CDR)  # More than one arg?
      atom Y
      if nz  # No: Unary minus
         cmp E ZERO  # Zero?
         if ne  # No
            xor E SIGN  # Negate
         end
      else
         link
         push ZERO  # <L II> Safe
         push E  # <L I> Result
         link
         do
            ld E (Y)
            eval  # Eval next arg
            cmp E Nil
            jz 10  # Abort if NIL
            num E  # Number?
            jz numErrEX  # No
            ld (L II) E  # Save arg
            ld A (L I)  # Result
            call subAE_A  # Subtract
            ld (L I) A  # Result
            ld Y (Y CDR)  # More args?
            atom Y
         until nz  # No
         ld E (L I)  # Result
10       drop
      end
   end
   pop Y
   pop X
   ret

# (inc 'num) -> num
# (inc 'var ['num]) -> num
(code 'doInc 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      link
      push E  # <L I/II> First arg
      link
      num E  # Number?
      if nz  # Yes
         call incE_A  # Increment it
      else
         call checkVarEX
         sym E  # Symbol?
         if nz  # Yes
            sym (E TAIL)  # External symbol?
            if nz  # Yes
               call dbTouchEX  # Touch it
            end
         end
         ld Y (Y CDR)  # Next arg?
         atom Y
         if nz  # No
            ld E (E)  # Get VAL
            cmp E Nil  # NIL?
            ldz A E
            if ne  # No
               num E  # Number?
               jz numErrEX  # No
               call incE_A  # Increment it
               ld ((L I)) A  # Set new value
            end
         else
            ld E (Y)
            eval  # Eval next arg
            tuck E  # <L I> Second arg
            link
            ld A ((L II))  # First arg's VAL
            cmp A Nil  # NIL?
            if ne  # No
               num A  # Number?
               jz numErrAX  # No
               ld E (L I)  # Second arg
               cmp E Nil  # NIL?
               ldz A E
               if ne  # No
                  num E
                  jz numErrEX  # No
                  call addAE_A  # Add
                  ld ((L II)) A  # Set new value
               end
            end
         end
      end
      ld E A  # Get result
      drop
   end
   pop Y
   pop X
   ret

# (dec 'num) -> num
# (dec 'var ['num]) -> num
(code 'doDec 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      link
      push E  # <L I/II> First arg
      link
      num E  # Number?
      if nz  # Yes
         call decE_A  # Decrement it
      else
         call checkVarEX
         sym E  # Symbol?
         if nz  # Yes
            sym (E TAIL)  # External symbol?
            if nz  # Yes
               call dbTouchEX  # Touch it
            end
         end
         ld Y (Y CDR)  # Next arg?
         atom Y
         if nz  # No
            ld E (E)  # Get VAL
            cmp E Nil  # NIL?
            ldz A E
            if ne  # No
               num E  # Number?
               jz numErrEX  # No
               call decE_A  # Decrement it
               ld ((L I)) A  # Set new value
            end
         else
            ld E (Y)
            eval  # Eval next arg
            tuck E  # <L I> Second arg
            link
            ld A ((L II))  # First arg's VAL
            cmp A Nil  # NIL?
            if ne  # No
               num A  # Number?
               jz numErrAX  # No
               ld E (L I)  # Second arg
               cmp E Nil  # NIL?
               ldz A E
               if ne  # No
                  num E
                  jz numErrEX  # No
                  call subAE_A  # Subtract
                  ld ((L II)) A  # Set new value
               end
            end
         end
      end
      ld E A  # Get result
      drop
   end
   pop Y
   pop X
   ret

# (* 'num ..) -> num
(code 'doMul 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call muluAE_A  # Multiply
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (*/ 'num1 ['num2 ..] 'num3) -> num
(code 'doMulDiv 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L III> Safe
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # Next arg
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         atom (Y CDR)  # More args?
      while z  # Yes
         ld A (L I)  # Result
         call muluAE_A  # Multiply
         ld (L I) A  # Result
      loop
      cmp E ZERO  # Zero?
      jeq divErrX  # Yes
      ld A E  # Last argument
      call shruA_A  # / 2
      ld (L III) A  # Save halved argument
      ld E (L I)  # Get product, keep in safe
      call adduAE_A  # Add for rounding
      ld (L I) A  # Save rounded product
      ld E (L II)  # Last argument
      call divuAE_A  # Divide
      ld E A  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (/ 'num ..) -> num
(code 'doDiv 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         inc B
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         cmp E ZERO  # Zero?
         jeq divErrX  # Yes
         test E SIGN  # Arg negative?
         if nz  # Yes
            off E SIGN  # Make argument positive
            xor (L -I) 1  # Toggle result sign
         end
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call divuAE_A  # Divide
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (% 'num ..) -> num
(code 'doRem 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      ld B 0  # Init sign
      test E SIGN
      if nz
         off E SIGN
         ld B 1
      end
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      push A  # <L -I> Sign flag
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jz 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         cmp E ZERO  # Zero?
         jeq divErrX  # Yes
         off E SIGN  # Make argument positive
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call remuAE_A  # Remainder
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
      test (L -I) 1  # Sign?
      if nz  # Yes
         cmp E ZERO  # Zero?
         if ne  # No
            or E SIGN  # Set negative
         end
      end
10    drop
   end
   pop Y
   pop X
   ret

# (>> 'cnt 'num) -> num
(code 'doShift 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   call evCntXY_FE  # Get shift count
   link
   push ZERO  # <L I> Safe
   link
   push E  # <L -I> Shift count
   ld Y (Y CDR)  # Second arg
   ld E (Y)
   eval  # Eval number
   cmp E Nil  # Any?
   if nz  # Yes
      num E  # Number?
      jz numErrEX  # No
      cmp E ZERO  # Zero?
      if ne  # No
         ld (L I) E  # Save
         ld A E  # Number in A
         off A SIGN  # Make positive
         and E SIGN  # Sign bit
         push E  # <L -II> Sign bit
         null (L -I)  # Shift count?
         if nz  # Yes
            if ns  # Positive
               do
                  cnt A  # A short?
               while z  # No
                  cmp (L -I) 64  # Large shift count?
               while ge  # Yes
                  ld A (A BIG)  # Discard 64 bits
                  jz 90  # Jump if done
                  sub (L -I) 64  # Decrement count
               loop
               call shruA_A  # Non-destructive
               ld (L I) A
               do
                  dec (L -I)  # Shift count?
               while nz
                  call halfA_A  # Shift right (destructive)
                  ld (L I) A
               loop
            else
               do
                  cmp (L -I) -64  # Large shift count?
               while le  # Yes
                  ld E 0  # Insert 64 zero-bits
                  call consNumEA_A
                  ld (L I) A
                  add (L -I) 64  # Increment count
                  jz 90  # Jump if done
               loop
               call shluA_A  # Non-destructive
               ld (L I) A
               do
                  inc (L -I)  # Shift count?
               while nz
                  call twiceA_A  # Shift left (destructive)
                  ld (L I) A
               loop
            end
         end
90       cmp A ZERO  # Result zero?
         if ne  # No
            or A (L -II)  # Sign bit
         end
         ld E A  # Get result
      end
   end
   drop
   pop Y
   pop X
   ret

# (lt0 'any) -> num | NIL
(code 'doLt0 2)
   ld E ((E CDR))  # Eval arg
   eval
   num E  # Number?
   jz retNil
   test E SIGN  # Negative?
   jz retNil
   ret  # Yes: Return num

# (le0 'any) -> num | NIL
(code 'doLe0 2)
   ld E ((E CDR))  # Eval arg
   eval
   num E  # Number?
   jz retNil
   cmp E ZERO  # Zero?
   if ne  # No
      test E SIGN  # Negative?
      jz retNil
   end
   ret  # Yes: Return num

# (ge0 'any) -> num | NIL
(code 'doGe0 2)
   ld E ((E CDR))  # Eval arg
   eval
   num E  # Number?
   jz retNil
   test E SIGN  # Positive?
   jnz retNil
   ret  # Yes: Return num

# (gt0 'any) -> num | NIL
(code 'doGt0 2)
   ld E ((E CDR))  # Eval arg
   eval
   num E  # Number?
   jz retNil
   cmp E ZERO  # Zero?
   jeq retNil
   test E SIGN  # Positive?
   jnz retNil
   ret  # Yes: Return num

# (abs 'num) -> num
(code 'doAbs 2)
   push X
   ld X E
   ld E ((E CDR))  # Eval arg
   eval
   cmp E Nil  # Any?
   if nz  # Yes
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
   end
   pop X
   ret

### Bit operations ###
# (bit? 'num ..) -> num | NIL
(code 'doBitQ 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   num E  # Number?
   jz numErrEX  # No
   off E SIGN  # Clear sign
   link
   push E  # <L I> Bit mask
   link
   do
      ld Y (Y CDR)  # More args?
      atom Y
   while z  # Yes
      ld E (Y)
      eval  # Eval next arg
      cmp E Nil
   while ne  # Abort if NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      ld C (L I)  # Get mask
      do
         cnt C  # C short?
      while z  # No
         cnt E  # E short?
         jnz 10  # Yes: Return NIL
         ld A (E DIG)  # Get digit
         and A (C DIG)  # Match?
         cmp A (C DIG)
         jne 10  # No: Return NIL
         ld C (C BIG)
         ld E (E BIG)
      loop
      cnt E  # E also short?
      if z  # No
         shr C 4  # Normalize
         ld E (E DIG)  # Get digit
      end
      and E C  # Match?
      cmp E C
      if ne  # No
10       ld E Nil  # Return NIL
         drop
         pop Y
         pop X
         ret
      end
   loop
   ld E (L I)  # Return bit mask
   drop
   pop Y
   pop X
   ret

# (& 'num ..) -> num
(code 'doBitAnd 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call anduAE_A  # Bitwise AND
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (| 'num ..) -> num
(code 'doBitOr 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call oruAE_A  # Bitwise OR
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (x| 'num ..) -> num
(code 'doBitXor 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      off E SIGN  # Clear sign
      link
      push ZERO  # <L II> Safe
      push E  # <L I> Result
      link
      do
         ld Y (Y CDR)  # More args?
         atom Y
      while z  # Yes
         ld E (Y)
         eval  # Eval next arg
         cmp E Nil
         jeq 10  # Abort if NIL
         num E  # Number?
         jz numErrEX  # No
         off E SIGN  # Clear sign
         ld (L II) E  # Save arg
         ld A (L I)  # Result
         call xoruAE_A  # Bitwise XOR
         ld (L I) A  # Result
      loop
      ld E (L I)  # Result
10    drop
   end
   pop Y
   pop X
   ret

# (sqrt 'num ['flg|num]) -> num
(code 'doSqrt 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld E (Y)
   eval  # Eval first arg
   cmp E Nil
   if ne  # Non-NIL
      num E  # Number?
      jz numErrEX  # No
      test E SIGN  # Negative?
      jnz argErrEX  # Yes
      link
      push E  #  <L II/V> First arg
      link
      ld E ((Y CDR))  # Second arg
      eval  # flg|num
      tuck E  # <L I/IV> Second arg
      link
      ld A (L II)  # First arg in A
      num E  # Second arg numeric?
      if nz  # Yes
         call muluAE_A  # Multiply with scale
      end
      cnt A  # Short?
      if nz  # Yes
         shr A 4  # Normalize
         ld C (hex "400000000000000")  # Mask
         ld E 0  # Result
         do
            add E C  # result += mask
            cmp E A  # > number?
            if gt  # Yes
               sub E C  # Undo
            else
               sub A E  # Subtract result
               add E C  # Add mask to result
            end
            shr E 1  # Shift result
            shr C 2  # Shift mask
         until z
         cmp (L I) Nil  # Second arg?
         if ne  # Yes
            cmp A E  # Round?
            if gt  # Yes
               inc E  # Increment result
            end
         end
         shl E 4  # Make short number
         or E CNT
      else
         tuck A  # <L III> Number
         push A  # <L II> Mask
         push ZERO  # <L I> Result
         link
         ld C 0  # Init mask
         ld E ONE
         call consNumCE_C
         ld (L II) C  # Save
         ld E (A DIG)  # Copy number
         call boxNumE_E
         ld (L III) E  # Save
         do
            ld A (A BIG)  # Next cell
            cnt A  # Last one?
         while z  # No
            call boxNum_C  # Copy next digit
            ld (C DIG) (A DIG)
            ld (E BIG) C
            ld E C
            call boxNum_X  # Extend mask
            ld (X DIG) 0
            ld (X BIG) (L II)
            ld (L II) X  # Save
         loop
         ld (E BIG) A  # Copy trailing short
         ld A (L II)  # Mask
         do
            ld E (L III)  # Number
            call cmpuAE_F  # Mask <= number?
         while le  # Yes
            call twiceA_A  # Times 4
            call twiceA_A
         loop
         do
            ld A (L I)  # result += mask
            ld E (L II)
            call adduAE_A
            ld (L I) A
            ld E (L III)  # > number?
            call cmpuAE_F
            if gt  # Yes
               ld E (L II)  # Undo
               call subuAE_A
            else
               ld A (L III)  # Subtract result
               ld E (L I)
               call subuAE_A
               ld (L III) A
               ld A (L I)  # Add mask to result
               ld E (L II)
               call adduAE_A
            end
            call halfA_A  # Shift result
            ld (L I) A
            ld A (L II)  # Shift mask twice
            call halfA_A
            call halfA_A
            ld (L II) A
            cmp A ZERO  # Zero?
         until eq  # Yes
         ld E (L I)  # Get result
         cmp (L IV) Nil  # Second arg?
         if ne  # Yes
            ld A (L III)  # Get number
            call cmpuAE_F  # Round?
            if gt  # Yes
               ld A ONE  # Increment result
               call adduAE_A
               ld E A
            end
         end
      end
      drop
   end
   pop Y
   pop X
   ret

### Random generator ###
(code 'initSeedE_E 0)
   push C  # Counter
   ld C 0
   do
      atom E  # Pair?
   while z  # Yes
      push E  # Recurse on CAR
      ld E (E)
      call initSeedE_E
      add C E
      pop E  # Loop on CDR
      ld E (E CDR)
   loop
   cmp E Nil  # NIL?
   if ne  # No
      num E  # Need number
      if z  # Must be symbol
         ld E (E TAIL)
         call nameE_E  # Get name
      end
      cnt E  # Short?
      if nz  # Yes
         shr E 3  # Keep sign
      else
         test E SIGN  # E positive?
         if nz  # Yes
            inc C  # Add 1
            off E SIGN  # Make positive
         end
         do
            add C (E DIG)  # Add next digit
            ld E (E BIG)
            cnt E  # Done?
         until nz  # Yes
         shr E 4  # Final short
      end
      add C E  # Add
   end
   ld E C  # Return counter
   pop C
   ret

# (seed 'any) -> cnt
(code 'doSeed 2)
   ld E ((E CDR))  # Eval arg
   eval
   call initSeedE_E  # Initialize 'Seed'
   ld A 6364136223846793005  # Multiplier
   mul E  # times 'Seed'
   ld (Seed) D  # Save
   shr A (- 32 3)  # Get higher 32 bits
   ld E A
   off E 7  # Keep sign
   or E CNT  # Make short number
   ret

# (hash 'any) -> cnt
(code 'doHash 2)
   push X
   ld E ((E CDR))  # Eval arg
   eval
   call initSeedE_E  # Initialize
   ld X E  # Value in X
   ld C 64  # Counter
   ld E 0  # Result
   do
      ld A X  # Value XOR Result
      xor A E
      test A 1  # LSB set?
      if nz  # Yes
         xor E (hex "14002")  # CRC Polynom x**16 + x**15 + x**2 + 1
      end
      shr X 1  # Shift value
      shr E 1  # and result
      dec C  # Done?
   until z  # Yes
   inc E  # Plus 1
   shl E 4  # Make short number
   or E CNT  # Make short number
   pop X
   ret

# (rand ['cnt1 'cnt2] | ['T]) -> cnt | flg
(code 'doRand 2)
   push X
   push Y
   ld X E
   ld Y (E CDR)  # Y on args
   ld A 6364136223846793005  # Multiplier
   mul (Seed)  # times 'Seed'
   add D 1  # plus 1
   ld (Seed) D  # Save
   ld E (Y)
   eval  # Eval first arg
   ld A (Seed)  # Random low word
   cmp E Nil  # Any?
   if eq  # No
      shr A (- 32 3)  # Get higher 32 bits
      ld E A
      off E 7  # Keep sign
      or E CNT  # Make short number
      pop Y
      pop X
      ret
   end
   cmp E TSym  # Boolean
   if eq
      add A A  # Highest bit?
      if nc  # No
         ld E Nil  # Return NIL
      end  # else return T
      pop Y
      pop X
      ret
   end
   call xCntEX_FE  # Get cnt1
   push E  # Save it
   ld Y (Y CDR)  # Second arg
   call evCntXY_FE  # Get cnt2
   inc E  # Seed % (cnt2 + 1 - cnt1) + cnt1
   sub E (S)
   if nz  # Skip if zero
      ld D (Seed)  # Get 'Seed'
      shl C 32  # Get middle 64 bits
      shr A 32
      or A C
      ld C 0
      div E  # Modulus in C
   end
   pop E  # + cnt1
   add E C
   pop Y
   pop X
   jmp boxE_E  # Return short number

# vi:et:ts=3:sw=3