This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/polynom.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{pars}, @var{forecast}] =} rbf (@var{X})
## @deftypefnx{Function File} {[@var{pars}, @var{forecast}] =} rbf (@var{X}, @var{paramName}, @var{paramValue}, @dots{})
##
## Models the data making a polynomial ansatz.
##
## @strong{Input}
##
## @table @var
## @item X
## Must be realvector. The output will be alligned with the input.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The embedding dimension. Synonymous with flag '-m' from TISEAN
## [default = 2].
## @item d
## Delay used for embedding [default = 1].
## @item p
## Order of the polynomial [default = 2].
## @item n
## Number of points for the fit. The other points are used to estimate
## the out of sample error [default = length (@var{X})].
## @item l
## The length of the predicted series [default = 0].
## @end table
##
## @strong{Output}
##
## @table @var
## @item pars
## This structure contains parameters used for the fit. It has the following
## fields:
## @itemize @bullet
## @item
## free - contains the number of free parameters of the fit
## @item
## norm - contains the norm used for the fit
## @item
## coeffs - contains the coefficients used for the fit
## @item
## err - err(1) is the in sample error, and err(2) is the out of sample error
## (if it exists)
## @end itemize
## @item forecast
## Contains the forecasted points. It's length is equal to the value of
## parameter @var{l}
## @end table
##
## @seealso{demo polynom}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on polynom of TISEAN 3.0.1
## https://github.com/heggus/Tisean"

function [pars, forecast] = polynom (X, varargin)

  # Initial input validation
  if (nargin < 1 || nargout > 2)
    print_usage;
  endif

  if ((isvector (X) == false) || (isreal(X) == false))
    error ('Octave:invalid-input-arg', "X must be a realvector");
  endif

  # Default parameters
  embdim   = 2;
  delay    = 1;
  degree   = 2;
  insample = length (X);
  clength  = 0;

  #### Parse the input
  p = inputParser ();
  p.FunctionName = "polynom";

  isPositiveIntScalar    = @(x) isreal(x) && isscalar (x) && ...
                             (x > 0) && (x-round(x) == 0);
  isNonNegativeIntScalar = @(x) isPositiveIntScalar (x) || (length (x) == 1 ...
                                                            &&(x == 0));

  p.addParamValue ("m", embdim, isPositiveIntScalar);
  p.addParamValue ("d", delay, isPositiveIntScalar);
  p.addParamValue ("p", degree, isPositiveIntScalar);
  p.addParamValue ("n", insample, isPositiveIntScalar);
  p.addParamValue ("l", clength, isNonNegativeIntScalar);

  p.parse (varargin{:});

  # Assign inputs
  embdim   = p.Results.m;
  delay    = p.Results.d;
  degree   = p.Results.p;
  insample = p.Results.n;
  clength  = p.Results.l;

  # Input corrections from main ()
  if (insample > length (X))
    warning ('Octave:tisean', "Parameter 'n' was too large, it has been \
reduced to: %d", length (X));
    insample = length (X);
  endif

  # Correct X to always have more rows than columns
  trnspsd = false;
  if (rows (X) < columns (X))
    X = X.';
    trnspsd = true;
  endif

  [free_par, fit_norm, coeffs, sample_err, forecast] = ...
    __polynom__ (X, embdim, delay, degree, insample, clength);

  if (trnspsd)
    free_par   = free_par.';
    fit_norm   = fit_norm.';
    coeffs     = coeffs.';
    sample_err = sample_err.';
    forecast   = forecast.';
  endif

  pars = struct ("free",free_par, "norm",fit_norm,"coeffs",coeffs, ...
                 "err", sample_err);
endfunction

%!demo
%! idx = (1:2500).';
%! # sin_saw is a sinusoid multiplied by a saw function
%! sin_saw = (5 + mod (idx, 165) ./15) .* sin (idx.* 2 * pi /32);
%!
%! forc_no = 170; %Number of forecasted points
%! [p,forecast]  = polynom (sin_saw(1:end-forc_no), 'm', 2, 'd', 6, 'p', 4,
%!                          'n',length(idx)-forc_no, 'l',forc_no);
%!
%! plot (idx(end-forc_no+1:end), sin_saw(end-forc_no+1:end),'b',...
%!       idx(end-forc_no+1:end), forecast,'r.')
%! legend ('Actual Data', 'Forecasted Data')
%! axis tight
%!###############################################################

%!shared tisean_res
%! free_par   = 15;
%! fit_norm   = 7.288850e-01;
%! coeffs = [0 0 0 0 1.069020e+00;0 0 0 1 1.148981e-02;0 0 0 2 8.774236e-03;0 0 1 0 2.917788e-02;0 0 1 1 -2.070487e-02;0 0 2 0 2.716510e-02;0 1 0 0 -1.946794e-01;0 1 0 1 2.836742e-02;0 1 1 0 2.224498e-02;0 2 0 0 6.323062e-03;1 0 0 0 -1.384873e-01;1 0 0 1 9.227327e-03;1 0 1 0 -1.296314e-02;1 1 0 0 1.344875e-01;2 0 0 0 -1.325876e+00];
%! sample_err = [1.736542e-01;1.811800e-01];
%! forecast = [5.943424e-01; 4.346730e-01; 8.785541e-01; -3.759484e-02; 9.668226e-01; -2.578617e-01; 9.175962e-01; -1.684470e-01; 1.092976e+00; -6.234285e-01; 7.463370e-01; 2.116272e-01; 1.016354e+00; -4.107574e-01; 1.056590e+00];
%! tisean_res = {free_par, fit_norm, coeffs, sample_err, forecast};

%!test
%! hen = henon (1000);
%! hen = hen(:,1);
%! [pars,forc] = polynom (hen, 'm',4,'d',4,'p',2,'n',800,'l',15);
%! assert ({pars.free, pars.norm,pars.coeffs,pars.err,forc}, ...
%!         tisean_res, -1e-6);

%% Check if by default the cast does not take place
%!test
%! [p,f] = polynom(henon(100)(:,1));
%! assert (f, []);

%% Check for matrix singularity error
%!error <singular> polynom (1:10);

%% ensure input correction warnings are called
%% they are promoted to errors so that the program does not do computation
%!error <too large> warning("error","Octave:tisean"); polynom (1:10, 'n',11);