/usr/share/octave/packages/tisean-0.2.3/polynom.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{pars}, @var{forecast}] =} rbf (@var{X})
## @deftypefnx{Function File} {[@var{pars}, @var{forecast}] =} rbf (@var{X}, @var{paramName}, @var{paramValue}, @dots{})
##
## Models the data making a polynomial ansatz.
##
## @strong{Input}
##
## @table @var
## @item X
## Must be realvector. The output will be alligned with the input.
## @end table
##
## @strong{Parameters}
##
## @table @var
## @item m
## The embedding dimension. Synonymous with flag '-m' from TISEAN
## [default = 2].
## @item d
## Delay used for embedding [default = 1].
## @item p
## Order of the polynomial [default = 2].
## @item n
## Number of points for the fit. The other points are used to estimate
## the out of sample error [default = length (@var{X})].
## @item l
## The length of the predicted series [default = 0].
## @end table
##
## @strong{Output}
##
## @table @var
## @item pars
## This structure contains parameters used for the fit. It has the following
## fields:
## @itemize @bullet
## @item
## free - contains the number of free parameters of the fit
## @item
## norm - contains the norm used for the fit
## @item
## coeffs - contains the coefficients used for the fit
## @item
## err - err(1) is the in sample error, and err(2) is the out of sample error
## (if it exists)
## @end itemize
## @item forecast
## Contains the forecasted points. It's length is equal to the value of
## parameter @var{l}
## @end table
##
## @seealso{demo polynom}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on polynom of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function [pars, forecast] = polynom (X, varargin)
# Initial input validation
if (nargin < 1 || nargout > 2)
print_usage;
endif
if ((isvector (X) == false) || (isreal(X) == false))
error ('Octave:invalid-input-arg', "X must be a realvector");
endif
# Default parameters
embdim = 2;
delay = 1;
degree = 2;
insample = length (X);
clength = 0;
#### Parse the input
p = inputParser ();
p.FunctionName = "polynom";
isPositiveIntScalar = @(x) isreal(x) && isscalar (x) && ...
(x > 0) && (x-round(x) == 0);
isNonNegativeIntScalar = @(x) isPositiveIntScalar (x) || (length (x) == 1 ...
&&(x == 0));
p.addParamValue ("m", embdim, isPositiveIntScalar);
p.addParamValue ("d", delay, isPositiveIntScalar);
p.addParamValue ("p", degree, isPositiveIntScalar);
p.addParamValue ("n", insample, isPositiveIntScalar);
p.addParamValue ("l", clength, isNonNegativeIntScalar);
p.parse (varargin{:});
# Assign inputs
embdim = p.Results.m;
delay = p.Results.d;
degree = p.Results.p;
insample = p.Results.n;
clength = p.Results.l;
# Input corrections from main ()
if (insample > length (X))
warning ('Octave:tisean', "Parameter 'n' was too large, it has been \
reduced to: %d", length (X));
insample = length (X);
endif
# Correct X to always have more rows than columns
trnspsd = false;
if (rows (X) < columns (X))
X = X.';
trnspsd = true;
endif
[free_par, fit_norm, coeffs, sample_err, forecast] = ...
__polynom__ (X, embdim, delay, degree, insample, clength);
if (trnspsd)
free_par = free_par.';
fit_norm = fit_norm.';
coeffs = coeffs.';
sample_err = sample_err.';
forecast = forecast.';
endif
pars = struct ("free",free_par, "norm",fit_norm,"coeffs",coeffs, ...
"err", sample_err);
endfunction
%!demo
%! idx = (1:2500).';
%! # sin_saw is a sinusoid multiplied by a saw function
%! sin_saw = (5 + mod (idx, 165) ./15) .* sin (idx.* 2 * pi /32);
%!
%! forc_no = 170; %Number of forecasted points
%! [p,forecast] = polynom (sin_saw(1:end-forc_no), 'm', 2, 'd', 6, 'p', 4,
%! 'n',length(idx)-forc_no, 'l',forc_no);
%!
%! plot (idx(end-forc_no+1:end), sin_saw(end-forc_no+1:end),'b',...
%! idx(end-forc_no+1:end), forecast,'r.')
%! legend ('Actual Data', 'Forecasted Data')
%! axis tight
%!###############################################################
%!shared tisean_res
%! free_par = 15;
%! fit_norm = 7.288850e-01;
%! coeffs = [0 0 0 0 1.069020e+00;0 0 0 1 1.148981e-02;0 0 0 2 8.774236e-03;0 0 1 0 2.917788e-02;0 0 1 1 -2.070487e-02;0 0 2 0 2.716510e-02;0 1 0 0 -1.946794e-01;0 1 0 1 2.836742e-02;0 1 1 0 2.224498e-02;0 2 0 0 6.323062e-03;1 0 0 0 -1.384873e-01;1 0 0 1 9.227327e-03;1 0 1 0 -1.296314e-02;1 1 0 0 1.344875e-01;2 0 0 0 -1.325876e+00];
%! sample_err = [1.736542e-01;1.811800e-01];
%! forecast = [5.943424e-01; 4.346730e-01; 8.785541e-01; -3.759484e-02; 9.668226e-01; -2.578617e-01; 9.175962e-01; -1.684470e-01; 1.092976e+00; -6.234285e-01; 7.463370e-01; 2.116272e-01; 1.016354e+00; -4.107574e-01; 1.056590e+00];
%! tisean_res = {free_par, fit_norm, coeffs, sample_err, forecast};
%!test
%! hen = henon (1000);
%! hen = hen(:,1);
%! [pars,forc] = polynom (hen, 'm',4,'d',4,'p',2,'n',800,'l',15);
%! assert ({pars.free, pars.norm,pars.coeffs,pars.err,forc}, ...
%! tisean_res, -1e-6);
%% Check if by default the cast does not take place
%!test
%! [p,f] = polynom(henon(100)(:,1));
%! assert (f, []);
%% Check for matrix singularity error
%!error <singular> polynom (1:10);
%% ensure input correction warnings are called
%% they are promoted to errors so that the program does not do computation
%!error <too large> warning("error","Octave:tisean"); polynom (1:10, 'n',11);
|