This file is indexed.

/usr/share/octave/packages/tisean-0.2.3/c2t.m is in octave-tisean 0.2.3-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE.  See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING.  If not,
## see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c2t (@var{d2_c1_out})
##
## This program calculates the maximum likelihood estimator (the Takens'
## estimator) from correlation sums of the output of d2 (the 'c2' field of 
## the d2 output) or c1 (the 'c1' field of c1 output).
##
## The estimator is calculated using the following equation (the integral
## is computed for the discrete values of C(r) by assuming an exact power
## law between the available points):
##
## @iftex
## @tex
## $$D_T(r)=\frac{C(r)}{\int_{0}^{r}dx\, \frac{C(x)}{x}}$$
## @end tex
## @end iftex
## @ifnottex
## @example
##             C(r)
## D (r) = ------------
##  T       /r    C(x)
##          |  dx ----
##          /0     x
## @end example
## @end ifnottex
##
## @strong{Input}
##
## The input needs to be the output of d2 or c1.
##
## @strong{Output}
##
## The output is a struct array of the same length as the input.
## It contains the following fiels:
##
## @table @var
## @item dim
## The dimension for each matrix @var{t}.
## @item t
## Matrix with two columns. The first contains epsilon (the first column
## of field 'c2' from d2 output or field 'c1' from c1 output) and the second
## is the maximum likelihood estimator (Takens' estimator).
## @end table
##
## @seealso{demo c2t, d2, c1, c2g, av_d2}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn

## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c2t of TISEAN 3.0.1 
## https://github.com/heggus/Tisean"

function output = c2t (d2_c1_out)

  if (nargin != 1)
    print_usage;
  endif

  if (!(isfield (d2_c1_out, "dim") && (isfield (d2_c1_out, "c2") ...
        && isfield (d2_c1_out, "d2") && isfield (d2_c1_out, "h2") ...
        || isfield (d2_c1_out, "c1"))))
    error ('Octave:invalid-input-arg', ["d2_c1_out must be the output of ", ...
                                        "d2 or c1"]);
  endif

  t_out = cell (length (d2_c1_out), 1);
  for j = 1:size(d2_c1_out,1)
    tmp     = d2_c1_out(j);

    if (isfield (d2_c1_out, "c2"))
      corr_sums = tmp.c2;
    elseif (isfield (d2_c1_out, "c1"))
      corr_sums = tmp.c1;
    # there is no else: we checked in input validation that d2_c1_out has one
    # of the above
    endif

    # Limit to only the first positive correlation sums
    # (do not calculate output for any past first negative sum)
    idx_lt0 = min (find (corr_sums(:,2) <= 0));
    if (!isempty (idx_lt0))
      corr_sums  = corr_sums(1:idx_lt0-1,:);
    endif

    [s,idx] = sort (corr_sums(:,1));
    emat    = log (corr_sums(idx,1));
    cmat    = log (corr_sums(idx,2));

    b = (emat(2:end) .* cmat(1:end-1) .- emat(1:end-1) .* cmat(2:end)) ...
        ./ (emat(2:end) .- emat(1:end-1));
    a = (cmat(2:end) - cmat(1:end-1)) ./ (emat(2:end) - emat(1:end-1));

    cint       = (exp (b) ./ a) ...
                 .* (exp (a .* emat(2:end)) - exp (a .* emat(1:end-1)));
    # If a(i) == 0 then the right side above is '+/-Inf * (1-1)' which is NaN.
    tidx       = find (isnan (cint));
    cint(tidx) = exp (b(tidx)) .* (emat(tidx+1) - emat(tidx));
    cint       = cumsum (cint);

    t_out{j} = [exp(emat(2:end)),exp(cmat(2:end))./cint];
  endfor

  output = struct ("dim", {d2_c1_out.dim}.', "t", t_out);

#  Below is the same code as above but uses loops
#  It is left to easily see what the algorithm does.
#  output = d2_c1_out;
#  for j = 1:size(d2_c1_out,1)
#    tmp = d2_c1_out(j);
#    [s,idx] = sort (corr_sums(:,1));
#    emat = log (corr_sums(idx,1));
#    cmat = log (corr_sums(idx,2));

#    c2_out = zeros (length(corr_sums)-1,2);
#    cint = 0;
#    for i = 2:length(corr_sums)
#      b = (emat(i)*cmat(i-1)-emat(i-1)*cmat(i))/(emat(i)-emat(i-1));
#      a = (cmat(i)-cmat(i-1))/(emat(i)-emat(i-1));

#      if (a != 0)
#        cint=cint+(exp(b)/a)*(exp(a*emat(i))-exp(a*emat(i-1)));
#      else
#        cint=cint+exp(b)*(emat(i)-emat(i-1));
#      endif
#      c2_out(i-1,1) = exp (emat(i));
#      c2_out(i-1,2) = exp (cmat(i))/cint;
#    endfor
#    output(j).c2 = c2_out;
#  endfor


endfunction

%!demo
%! vals          = d2 (henon (1000), 'd', 1, 't', 50, 'm', 5);
%! takens        = c2t (vals);
%! do_plot_slope = @(x) semilogx (x{1}(:,1),x{1}(:,2),'r');
%! hold on
%! arrayfun (do_plot_slope, {takens.t});
%! hold off
%! axis tight
%! ylim ([0 3]);
%! xlabel ("Epsilon")
%! title ("Takens' Estimator");
%!###############################################################

%!test
%! c2t_res = [0.00274151703 14.7681456;0.00293963822 7.62825966;0.00315207872 5.24064684;0.0033798716 4.0903101;0.00362412469 3.3594861;0.00388602936 2.86986566;0.00416686293 2.51803875;0.00446798978 2.26902509;0.00479088025 2.09245157;0.00513710314 1.94326866;0.00550834602 1.82226741;0.00590642029 1.73174965;0.00633325987 1.63774204;0.00679094903 1.57059276;0.00728171039 1.50973487;0.00780794164 1.455006;0.00837219786 1.40932345;0.00897723623 1.37041831;0.00962599367 1.33392417;0.0103216404 1.29980099];
%! val = d2 (henon (1000), 'd', 1, 't', 50, 'm', 5);
%! res = c2t (val);
%! assert (cell2mat({res.t}.')(1:length(c2t_res),:), c2t_res, -2.51e-5);

%% Check if limiting of negative correlation sums works
%!test
%! c2t_res = [1.20000005 11.9785480;1.29999995 7.00581074;1.50000000 5.05822706;2.00000000 1.75614762];
%! in_c2   = [2 4;1.5 5;1.3 3;1.2 2.5;1.1 2.3;1 -1;0.9 1.3;0.8 1.4;0.7 1.6];
%! in      = struct ("dim",1,"c2",in_c2,"d2",0,"h2",0);
%! res = c2t (in);
%! assert (cell2mat({res.t}.'), c2t_res, -1e-5);

%% Check if funciton accepts output from c1 and produces nonzero output
%!test
%! c2t_c1_res = c2t (c1 (henon (1000)));
%! assert (!isequal (c2t_c1_res, []));
%! assert (isfield (c2t_c1_res, "t"));

%% Testing input validation
%!error <output> av_d2 (1);