/usr/share/octave/packages/tisean-0.2.3/c2t.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c2t (@var{d2_c1_out})
##
## This program calculates the maximum likelihood estimator (the Takens'
## estimator) from correlation sums of the output of d2 (the 'c2' field of
## the d2 output) or c1 (the 'c1' field of c1 output).
##
## The estimator is calculated using the following equation (the integral
## is computed for the discrete values of C(r) by assuming an exact power
## law between the available points):
##
## @iftex
## @tex
## $$D_T(r)=\frac{C(r)}{\int_{0}^{r}dx\, \frac{C(x)}{x}}$$
## @end tex
## @end iftex
## @ifnottex
## @example
## C(r)
## D (r) = ------------
## T /r C(x)
## | dx ----
## /0 x
## @end example
## @end ifnottex
##
## @strong{Input}
##
## The input needs to be the output of d2 or c1.
##
## @strong{Output}
##
## The output is a struct array of the same length as the input.
## It contains the following fiels:
##
## @table @var
## @item dim
## The dimension for each matrix @var{t}.
## @item t
## Matrix with two columns. The first contains epsilon (the first column
## of field 'c2' from d2 output or field 'c1' from c1 output) and the second
## is the maximum likelihood estimator (Takens' estimator).
## @end table
##
## @seealso{demo c2t, d2, c1, c2g, av_d2}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c2t of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = c2t (d2_c1_out)
if (nargin != 1)
print_usage;
endif
if (!(isfield (d2_c1_out, "dim") && (isfield (d2_c1_out, "c2") ...
&& isfield (d2_c1_out, "d2") && isfield (d2_c1_out, "h2") ...
|| isfield (d2_c1_out, "c1"))))
error ('Octave:invalid-input-arg', ["d2_c1_out must be the output of ", ...
"d2 or c1"]);
endif
t_out = cell (length (d2_c1_out), 1);
for j = 1:size(d2_c1_out,1)
tmp = d2_c1_out(j);
if (isfield (d2_c1_out, "c2"))
corr_sums = tmp.c2;
elseif (isfield (d2_c1_out, "c1"))
corr_sums = tmp.c1;
# there is no else: we checked in input validation that d2_c1_out has one
# of the above
endif
# Limit to only the first positive correlation sums
# (do not calculate output for any past first negative sum)
idx_lt0 = min (find (corr_sums(:,2) <= 0));
if (!isempty (idx_lt0))
corr_sums = corr_sums(1:idx_lt0-1,:);
endif
[s,idx] = sort (corr_sums(:,1));
emat = log (corr_sums(idx,1));
cmat = log (corr_sums(idx,2));
b = (emat(2:end) .* cmat(1:end-1) .- emat(1:end-1) .* cmat(2:end)) ...
./ (emat(2:end) .- emat(1:end-1));
a = (cmat(2:end) - cmat(1:end-1)) ./ (emat(2:end) - emat(1:end-1));
cint = (exp (b) ./ a) ...
.* (exp (a .* emat(2:end)) - exp (a .* emat(1:end-1)));
# If a(i) == 0 then the right side above is '+/-Inf * (1-1)' which is NaN.
tidx = find (isnan (cint));
cint(tidx) = exp (b(tidx)) .* (emat(tidx+1) - emat(tidx));
cint = cumsum (cint);
t_out{j} = [exp(emat(2:end)),exp(cmat(2:end))./cint];
endfor
output = struct ("dim", {d2_c1_out.dim}.', "t", t_out);
# Below is the same code as above but uses loops
# It is left to easily see what the algorithm does.
# output = d2_c1_out;
# for j = 1:size(d2_c1_out,1)
# tmp = d2_c1_out(j);
# [s,idx] = sort (corr_sums(:,1));
# emat = log (corr_sums(idx,1));
# cmat = log (corr_sums(idx,2));
# c2_out = zeros (length(corr_sums)-1,2);
# cint = 0;
# for i = 2:length(corr_sums)
# b = (emat(i)*cmat(i-1)-emat(i-1)*cmat(i))/(emat(i)-emat(i-1));
# a = (cmat(i)-cmat(i-1))/(emat(i)-emat(i-1));
# if (a != 0)
# cint=cint+(exp(b)/a)*(exp(a*emat(i))-exp(a*emat(i-1)));
# else
# cint=cint+exp(b)*(emat(i)-emat(i-1));
# endif
# c2_out(i-1,1) = exp (emat(i));
# c2_out(i-1,2) = exp (cmat(i))/cint;
# endfor
# output(j).c2 = c2_out;
# endfor
endfunction
%!demo
%! vals = d2 (henon (1000), 'd', 1, 't', 50, 'm', 5);
%! takens = c2t (vals);
%! do_plot_slope = @(x) semilogx (x{1}(:,1),x{1}(:,2),'r');
%! hold on
%! arrayfun (do_plot_slope, {takens.t});
%! hold off
%! axis tight
%! ylim ([0 3]);
%! xlabel ("Epsilon")
%! title ("Takens' Estimator");
%!###############################################################
%!test
%! c2t_res = [0.00274151703 14.7681456;0.00293963822 7.62825966;0.00315207872 5.24064684;0.0033798716 4.0903101;0.00362412469 3.3594861;0.00388602936 2.86986566;0.00416686293 2.51803875;0.00446798978 2.26902509;0.00479088025 2.09245157;0.00513710314 1.94326866;0.00550834602 1.82226741;0.00590642029 1.73174965;0.00633325987 1.63774204;0.00679094903 1.57059276;0.00728171039 1.50973487;0.00780794164 1.455006;0.00837219786 1.40932345;0.00897723623 1.37041831;0.00962599367 1.33392417;0.0103216404 1.29980099];
%! val = d2 (henon (1000), 'd', 1, 't', 50, 'm', 5);
%! res = c2t (val);
%! assert (cell2mat({res.t}.')(1:length(c2t_res),:), c2t_res, -2.51e-5);
%% Check if limiting of negative correlation sums works
%!test
%! c2t_res = [1.20000005 11.9785480;1.29999995 7.00581074;1.50000000 5.05822706;2.00000000 1.75614762];
%! in_c2 = [2 4;1.5 5;1.3 3;1.2 2.5;1.1 2.3;1 -1;0.9 1.3;0.8 1.4;0.7 1.6];
%! in = struct ("dim",1,"c2",in_c2,"d2",0,"h2",0);
%! res = c2t (in);
%! assert (cell2mat({res.t}.'), c2t_res, -1e-5);
%% Check if funciton accepts output from c1 and produces nonzero output
%!test
%! c2t_c1_res = c2t (c1 (henon (1000)));
%! assert (!isequal (c2t_c1_res, []));
%! assert (isfield (c2t_c1_res, "t"));
%% Testing input validation
%!error <output> av_d2 (1);
|