/usr/share/octave/packages/tisean-0.2.3/c2g.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c2g (@var{d2_out})
##
## This program calculates the Gaussian kernel correlation integral
## and its logarithmic derivatice from correlation sums calculated by d2
## (the 'c2' field of the d2 output).
##
## It uses the following formula to calculate the Gaussian kernel correlation
## integral:
##
## @iftex
## @tex
## $$C_G(r)=\frac{1}{r^2}\int_{0}^{\infty}dx\, e^{-\frac{x^2}{2r^2}}C(x)$$
## @end tex
## @end iftex
## @ifnottex
## @example
## /00 2
## 1 | / x \
## C (r) = --- | dx exp |- ----- | x C(x)
## G 2 | \ 2 /
## r /0 2r
## @end example
## @end ifnottex
##
## And the logarithmic derivative is calculated using:
##
## @iftex
## @tex
## $$D_G(r) = \frac{d}{d\log r}\log{C_G(r)}$$
## @end tex
## @end iftex
## @ifnottex
## @example
## d
## D (r) = ------- log C (r)
## G d log r G
## @end example
## @end ifnottex
##
## @strong{Input}
##
## The input needs to be the output of d2.
##
## @strong{Output}
##
## The output is a struct array of the same length as the input.
## It contains the following fiels:
##
## @table @var
## @item dim
## The dimension for each matrix @var{g}.
## @item g
## Matrix with three columns. The first contains epsilon (the first column
## of field 'c2' from the d2 output), the second is the Gaussian kernel
## correlation integral and the third its logarithmic derivative.
## @end table
##
## @seealso{demo c2g, d2, c2t, av_d2}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c2g of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = c2g (d2_out)
if (nargin != 1)
print_usage;
endif
if ((!isfield (d2_out, "dim")) || (!isfield (d2_out, "c2")) ...
|| (!isfield (d2_out, "d2")) || (!isfield (d2_out, "h2")))
error ('Octave:invalid-input-arg', "d2_out must be the output of d2");
endif
if (! exist ("__c2g__"))
error ('Octave:tisean', ["__c2g__ was not found in path ",...
"- if package was installed properly the ",...
"compiler might not support C++11 standard"])
endif
# Create the cell that will become the 'g' field of the output
g_out = cell (length (d2_out),1);
# Calculate output for each struct in the input struct array
for i = 1:size(d2_out,1)
tmp = d2_out(i);
# Limit to only the first positive correlation sums
# (do not calculate output for any past first negative sum)
idx_lt0 = min (find (tmp.c2(:,2) <= 0));
if (!isempty (idx_lt0))
tmp.c2 = tmp.c2(1:idx_lt0-1,:);
endif
[s,idx] = sort (tmp.c2(:,1));
emat = log (tmp.c2(idx,1));
cmat = log (tmp.c2(idx,2));
# Create column vectors instead of using loop
k_id = 1:length(tmp.c2)-1;
f = exp((emat(k_id+1).*cmat(k_id).-emat(k_id).*cmat(k_id+1))
./(emat(k_id+1).-emat(k_id)));
d = (cmat(k_id+1).-cmat(k_id))./(emat(k_id+1).-emat(k_id));
a = emat(k_id);
b = emat(k_id+1);
# Create row vector instead of using loop
h = exp(emat).';
# Create output
# __c2g__ performs integration on the function func and funcd
# (depending on whether 'false' or 'true' is passed as the last argument)
# from original TISEAN on vectors (matrices) of parameters
g = sum (__c2g__ (h, f, d, a, b, false));
gd = sum (__c2g__ (h, f, d, a, b, true));
de = emat(end);
cgauss = g ./ (h.^2) + exp (-exp (2.*de) ./ (2.*h.^2));
cgd = gd ./ (h.^4) + (2 + exp (2*de) ./ h.^2) ...
.* exp (-exp (2*de) ./ (2.*h.^2));
g_out{i} = [h.', cgauss.', (-2+cgd./cgauss).'];
endfor
output = struct ("dim", {d2_out.dim}.', "g", g_out);
endfunction
%!demo
%! vals = d2 (henon (5000), 'd', 1, 't', 50);
%! kernel = c2g (vals);
%! do_plot_slope = @(x) semilogx (x{1}(:,1),x{1}(:,3),'r');
%! hold on
%! arrayfun (do_plot_slope, {kernel.g});
%! hold off
%! axis tight
%! xlabel ("Epsilon")
%! ylabel ("logarithmic derivative")
%! title ("Gaussian kernel");
%!###############################################################
%% test against the result obtain from program c2g of TISEAN 3.0.1
%!test
%! c2g_res = [0.00255674845539033 0.00262371218 1.56393838;0.00274151703342795 0.00291572767 1.46379328;0.00293963821604848 0.00321952766 1.37964845;0.00315207871608436 0.00353588979 1.30904245;0.00337987160310149 0.00386583689 1.2498455;0.00362412468530238 0.00421059737 1.20023394;0.00388602935709059 0.00457157521 1.1586616;0.00416686292737722 0.00495032407 1.12383032;0.00446798978373408 0.00534852408 1.09465814;0.00479088025167584 0.00576799177 1.07024431;0.00513710314407945 0.00621065963 1.04983807;0.00550834601745009 0.00667859521 1.03281331;0.00590642029419541 0.00717399921 1.01864672;0.00633325986564159 0.00769920321 1.00690293;0.00679094903171062 0.00825670082 0.997214317;0.00728171039372683 0.00884913001 0.989262819;0.00780794164165854 0.00947930664 0.982763529;0.00837219785898924 0.0101501858 0.977451086;0.00897723622620106 0.0108648958 0.973080397;0.00962599366903305 0.011626686 0.969439983];
%! val = d2 (henon (1000), 'd', 1, 't', 50, 'm', 5);
%! res = c2g (val);
%! assert (cell2mat ({res.g}.')(1:rows(c2g_res),:), c2g_res, -1e-5);
%% input validation
%!error <output> c2g (1)
|