/usr/share/octave/packages/tisean-0.2.3/c2d.m is in octave-tisean 0.2.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | ## Copyright (C) 1996-2015 Piotr Held
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public
## License as published by the Free Software Foundation;
## either version 3 of the License, or (at your option) any
## later version.
##
## Octave is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied
## warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
## PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public
## License along with Octave; see the file COPYING. If not,
## see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{output} =} c2d (@var{c1_out})
## @deftypefnx{Function File} {@var{output} =} c2d (@var{c1_out}, @var{iav})
##
## This program calculates the local slopes by fitting straight lines onto
## c1 correlation sum data (the 'c1' field of the c1 output).
##
## @strong{Inputs}
##
## @table @var
## @item c1_out
## The output of function c1.
## @item iav
## Set what range the average should be calculated on
## (-@var{iav}, @dots{}, +@var{iav}) [default = 1].
## @end table
##
## @strong{Output}
##
## The output is a struct array of the same length as the input.
## It contains the following fiels:
##
## @table @var
## @item dim
## The dimension for each matrix @var{d}.
## @item d
## Contains the local slopes of the logarithm of the correlation sum.
## @end table
##
## @seealso{c1, d2}
##
## @strong{Algorithms}
##
## The algorithms for this functions have been taken from the TISEAN package.
## @end deftypefn
## Author: Piotr Held <pjheld@gmail.com>.
## This function is based on c2t of TISEAN 3.0.1
## https://github.com/heggus/Tisean"
function output = c2d (c1_out, iav)
if (nargin != 1 && nargin != 2)
print_usage;
endif
# Assign default value if not provided
if (nargin == 1)
iav = 1;
endif
# Input validation
if ((!isfield (c1_out, "dim")) || (!isfield (c1_out, "c1")))
error ('Octave:invalid-input-arg', "c1_out must be the output of c1");
endif
if (iav < 1)
error ("Octave:invalid-input-arg", "iav is too small");
endif
isPositiveInteger = @(x) isreal(x) && isscalar (x) && (x > 0) ...
&& (x-round(x) == 0);
if (!isPositiveInteger(iav))
error ("Octave:invalid-input-arg", "iav must be a positive integer");
endif
# Calculate output
d_out = cell (length (c1_out),1);
# Calculate output for each struct in the input struct array
for i = 1:size(c1_out,1)
tmp = c1_out(i);
# Limit to only the first positive correlation sums
# (do not calculate output for any past first negative sum)
idx_lt0 = min (find (tmp.c1(:,2) <= 0));
if (!isempty (idx_lt0))
tmp.c1 = tmp.c1(1:idx_lt0-1,:);
endif
# Create log of input
emat = log (tmp.c1(:,1));
cmat = log (tmp.c1(:,2));
# Calculate slopes (output)
idx = iav+1:length(emat)-iav;
sidx = idx.' + (-iav:iav); # this is instead of loops in original TISEAN
sx = sum (emat(sidx), 2);
sa = sum ((emat(sidx)-sx/(2*iav+1)).^2, 2);
a = sum (cmat(sidx).*(emat(sidx)-sx/(2*iav+1)), 2);
a = a ./ sa;
d_out{i} = [(exp (0.5*(emat(idx+iav) + emat(idx-iav)))), a];
endfor
output = struct ("dim", {c1_out.dim}.', "d", d_out);
endfunction
%!test
%! c2d_res = [0.0802038833 1.30005336;0.129080057 1.26480043;0.183470041 1.31809092;0.25040397 1.31098711;0.315470815 1.24258268;0.393951952 1.35819948;0.498613715 1.54006541;0.63493669 1.72518802;0.775567234 1.81067181;0.925195694 1.87816846;1.08199906 2.0603919;1.2544421 2.44373727;1.42295694 3.00687265;1.60953939 3.80531406;1.79531026 4.09372187;0.127373591 1.40561604;0.193788737 1.33527219;0.270300597 1.433846;0.353568524 1.41282487;0.441288173 1.41831315;0.533717155 1.58177018;0.651995957 1.82422757;0.808923244 2.11301899;0.942690194 2.21815157;1.07797575 2.36958146;1.22073698 2.72570252;1.38917232 3.26388025;1.53312647 3.84382915;1.69071579 4.38460922;1.84578943 4.4093585;0.140068099 1.46819866;0.21520929 1.39887428;0.301112086 1.4297173;0.374655783 1.3967756;0.474572212 1.42229402;0.591202319 1.59270585;0.71742928 1.85023475;0.87131691 2.03683972;1.01490164 2.27680421;1.18083644 2.5573194;1.30776179 2.91171169;1.4800781 3.71028256;1.6081382 4.36042261;1.76051617 5.08404732;1.90384173 4.97274971];
%% reset random generator
%%! clear __c1__
%! c1_r = c1 (henon(1000), 'mindim', 8, 'd', 2, 't', 50, 'n',500, 'i', 0.5);
%! res = c2d (c1_r,2);
%% rows 1,2,16,17 and are excluded because TISEAN 'c1' uses floats
%% and the ported function 'c1' uses doubles
%! good_idx = [3:15,19:45];
%! assert (cell2mat({res.d}.')(good_idx,:), c2d_res(good_idx,:), -2.5e-5);
%% bad_idx are used as the idx of those that were further apart than the rest
%! bad_idx = setdiff (1:length(c2d_res),good_idx);
%! assert (cell2mat({res.d}.')(bad_idx,:), c2d_res(bad_idx,:), 5e-3);
%% testing input validation
%!error <small> c2d (struct ("dim", 1,"c1", 2),0);
%!error <integer> c2d (struct ("dim", 1,"c1", 2),1.5);
|