This file is indexed.

/usr/share/octave/packages/signal-1.3.2/levinson.m is in octave-signal 1.3.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
## Copyright (C) 1999 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2006 Peter V. Lanspeary, <peter.lanspeary@.adelaide.edu.au>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {[@var{a}, @var{v}, @var{ref}] =} levinson (@var{acf})
## @deftypefnx {Function File} {[@dots{}] =} levinson (@var{acf}, @var{p})
##
## Use the Durbin-Levinson algorithm to solve:
##    toeplitz(acf(1:p)) * x = -acf(2:p+1).
## The solution [1, x'] is the denominator of an all pole filter
## approximation to the signal x which generated the autocorrelation
## function acf.
##
## acf is the autocorrelation function for lags 0 to p.
## p defaults to length(acf)-1.
## Returns
##   a=[1, x'] the denominator filter coefficients.
##   v= variance of the white noise = square of the numerator constant
##   ref = reflection coefficients = coefficients of the lattice
##         implementation of the filter
## Use freqz(sqrt(v),a) to plot the power spectrum.
##
## REFERENCE
## [1] Steven M. Kay and Stanley Lawrence Marple Jr.:
##   "Spectrum analysis -- a modern perspective",
##   Proceedings of the IEEE, Vol 69, pp 1380-1419, Nov., 1981
## @end deftypefn

## Based on:
##    yulewalker.m
##    Copyright (C) 1995 Friedrich Leisch <Friedrich.Leisch@ci.tuwien.ac.at>
##    GPL license

## FIXME: Matlab doesn't return reflection coefficients and
##        errors in addition to the polynomial a.
## FIXME: What is the difference between aryule, levinson,
##        ac2poly, ac2ar, lpc, etc.?

function [a, v, ref] = levinson (acf, p)

  if ( nargin<1 )
    print_usage;
  elseif( ~isvector(acf) || length(acf)<2 )
    error( "levinson: arg 1 (acf) must be vector of length >1\n");
  elseif ( nargin>1 && ( ~isscalar(p) || fix(p)~=p ) )
    error( "levinson: arg 2 (p) must be integer >0\n");
  else
    if ((nargin == 1)||(p>=length(acf))) p = length(acf) - 1; endif
    if( columns(acf)>1 ) acf=acf(:); endif      # force a column vector

    if nargout < 3 && p < 100
      ## direct solution [O(p^3), but no loops so slightly faster for small p]
      ##   Kay & Marple Eqn (2.39)
      R = toeplitz(acf(1:p), conj(acf(1:p)));
      a = R \ -acf(2:p+1);
      a = [ 1, a.' ];
      v = real( a*conj(acf(1:p+1)) );
    else
      ## durbin-levinson [O(p^2), so significantly faster for large p]
      ##   Kay & Marple Eqns (2.42-2.46)
      ref = zeros(p,1);
      g = -acf(2)/acf(1);
      a = [ g ];
      v = real( ( 1 - g*conj(g)) * acf(1) );
      ref(1) = g;
      for t = 2 : p
        g = -(acf(t+1) + a * acf(t:-1:2)) / v;
        a = [ a+g*conj(a(t-1:-1:1)), g ];
        v = v * ( 1 - real(g*conj(g)) ) ;
        ref(t) = g;
      endfor
      a = [1, a];
    endif
  endif

endfunction