This file is indexed.

/usr/share/octave/packages/signal-1.3.2/hilbert.m is in octave-signal 1.3.2-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
## Copyright (C) 2000 Paul Kienzle  <pkienzle@users.sf.net>
## Copyright (C) 2007 Peter L. Soendergaard
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {@var{h} =} hilbert (@var{f}, @var{N}, @var{dim})
## Analytic extension of real valued signal.
##
## @code{@var{h} = hilbert (@var{f})} computes the extension of the real
## valued signal @var{f} to an analytic signal. If @var{f} is a matrix,
## the transformation is applied to each column. For N-D arrays,
## the transformation is applied to the first non-singleton dimension.
##
## @code{real (@var{h})} contains the original signal @var{f}.
## @code{imag (@var{h})} contains the Hilbert transform of @var{f}.
##
## @code{hilbert (@var{f}, @var{N})} does the same using a length @var{N}
## Hilbert transform. The result will also have length @var{N}.
##
## @code{hilbert (@var{f}, [], @var{dim})} or
## @code{hilbert (@var{f}, @var{N}, @var{dim})} does the same along
## dimension @var{dim}.
## @end deftypefn

function f=hilbert(f, N = [], dim = [])

  ## ------ PRE: initialization and dimension shifting ---------

  if (nargin<1 || nargin>3)
    print_usage;
  endif

  if ~isreal(f)
    warning ('HILBERT: ignoring imaginary part of signal');
    f = real (f);
  endif

  D=ndims(f);

  ## Dummy assignment.
  order=1;

  if isempty(dim)
    dim=1;

    if sum(size(f)>1)==1
      ## We have a vector, find the dimension where it lives.
      dim=find(size(f)>1);
    endif

  else
    if (numel(dim)~=1 || ~isnumeric(dim))
      error('HILBERT: dim must be a scalar.');
    endif
    if rem(dim,1)~=0
      error('HILBERT: dim must be an integer.');
    endif
    if (dim<1) || (dim>D)
      error('HILBERT: dim must be in the range from 1 to %d.',D);
    endif

  endif

  if (numel(N)>1 || ~isnumeric(N))
    error('N must be a scalar.');
  elseif (~isempty(N) && rem(N,1)~=0)
    error('N must be an integer.');
  endif

  if dim>1
    order=[dim, 1:dim-1,dim+1:D];

    ## Put the desired dimension first.
    f=permute(f,order);

  endif

  Ls=size(f,1);

  ## If N is empty it is set to be the length of the transform.
  if isempty(N)
    N=Ls;
  endif

  ## Remember the exact size for later and modify it for the new length
  permutedsize=size(f);
  permutedsize(1)=N;

  ## Reshape f to a matrix.
  f=reshape(f,size(f,1),numel(f)/size(f,1));
  W=size(f,2);

  if ~isempty(N)
    f=postpad(f,N);
  endif

  ## ------- actual computation -----------------
  if N>2
    f=fft(f);

    if rem(N,2)==0
      f=[f(1,:);
         2*f(2:N/2,:);
         f(N/2+1,:);
         zeros(N/2-1,W)];
    else
      f=[f(1,:);
         2*f(2:(N+1)/2,:);
         zeros((N-1)/2,W)];
    endif

    f=ifft(f);
  endif

  ## ------- POST: Restoration of dimensions ------------

  ## Restore the original, permuted shape.
  f=reshape(f,permutedsize);

  if dim>1
    ## Undo the permutation.
    f=ipermute(f,order);
  endif

endfunction

%!demo
%! ## notice that the imaginary signal is phase-shifted 90 degrees
%! t=linspace(0,10,256);
%! z = hilbert(sin(2*pi*0.5*t));
%! grid on; plot(t,real(z),';real;',t,imag(z),';imag;');

%!demo
%! ## the magnitude of the hilbert transform eliminates the carrier
%! t=linspace(0,10,1024);
%! x=5*cos(0.2*t).*sin(100*t);
%! grid on; plot(t,x,'g;z;',t,abs(hilbert(x)),'b;|hilbert(z)|;');