/usr/share/octave/packages/signal-1.3.2/hilbert.m is in octave-signal 1.3.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2007 Peter L. Soendergaard
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{h} =} hilbert (@var{f}, @var{N}, @var{dim})
## Analytic extension of real valued signal.
##
## @code{@var{h} = hilbert (@var{f})} computes the extension of the real
## valued signal @var{f} to an analytic signal. If @var{f} is a matrix,
## the transformation is applied to each column. For N-D arrays,
## the transformation is applied to the first non-singleton dimension.
##
## @code{real (@var{h})} contains the original signal @var{f}.
## @code{imag (@var{h})} contains the Hilbert transform of @var{f}.
##
## @code{hilbert (@var{f}, @var{N})} does the same using a length @var{N}
## Hilbert transform. The result will also have length @var{N}.
##
## @code{hilbert (@var{f}, [], @var{dim})} or
## @code{hilbert (@var{f}, @var{N}, @var{dim})} does the same along
## dimension @var{dim}.
## @end deftypefn
function f=hilbert(f, N = [], dim = [])
## ------ PRE: initialization and dimension shifting ---------
if (nargin<1 || nargin>3)
print_usage;
endif
if ~isreal(f)
warning ('HILBERT: ignoring imaginary part of signal');
f = real (f);
endif
D=ndims(f);
## Dummy assignment.
order=1;
if isempty(dim)
dim=1;
if sum(size(f)>1)==1
## We have a vector, find the dimension where it lives.
dim=find(size(f)>1);
endif
else
if (numel(dim)~=1 || ~isnumeric(dim))
error('HILBERT: dim must be a scalar.');
endif
if rem(dim,1)~=0
error('HILBERT: dim must be an integer.');
endif
if (dim<1) || (dim>D)
error('HILBERT: dim must be in the range from 1 to %d.',D);
endif
endif
if (numel(N)>1 || ~isnumeric(N))
error('N must be a scalar.');
elseif (~isempty(N) && rem(N,1)~=0)
error('N must be an integer.');
endif
if dim>1
order=[dim, 1:dim-1,dim+1:D];
## Put the desired dimension first.
f=permute(f,order);
endif
Ls=size(f,1);
## If N is empty it is set to be the length of the transform.
if isempty(N)
N=Ls;
endif
## Remember the exact size for later and modify it for the new length
permutedsize=size(f);
permutedsize(1)=N;
## Reshape f to a matrix.
f=reshape(f,size(f,1),numel(f)/size(f,1));
W=size(f,2);
if ~isempty(N)
f=postpad(f,N);
endif
## ------- actual computation -----------------
if N>2
f=fft(f);
if rem(N,2)==0
f=[f(1,:);
2*f(2:N/2,:);
f(N/2+1,:);
zeros(N/2-1,W)];
else
f=[f(1,:);
2*f(2:(N+1)/2,:);
zeros((N-1)/2,W)];
endif
f=ifft(f);
endif
## ------- POST: Restoration of dimensions ------------
## Restore the original, permuted shape.
f=reshape(f,permutedsize);
if dim>1
## Undo the permutation.
f=ipermute(f,order);
endif
endfunction
%!demo
%! ## notice that the imaginary signal is phase-shifted 90 degrees
%! t=linspace(0,10,256);
%! z = hilbert(sin(2*pi*0.5*t));
%! grid on; plot(t,real(z),';real;',t,imag(z),';imag;');
%!demo
%! ## the magnitude of the hilbert transform eliminates the carrier
%! t=linspace(0,10,1024);
%! x=5*cos(0.2*t).*sin(100*t);
%! grid on; plot(t,x,'g;z;',t,abs(hilbert(x)),'b;|hilbert(z)|;');
|